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1. Introduction

Fermat’s little theorem says for prime p that ap−1 ≡ 1 mod p for all integers a 6≡ 0 mod p.
A naive extension of this to a composite modulus n ≥ 2 is: for all integers a 6≡ 0 mod n,

an−1 ≡ 1 mod n.

Let’s call this congruence “Fermat’s little congruence.”1 It may or may not be true. For
prime n it holds for all integers a 6≡ 0 mod n. But for composite n there can be counterex-
amples.

Example 1.1. When n = 15, the table below shows that for only four integers a 6≡ 0 mod 15
do we have a14 ≡ 1 mod 15.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a14 mod 15 1 4 9 1 10 6 4 4 6 10 1 9 4 1

Example 1.2. Among all the integers a 6≡ 0 mod 91, 36 of them (less than half) satisfy
a90 ≡ 1 mod 91. The situation for small a is shown below.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
a90 mod 91 1 64 1 1 64 64 77 64 1 1 64 1 78 14 64 · · ·

If Fermat’s little congruence an−1 ≡ 1 mod n fails for even one integer a 6≡ 0 mod n then
n isn’t prime, so it’s composite. For instance, 214 6≡ 1 mod 15 and 290 6≡ 1 mod 91, so 15
and 91 are composite. Of course 15 and 91 are small enough that their compositeness can
be seen by direct factoring (15 = 3 · 5 and 91 = 7 · 13). The real significance of breaking
Fermat’s little congruence is for much larger n, since it lets us prove a large number is
composite without having to factor it. This is what we will explore here.

2. Three Compositeness Tests

The simplest method of checking if an integer n > 1 is composite is trial division up to√
n, which means testing integers a greater than 1 and less than or equal to

√
n to see if

a | n. If this ever happens then n is composite. If it never happens then n is prime. We
only check up to

√
n since if n = ab where a < n and b < n then one of a or b is less than

or equal to
√
n. Trial division only proves n is composite once we find a divisor of n.

Example 2.1. Let n = 415693. Then
√
n ≈ 644.74. The only nontrivial proper factor of n

less than
√
n is 593. Since 593/

√
n ≈ .92, we have to go over 90% of the way to

√
n before

we have proved n is composite by trial division.

1This terminology is convenient, but not standard; I made it up.
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A slight improvement on trial division is using greatest common divisors with n: pick an
integer a with 1 ≤ a ≤ n−1 and compute (a, n) by Euclid’s algorithm. Since (a, n) ≤ a < n,
if (a, n) > 1 then (a, n) is a nontrivial factor of n so n is composite. On the other hand, if
(a, n) = 1 then we learned nothing and pick another a at random from 1 to n − 1 and try
again. We call this the gcd test for compositeness.

Example 2.2. Let n = 415693, as in the previous example. While n has only one nontrivial
factor below

√
n, the number of a from 2 to n− 1 such that (a, n) > 1 is 1292, so there is a

better chance of randomly picking an integer less than n that shares a common nontrivial
factor with n than there is of picking an actual factor of n below

√
n. Still, the odds are

quite small that the gcd test will work using a few random choices of a: 1292/(n−1) ≈ .31%,
which is less than 1/3 of 1%.

A significant improvement on the gcd test comes from seeking to disprove Fermat’s little
congruence an−1 ≡ 1 mod n for some integer a with 1 ≤ a ≤ n− 1.

Example 2.3. Let n = 415693 again. Then 2n−1 ≡ 58346 6≡ 1 mod n, so after just one
choice of a we proved n is composite. The total number of integers a from 1 to n− 1 that
satisfy an−1 6≡ 1 mod n is 415677, and 415677/(n − 1) is over 99.99%. You’d have to be
incredibly unlucky not to prove n is composite by picking an a from 1 to n− 1 at random
and checking if an−1 6≡ 1 mod n.

Let us call the strategy we have introduced the Fermat test:

if an−1 6≡ 1 mod n for at least one integer a with 1 ≤ a ≤ n− 1, then n is composite.

Indeed, if n were prime then Fermat’s little theorem says an−1 ≡ 1 mod n for all integers a
from 1 to n− 1. When this breaks down even once, n must be composite.

An integer less than n that proves n is composite is called a witness to the compositeness
of n. The type of witness depends on the type of test we use.

Definition 2.4. Let 1 ≤ a ≤ n − 1. We call a a trial division witness for n if a | n and
a > 1.2 We call a a gcd witness for n if (a, n) > 1. We call a a Fermat witness for n if
an−1 6≡ 1 mod n.

Compositeness of n is revealed by a trial division witness for n through being a factor
of n, by a gcd witness for n through having greatest common divisor with n that’s greater
than 1, and by a Fermat witness for n by breaking Fermat’s little congruence mod n.3 The
number 1 is not a witness for any of the tests, so we can take 2 ≤ a ≤ n− 1. And n− 1 is
not a witness for any of the tests except for the Fermat test when n is even.

The number 3 is a trial division witness for 15 and a gcd witness for 15, and 10 is a gcd
witness for 15 but not a trial division witness for 15. What are Fermat witnesses for 15?

Example 2.5. Since 214 ≡ 4 6≡ 1 mod 15 (see the table in Example 1.1), 2 is a Fermat
witness for 15, as is every number from 2 to 13 except 4 and 11.

Example 2.6. From Example 2.3, where n = 415693, since 2n−1 6≡ 1 mod n the number
2 is a Fermat witness for n. It proves n is composite without having to find a nontrivial
factor of n.

2Trial division witnesses could be limited to a ≤
√
n, since trial division is not done beyond

√
n.

3Some use the term “Fermat witness” to mean an−1 6≡ 1 mod n and (a, n) = 1, which is more restrictive
than our meaning. We don’t include a gcd restriction since the condition an−1 6≡ 1 mod n tells us n is
composite no matter what (a, n) is.
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Example 2.7. Let n = 1387. Since 21386 ≡ 1 mod 1387, we learn nothing. (Maybe 1387
is prime, so the congruence with 2 would just be an instance of Fermat’s little theorem.)
However, 31386 ≡ 875 6≡ 1 mod 1387, so 1387 is composite with 3 as a Fermat witness.

Example 2.8. Let n = 22
5

+ 1 = 4294967297. Fermat thought n is prime, but it is
not: while 2n−1 ≡ 1 mod n, it turns out that 3n−1 ≡ 3029026160 6≡ 1 mod n, so 3 is a
Fermat witness that proves n is composite without revealing a nontrivial factor of n. Euler
discovered 641 is a factor of n about 100 years after Fermat mistakenly said n is prime.

Example 2.9. Let n = 22
14

+1. It has 4933 digits. While 2n−1 ≡ 1 mod n, a computer cal-
culation taking less than a minute says 3n−1 6≡ 1 mod n, so n is composite. Compositeness
of n was first shown in 1961 by Hurwitz and Selfridge, who showed 3(n−1)/2 6≡ ±1 mod n.
A nontrivial factor of n was first found by Rajala and Woltman almost 50 years later, in
2010: the 54-digit number

116928085873074369829035993834596371340386703423373313.

Its complementary factor has 4880 digits and is composite (3 is a Fermat witness), but no
factorization of the complementary factor into smaller parts is known.

For composite n the number 2 is often a Fermat witness. That is, often 2n−1 6≡ 1 mod n,
which immediately proves compositeness of n. There are only two n < 1000 that are
composite and 2n−1 ≡ 1 mod n: 341 and 561. Up to 10000 there are only twenty-two such
composite numbers. If we look for multiple Fermat witnesses then even fewer composite
numbers are “false positives” for primality: all but seven composite numbers up to 10000
have 2 or 3 as a Fermat witness (the exceptions are 1105, 1729, 2465, 2701, 2821, 6601, and
8911) and all composite numbers up to 10000 have 2, 3, 5, or 7 as a Fermat witness. Using
Fermat’s little congruence sure beats trial division or the gcd test to prove compositeness!

How are trial division witnesses, gcd witnesses, and Fermat witnesses of n related to each
other? Since for a ≥ 2

an−1 ≡ 1 mod n =⇒ (a, n) = 1 =⇒ a - n,
by passing to the contrapositive we have for a ≥ 2 that

a | n =⇒ (a, n) > 1 =⇒ an−1 6≡ 1 mod n,

so a trial division witness (that is, a proper factor greater than 1) is a gcd witness, and a
gcd witness is a Fermat witness. What makes the Fermat witnesses so important is that
there are usually many more of them than the other two types of witnesses.

Example 2.10. We saw in Examples 2.1, 2.2, and 2.3 that for n = 415693 the proportion
of trial division witnesses and gcd witnesses is less than 1% while the proportion of Fermat
witnesses is over 99.99%.

Example 2.11. The number 1387 has 2 trial division witnesses, 91 gcd witnesses, and 1063
Fermat witnesses. The percentages of trial division witness and gcd witnesses for 1387 are
both less than 1% while the percentage of Fermat witnesses for 1387 is around 77%. That
is high enough that we should find a Fermat witness after just a few random guesses.

3. The Proportion of Fermat Witnesses

The next theorem gives a condition on a number n > 1 for there to be a lot of Fermat
witnesses for n in {1, . . . , n− 1}.
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Theorem 3.1. Let n ≥ 2. If some integer b satisfies bn−1 6≡ 1 mod n and (b, n) = 1 then

|{1 ≤ a ≤ n− 1 : an−1 6≡ 1 mod n}| > n− 1

2
.

That is, if some Fermat witness for n is relatively prime to n then over half the integers
from 1 to n− 1 are Fermat witnesses for n.

Proof. Set

A =
{

1 ≤ a ≤ n− 1 : an−1 ≡ 1 mod n
}
,

B =
{

1 ≤ a ≤ n− 1 : (a, n) = 1 and an−1 6≡ 1 mod n
}
,

C = {1 ≤ a ≤ n− 1 : (a, n) > 1}.
The sets A,B, and C are disjoint (why?) and include all integers from 1 to n− 1. Together
B and C are the Fermat witnesses for n and A is everything else between 1 and n − 1.
(Elements of C are the gcd witnesses, and every gcd witness is a Fermat witness.) The
number 1 is in A but not B or C.

By hypothesis B 6= ∅, so n must be composite and thus C 6= ∅ too. The theorem asserts
that if B 6= ∅ then |B|+ |C| > (n− 1)/2. To prove this we will use an idea from the proof
of Fermat’s little theorem: multiply every number in some set by a common number.

We are assuming there is some number in B, say b. The set Ab = {ab mod n : a ∈ A} is
inside B, where “ab mod n” means the remainder when we divide ab by n. Indeed, for any
a ∈ A, the product ab is relatively prime to n and

(ab)n−1 ≡ an−1bn−1 ≡ bn−1 6≡ 1 mod n,

so ab mod n ∈ B. This holds for all a ∈ A, so Ab ⊂ B.
For a and a′ in A, if ab ≡ a′b mod n then we can cancel b and see a ≡ a′ mod n, so a = a′

because numbers in A lie strictly between 0 and n. Thus the number of elements in Ab is
|A|, so from Ab ⊂ B we have |A| = |Ab| ≤ |B|. Therefore

n− 1 = |A|+ |B|+ |C| ≥ |A|+ |A|+ 1 > 2|A|,
so |A| < (n− 1)/2, which means A is less than half of {1, 2, . . . , n − 1}, so its complement
B ∪ C is more than half of {1, 2, . . . , n− 1}. Algebraically,

|B|+ |C| = (n− 1)− |A| > (n− 1)− n− 1

2
=

n− 1

2
.

�

Remark 3.2. A reader who knows about cosets in group theory will recognize the use of
a coset Ab in the proof. Our proof can be recast in terms of group theory as follows. The
invertible numbers modulo n are a group under multiplication, and the set A of solutions
to Fermat’s little congruence an−1 ≡ 1 mod n is a subgroup. If there is a counterexample to
Fermat’s little congruence among the invertible numbers, i.e., if B 6= ∅, then A is a proper
subgroup and therefore has index at least 2, so A is at most half the invertible numbers
modulo n.

Theorem 3.1 says that over half the integers in {1, . . . , n − 1} are Fermat witnesses for
n if some Fermat witness for n is relatively prime to n. The a satisfying (a, n) > 1 are
automatically Fermat witnesses for n, so if there is even one “non-obvious” Fermat witness
(one that is not a gcd witness) then there must be many Fermat witnesses.

The number 1 is never a Fermat witness, so it’s reasonable to remove it from consideration
in the Fermat test.
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Corollary 3.3. If an integer n ≥ 2 has a Fermat witness that is relatively prime to n,4

then the proportion of integers from 2 to n− 1 that are Fermat witnesses for n is over 50%.

Proof. Letting W be the number of Fermat witnesses for n in {1, . . . , n− 1}, Theorem 3.1
implies that W/(n−1) > 1/2, so the proportion of integers in {2, . . . , n−1} that are Fermat
witnesses for n is W/(n− 2) > W/(n− 1) > 1/2. �

When the conclusion of Corollary 3.3 holds, we have a probabilistic test for primality: pick
integers in {2, . . . , n−1} at random and check for each of them if Fermat’s little congruence
breaks down. If over half the integers in {2, . . . , n − 1} are Fermat witnesses for n, then
the probability of not finding a Fermat witness among, say, 10 random choices is smaller
than the probability of flipping a fair coin and getting the same side 10 times in a row, and
that is 1/210 ≈ .000976, so we might say that n appears to be prime with “probability”
at least 1 − 1/210 ≈ .99902. We are putting the word probability in quotes because the
primality of a number is not really a matter of probability. But there is a fundamental
problem here: there are composite n for which Corollary 3.3 fails: every a with (a, n) = 1
has an−1 ≡ 1 mod n. We address this issue in the next section.

Example 3.4. Let n = 13079177569. This number is composite and it turns out that
an−1 6≡ 1 mod n only when (a, n) > 1, so a Fermat witness is the same as a gcd witness in
this case. The number of gcd witnesses is 18483553, which seems large, but it has 8 digits
while n has 11 digits. The proportion of Fermat (= gcd) witnesses for n is around .14%.
(That is not a typo: we do mean .14% = .0014.) Using a random number generator to pick
random numbers mod n, it took me 50 trials until I found a Fermat witness for n.

Example 3.5. If n = 232250619601, then n is composite and again an−1 6≡ 1 mod n only
when (a, n) > 1, but in this case the proportion of Fermat witnesses is a little over 37%.
With a random number generator I found a Fermat witness for n on the second try.

Example 3.6. Let n = 56052361. Applying the Fermat test on random values of a mod n,
I first found a Fermat witness at the 59th value of a.

Example 3.7. Let n = 11004252611041. This number is composite (and Wolfram Alpha
factors it pretty quickly), but when I ran the Fermat test on 100 random values of a mod n
I did not find any Fermat witness. Try this yourself.

4. Fermat False Positives: Carmichael Numbers

It turns out that if we run the Fermat test 10 times and don’t find a Fermat witness, we
are not justified on probabilistic grounds in believing that n is a prime number: there are
composite n for which the only Fermat witnesses are gcd witnesses. In this case Corollary
3.3 can’t be applied and we can’t be sure if the proportion of Fermat witnesses will be large
at all.

Definition 4.1. A composite n for which there are no Fermat witnesses relatively prime
to n is called a Carmichael number. Equivalently, n is a Carmichael number when n is
composite and (a, n) = 1 =⇒ an−1 ≡ 1 mod n.

This name honors Robert Carmichael, who found several such numbers in the early 20th
century, listing several at the end of [2] and giving more examples in [3]. Here are the first
five Carmichael numbers:

4That n has even one Fermat witness implies n must be composite.
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561, 1105, 1729, 2465, 2821.

The numbers in Examples 3.4, 3.5, 3.6, and 3.7 are Carmichael numbers too. There is no
known computationally efficient algorithm to determine if a general integer is Carmichael,
but Alford, Granville, and Pomerance [1] proved that there are infinitely many Carmichael
numbers, so there’s never a point beyond which they stop appearing.

Carmichael was not the first person to study Carmichael numbers. Twenty-five years
earlier S̆imerka [4] found the first seven Carmichael numbers, but his work was in a Czech

math journal that was not widely read. Below is an excerpt from S̆imerka’s article [4],
where you can see 561, 1105, 1729, . . . , 8911. It might be more appropriate to use the name
S̆imerka number instead of Carmichael number, but it’s too late to change the name now.

Figure 1. Carmichael numbers found by S̆imerka before Carmichael.

When we run the Fermat test t times without finding a Fermat witness, and t is large,
we should be morally convinced that n is either a prime number or a Carmichael number.5

Let’s express this idea in probabilistic language. If n is composite and not a Carmichael
number then Corollary 3.3 assures us that over half the numbers from 2 to n−1 are Fermat
witnesses for n, so not finding a Fermat witness after t tests is as likely as flipping a coin t
times and having the same side come up each time, which has probability 1/2t. In fact it
is less likely than that since the proportion of Fermat witnesses is over 50%. Therefore the
“probability” that n is a prime or a Carmichael number if no Fermat witness is found after
t trials is greater than 1− 1/2t. This heuristic reasoning has an error related to conditional
probability that should be fixed with Bayes’ rule, but we will not discuss that here.

To summarize, the Fermat test for a number n ≥ 2 is the following:

(1) Randomly pick an integer a from 2 to n − 1 (this is nonsense for n = 2, but so is
applying the Fermat test to n = 2).

(2) Check if an−1 ≡ 1 mod n.
(3) If an−1 6≡ 1 mod n then stop the test and declare (correctly) “n is composite.” (We

know n has a nontrivial factorization, but the test does not give us one.)
(4) If an−1 ≡ 1 mod n then repeat step 1.
(5) If the test runs t times without terminating then say “n is prime or Carmichael with

probability greater than 1− 1/2t.”

For example, if the test is run 10 times (using t = 10) and an−1 ≡ 1 mod n each time then
we should say “n is prime or Carmichael with probability greater than 1− 1/210 ≈ .99902.”
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