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1. Introduction

A Fermat number is an integer of the form Fn = 22
n

+ 1, where n ≥ 0. The first six
Fermat numbers are

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, F5 = 4294967297.

Fermat checked that Fn is prime for n = 0, 1, 2, 3, 4 and he conjectured that Fn is prime for
all n. This was disproved when Euler [1] showed without explanation that F5 = 641·6700417,
and in fact no further prime Fermat numbers have ever been found. Euler later explained
how he factored F5 [2, Thm. 8] (see also [6]): he proved for primes p that

(1.1) p | Fn =⇒ p ≡ 1 mod 2n+1.

Thus prime factors of F5 satisfy p ≡ 1 mod 64. The first such primes are 1 + 64k when
k = 3, 4, 7, 9, and 10. At k = 10 we get p = 1+64 ·10 = 641, so Euler’s congruence condition
on prime factors of Fermat numbers leads to a prime factor of F5 in just five steps.

We will prove (1.1) by using the fact that the order of each nonzero number modulo p
divides p− 1. Then, using the square patterns

2 ≡ � mod p ⇐⇒ p = 2 or p ≡ 1, 7 mod 8,

3 ≡ � mod p ⇐⇒ p = 2, 3 or p ≡ 1, 11 mod 12,

and Euler’s criterion a(p−1)/2 ≡ (ap ) mod p, we will increase the modulus in (1.1) and derive

a primality test for Fermat numbers.

2. Congruence conditions on prime factors of Fermat numbers

Theorem 2.1 (Euler). If a prime p divides 22
n

+ 1 then p ≡ 1 mod 2n+1.

Proof. if p | (22n +1) then 22
n ≡ −1 mod p, so squaring both sides gives us 22

n+1 ≡ 1 mod p.
Therefore 2 mod p has order dividing 2n+1. Every proper factor of 2n+1 divides 2n and
22

n ≡ −1 6≡ 1 mod p, so the order of 2 mod p can’t divide 2n. Thus 2 mod p must have
order 2n+1. That implies 2n+1 | (p− 1), so p ≡ 1 mod 2n+1. �

Taking n = 1 in Theorem 2.1, 22 + 1 = 5 and 5 ≡ 1 mod 2n+1 while 5 6≡ 1 mod 2n+2, so
it appears that the conclusion of Theorem 2.1 is sharp. However, this is not true. In the
late 1800s, Lucas [3, pp. 280–281] improved Euler’s congruence when n ≥ 2.

Theorem 2.2 (Lucas). If a prime p divides 22
n

+ 1 and n ≥ 2 then p ≡ 1 mod 2n+2.

Proof. As in the proof of Theorem 2.1, we have 22
n ≡ −1 mod p and squaring gives us

22
n+1 ≡ 1 mod p. Since p ≡ 1 mod 2n+1 by Theorem 2.1 and n + 1 ≥ 3 when n ≥ 2, we

have p ≡ 1 mod 8. That implies by the square pattern for 2 that 2 ≡ � mod p.
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Write 2 ≡ s2 mod p, so the condition 22
n ≡ −1 mod p implies s2

n+1 ≡ −1 mod p. The
argument at this point will be similar to what we did in Theorem 2.1, starting from 22

n ≡ −1
mod p, but replacing 2 with s and n with n + 1.

Squaring both sides of s2
n+1 ≡ −1 mod p we get

s2
n+2 ≡ 1 mod p.

Therefore the order of s mod p is a factor of 2n+2. If the order of s mod p is not 2n+2

then it divides 2n+1, so s2
n+1 ≡ 1 mod p, which is false. Thus s mod p has order 2n+2, so

2n+2 | (p− 1), or p ≡ 1 mod 2n+2. �

Example 2.3. Theorem 2.2 says prime factors of F5 satisfy p ≡ 1 mod 128. The first such
prime is 1 + 128 · 2 = 257 and the second is 1 + 128 · 5 = 641, so we are led to a prime factor
of F5 in two steps rather than five steps as we saw earlier. So if Euler had known Theorem
2.2 then he could have reduced his work to find the factor 641 of F5.

Remark 2.4. For 5 ≤ n ≤ 12 except n = 8, some prime factor of 22
n

+ 1 is 1 mod 2n+2

but not 1 mod 2n+3, so perhaps Theorem 2.2 is sharp.

The reader can check as an exercise that Theorem 2.1 is true for odd prime factors of
a2

n
+ 1 no matter what integer a is: any odd prime p dividing such a number must satisfy

p ≡ 1 mod 2n+1. However, Theorem 2.2 does not generalize to other bases so easily. For
example, the prime factors of 68 + 1 are not congruent to 1 mod 23+2 and two of the prime
factors of 616 + 1 are not congruent to 1 mod 24+2. Similarly, no prime factor of 104 + 1 is
1 mod 22+2 and no prime factor of 108 + 1 is 1 mod 23+2.

3. Determining primality of Fermat numbers

The following necessary and sufficient condition for primality of Fermat numbers has
been used to prove (with computers) that some Fermat numbers are composite.

Theorem 3.1 (Pépin, 1877). For n ≥ 1, Fn is prime if and only if 3(Fn−1)/2 ≡ −1 mod Fn.

Proof. First we show Fn ≡ 5 mod 12 for n ≥ 1. (This is not true for n = 0 since F0 = 3.)
For n ≥ 1, 2n is even, so

Fn = 22
n

+ 1 = (−1)2
n

+ 1 ≡ 2 mod 3.

Also Fn ≡ 1 mod 4 since 22
n ≡ 0 mod 4 when n ≥ 1. Combining these congruence condi-

tions, Fn ≡ 7 mod 12 when n ≥ 1.
(=⇒) Suppose p := Fn is prime. Since p ≡ 5 mod 12 we have 3 6≡ � mod p, so 3(p−1)/2 ≡

−1 mod p by Euler’s criterion.
(⇐=) Suppose 3(Fn−1)/2 ≡ −1 mod Fn. We want to prove Fn is prime. Since Fn−1

2 =

22
n−1, we have

(3.1) 32
2n−1 ≡ −1 mod Fn.

Squaring both sides,

32
2n ≡ 1 mod Fn.

so the order of 3 mod Fn divides 22
n
. If the order is not 22

n
, then it is 2e for some e ≤ 2n−1.

But e ≤ 2n−1⇒ 2e | 22n−1, so 32
2n−1 ≡ 1 mod Fn, which contradicts (3.1). Thus 3 mod Fn

has order 22
n

= Fn − 1, so (Fn − 1) | ϕ(Fn). Since ϕ(m) ≤ m − 1 for all m ≥ 2, from
(Fn − 1) | ϕ(Fn) we get ϕ(Fn) = Fn − 1. That means every nonzero integer mod Fn is a
unit mod Fn, so Fn is a prime number. �
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Remark 3.2. This proof can be adapted to a more general result: for an n ≥ 1, if q is an
odd prime such that (Fn

q ) = −1, then Fn is prime if and only if q(Fn−1)/2 ≡ −1 mod Fn.

To prove (⇐=) proceed exactly as in the case q = 3 (which is a choice of q for every n ≥ 1
since (Fn

3 ) = (23) = −1). To prove (=⇒), that Fn ≡ 1 mod 4 when n ≥ 1 lets us rewrite

(Fn
q ) = −1 as ( q

Fn
) = −1 by quadratic reciprocity and then use Euler’s criterion.

Like Fermat’s compositeness test (if am−1 6≡ 1 mod m for some a from 1 to m−1 then m
is composite) when Pépin’s theorem shows Fn is composite it does not yield a non-trivial
factor of Fn. For instance, Pépin’s theorem was used to prove F14 is composite in 1961, but
a nontrivial factor of F14 was not found until almost 50 years later, in 2010.

A year after Pépin’s work, Proth announced a result that is essentially a generalization.

Theorem 3.3 (Proth, 1878). Let m = 2k` + 1, where ` is odd and 2k > `. The number m

is prime if and only if there is an a ∈ Z such that a(m−1)/2 ≡ −1 mod m.

A Fermat number 22
n

+ 1 is 2k` + 1 for k = 2n and ` = 1. Pépin’s theorem is slightly
stronger than Proth’s theorem in this case because Pépin says we can definitely use a = 3,
so Proth’s theorem is not strictly speaking a generalization of Pépin’s theorem.

Proof. If m is prime then a(m−1)/2 ≡ −1 mod m when a 6≡ � mod m and half the nonzero
integers mod m satisfy this condition.

Conversely, assume some integer a satisfies a(m−1)/2 ≡ −1 mod m. We will prove m is
prime by an argument based on [5]. The congruence a(m−1)/2 ≡ −1 mod m is the same

a2
k−1` ≡ −1 mod m. Let p be a prime factor of m, so

(3.2) a2
k−1` ≡ −1 mod p.

Squaring both sides, we get a2
k` ≡ 1 mod p. Therefore the order of a mod p divides 2k`,

so it has the form 2e`′, where e ≤ k and `′ is a factor of `. If e < k then 2e`′ | 2k−1`, so

a2
k−1` ≡ 1 mod p. That contradicts (3.2), so e = k: a mod p has order 2k`′ where `′ | `.

Therefore 2k`′ | (p− 1), so 2k | (p− 1). This implies 2k ≤ p− 1, so p > 2k.
We showed every prime factor of m is greater than 2k. Therefore if m is not prime, so

it is a product of more than one prime, we have m > 22k. However, by the hypotheses
of the theorem we have m = 2k` + 1 ≤ 2k(2k − 1) + 1 = 22k − 2k + 1 < 22k, which is a
contradiction. �

Example 3.4. Let m = 31489. Then m − 1 = 31488 = 28 · 123 and 28 = 256 > 123. We
have a(m−1)/2 ≡ 1 mod m for a = 2, 3, and 5, but 7(m−1)/2 ≡ −1 mod m, so m is prime by
Proth’s theorem using a = 7.

Proth’s theorem at first sight seems incredible: it lets us prove primality of m by verifying
a congruence condition mod m for a single well-chosen a that should exist in great abundance
if m really is prime. The catch is that m has to have a special form to apply Proth’s theorem:
m needs to be odd with the highest power of 2 dividing m− 1 being greater than the odd
part of m− 1. This is not typical of most odd numbers, or even most odd prime numbers.
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