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1. Introduction

Fermat’s little theorem is an important property of integers to a prime modulus.

Theorem 1.1 (Fermat). For prime p and any a ∈ Z such that a 6≡ 0 mod p,

ap−1 ≡ 1 mod p.

If we want to extend Fermat’s little theorem to a composite modulus, a false generalization
would be: if a 6≡ 0 mod m then am−1 ≡ 1 mod m. For a counterexample, take m = 15 and
a = 2: 214 ≡ 4 6≡ 1 mod 15.

A correct extension of Fermat’s little theorem to non-prime moduli requires a new way
of thinking about the hypothesis in Fermat’s little theorem. For prime p,

a 6≡ 0 mod p⇐⇒ (a, p) = 1,

but these two conditions are not equivalent when p is replaced with a composite number.
It is the relative primality point of view on the right that lets Fermat’s little theorem be
extended to a general modulus, as Euler discovered.

Theorem 1.2 (Euler). For m ≥ 2 in Z+ and any a ∈ Z such that (a,m) = 1,

aϕ(m) ≡ 1 mod m,

where ϕ(m) is the number of invertible integers modulo m.

When m = p is prime, all non-zero integers modulo p are invertible, so ϕ(p) = p− 1 and
Euler’s theorem becomes Fermat’s little theorem.

How do we compute ϕ(m)? Consider m = 12. To count the number of invertible integers
modulo 12, write down a set of representatives for integers modulo 12, such as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

The numbers here that are invertible modulo 12 are 1, 5, 7, 11, so ϕ(12) = 4. Euler’s theorem
for m = 12 says a4 ≡ 1 mod 12 when (a, 12) = 1.

Being invertible modulo m is the same as being relatively prime to m (that is, we can
solve ax ≡ 1 mod m for x exactly when (a,m) = 1), so we can describe ϕ(m) concretely as

(1.1) ϕ(m) = |{a : 1 ≤ a ≤ m, (a,m) = 1}|.
For example, ϕ(10) = |{1, 3, 7, 9}| = 4. Here is a small table of values derived from (1.1).1

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ϕ(m) 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16

1The formula (1.1) is how ϕ(m) was first defined by Euler [1, §3]. He wrote πm instead of ϕ(m), e.g.,
π10 = 4. Euler used < m in (1.1) instead of ≤ m, whose only effect is to make π1 = 0 while ϕ(1) = 1. For
m > 1, πm = ϕ(m). The notation ϕ and the use of ≤ m in (1.1) is due to Gauss [2, art. 39].
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It seems ϕ(m) is even for m > 2. To prove this, observe that when a mod m is invertible,
so is −a mod m. So using standard representatives modulo m, invertible numbers modulo
m come in pairs as {a,m − a}. This is a pair of different numbers mod m, since if a ≡
m − a mod m for 0 < a < m then a = m − a (why?) so a = m/2 and m is even. But
(m/2,m) = m/2, and m/2 > 1 when m > 2, so m/2 mod m is not invertible. Thus, if
m > 2 the invertible numbers modulo m come in pairs {a,m−a mod m}, so ϕ(m) is even.2

2. From Fermat to Euler

Euler’s theorem has a proof that is quite similar to the proof of Fermat’s little theorem.
To stress the similarity, we review the proof of Fermat’s little theorem and then we will
make a couple of changes in that proof to get Euler’s theorem.

Here is the proof of Fermat’s little theorem (Theorem 1.1).

Proof. We have a prime p and an arbitrary a 6≡ 0 mod p. To show ap−1 ≡ 1 mod p, consider
non-zero integers modulo p in the standard range:

S = {1, 2, 3, . . . , p− 1}.

We will compare S with the set obtained by multiplying the elements of S by a:

aS = {a, a · 2, a · 3, . . . , a(p− 1)}.

Elements of S represent the nonzero numbers mod p and the elements of aS also represent
the nonzero numbers mod p. That is, each nonzero number mod p is congruent to exactly
one number in aS. Indeed, for any b 6≡ 0 mod p, we can solve the equation ax ≡ b mod p
for x mod p since a mod p is invertible, and necessarily x 6≡ 0 mod p (since b 6≡ 0 mod p).
Choosing x from {1, . . . , p− 1}, so x ∈ S, we see that b mod p is represented by an element
of aS. Two different elements of aS can’t represent the same number mod p since ax ≡
ay mod p =⇒ x ≡ y mod p and different elements of S are not congruent mod p.

Since S and aS become the same thing when reduced modulo p, the product of the
numbers in each set must be the same modulo p:

1 · 2 · 3 · · · · · (p− 1) ≡ a(a · 2)(a · 3) · · · (a(p− 1)) mod p.

Pulling the p− 1 copies of a to the front of the product on the right, we get

1 · 2 · 3 · · · · · (p− 1) ≡ ap−1(1 · 2 · 3 · · · · · (p− 1)) mod p.

Now cancel each of 1, 2, 3, . . . , p− 1 on both sides (they are all invertible modulo p) and we
are left with 1 ≡ ap−1 mod p. �

The proof of Euler’s theorem is pretty similar to this, except we replace the condition
“non-zero modulo p” with “relatively prime to m.”

Proof. We have a positive integer m and an a such that (a,m) = 1. To show aϕ(m) ≡
1 mod m, consider the units modulo m in the standard range:

S = {u1, u2, u3, . . . , uϕ(m)},

where 1 ≤ ui ≤ m− 1, (ui,m) = 1, and the ui’s are distinct. (If m = p is prime we can use
ui = i for all i, but in general there isn’t a simple formula for the ith unit modulo m.)

2Not every even number is ϕ(m) for some m. For example, there is no m for which ϕ(m) = 14 or
ϕ(m) = 26. A longer list of even non-ϕ values is at https://oeis.org/A005277.

https://oeis.org/A005277
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We will compare S with the set obtained by multiplying the elements of S by a:

aS = {au1, au2, au3, . . . , auϕ(m)}.
Since (a,m) = 1, a mod m is a unit and therefore aS consists of units modulo m. We will
show that aS represents all the units modulo m. Given any unit b mod m, the congruence
ax ≡ b mod m is solvable since a mod m is invertible. The solution x is a unit modulo m
(why?), and placing x between 1 and m − 1 makes ax a member of aS. Thus b mod m is
represented by an element of aS. If ax ≡ ay mod m then x ≡ y mod m since a mod m is
invertible, so the different elements of S remain different mod m after being multiplied by
a. Therefore aS is a set of representatives for the units modulo m (no duplicates).

Since the members of S and aS agree modulo m, the product of the numbers in each set
must be the same modulo m:

u1u2u3 · · ·uϕ(m) ≡ (au1)(au2)(au3) · · · (auϕ(m)) mod m.

Pulling the ϕ(m) copies of a to the front of the product on the right, we get

u1u2u3 · · ·uϕ(m) ≡ aϕ(m)u1u2u3 · · ·uϕ(m) mod m.

Now we cancel each ui on both sides (since they are all invertible modulo m) and we are

left with 1 ≡ aϕ(m) mod m. �

Passing from Fermat’s little theorem to Euler’s theorem amounts to replacing non-zero
numbers modulo a prime p with the invertible numbers (not the non-zero numbers) for a
general modulus m. There is a common notation for these numbers in elementary number
theory courses:3

Um = {a mod m : (a,m) = 1}.
The notation Um comes the fact that invertible numbers mod m are called units mod m.

Example 2.1. We have U5 = {1, 2, 3, 4} and U18 = {1, 5, 7, 11, 13, 17}.
When p is prime, Up = {1, 2, 3, . . . , p − 1}. As a check that you understand this new

notation, be sure you understand why ϕ(m) = |Um|.

3. Computing ϕ(m) in special cases

The function ϕ(m) does not vary in a simple way from one integer to the next. See the
table near the end of Section 1. This is typical of functions in number theory that are based
on divisibility (or lack thereof). The right way to think about ϕ(m) is by thinking about
positive integers not using the m→ m+ 1 paradigm, but in terms of the progression

primes→ prime powers→ general case.

This progression is how the integers are best arranged from the viewpoint of divisibility:
primes are the building blocks for multiplication (rather than 1 being the building block for
addition), then come prime powers, and finally we get any positive integer as a product of
prime powers. With this in mind, we can get formulas for ϕ(m) directly from its definition
in the first two cases of the above progression:

• ϕ(p) = p− 1 since there are p− 1 integers from 1 to p that are relatively prime to p.
• ϕ(pk) = pk−pk−1 = pk−1(p−1) for prime p and k ≥ 1 since among the integers from 1

to pk, those that are not relatively prime to pk are the multiples of p: p, 2p, 3p, . . . , pk.
There are pk−1 such numbers. Subtract this from pk to get ϕ(pk) = pk − pk−1.

3Many mathematicians write (Z/(m))× for Um.
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Make sure you remember this explanation for why ϕ(pk) = pk − pk−1.
What about ϕ(m) when m has more than one prime factor? We will treat one case

here, which is important in elementary cryptography: m = pq is a product of two different
primes. If 1 ≤ a ≤ pq and (a, pq) = 1, then a is neither a multiple of p nor a multiple of
q. The multiples of p in this range are p, 2p, . . . , qp and the multiples of q in this range are
q, 2q, . . . , pq. There are q numbers in the first case and p numbers in the second case. The
two lists only overlap at pq (indeed, a positive integer divisible by p and q is divisible by pq,
so can’t be less than pq). Therefore, to compute ϕ(pq), we take away from pq the number
of terms in both lists without double-counting the common term:

ϕ(pq) = pq − p− q + 1 = p(q − 1)− (q − 1) = (p− 1)(q − 1).

This is interesting: ϕ(pq) = ϕ(p)ϕ(q) for different primes p and q. (Warning: this formula
is false when p = q: ϕ(p2) = p2 − p = p(p− 1) while ϕ(p)ϕ(p) = (p− 1)2.)

With these formulas, we can make Euler’s theorem more explicit for certain moduli.

Example 3.1. When p is prime,

(a, p2) = 1 =⇒ ap(p−1) ≡ 1 mod p2.

Example 3.2. When p and q are different primes,

(a, pq) = 1 =⇒ a(p−1)(q−1) ≡ 1 mod pq.

This example with modulus pq is related to the RSA cryptosystem.

4. Application: Periodic Decimal Expansions

With a calculator we can see that various fractions have periodic decimal expansions,
e.g., 3/7 = .428571428571 . . . has a repeating block of length 6. Which numbers have
periodic expansions? And is anything predictable about the period length? To answer
these questions, we start by working in reverse. Let’s write down a periodic expansion and
try to see what kind of number it turns out to be. For simplicity, we focus on purely periodic
decimals, meaning those with a repeating block right at the start (like 3/7 above and unlike
19/55 = .345454545 . . . , which has the initial 3 that is not repeated).

If x = .c1c2. . .cd is a purely periodic decimal, where the periodic block we wrote down
has length d, each ci is repeated every d digits as we move through the decimal expansion
of x. For instance, c1 occurs in positions for 10−1, 10−(d+1), 10−(2d+1), and so on. The digit
c2 occurs in positions 10−2, 10−(d+2), 10−(2d+2), and so on.4 Therefore

x = c1
∑
k≥0

1

10dk+1
+ c2

∑
k≥0

1

10dk+2
+ · · ·+ cd

∑
k≥0

1

10dk+d

=
( c1

10
+

c2
102

+ · · ·+ cd
10d

)∑
k≥0

1

10dk

=
( c1

10
+

c2
102

+ · · ·+ cd
10d

) 1

1− 1/10d
,

4We don’t forbid the possibility that some of the ci’s are equal, e.g., .11111 . . . could be considered to
have repeating block “1” or repeating block “11.”
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where we summed a geometric series in the last step. Writing 1/(1−1/10d) as 10d/(10d−1)
and using 10d in the numerator to clear out the powers of 10 in the denominators of the
other factor, we obtain

x =
c110d−1 + c210d−2 + · · ·+ cd

10d − 1
.

This is a rational number with denominator that is 1 less than a power of 10. The numerator
can be any positive integer with at most d decimal digits, so the ratio is a fraction between
0 and 1.

Example 4.1. Let x = .33333 . . . . The repeating block has length 1, so from the calcula-
tions we made,

x =
3

10− 1
=

3

9
=

1

3
.

Example 4.2. Let x = .002870028700287 . . . . The repeating block has length 5 (not 3;
include the periodic 0’s also), so

x =
287

105 − 1
=

287

99999
=

7

2439
.

In the last step, the greatest common divisor of 287 and 99999 is 41, so the numerator and
denominator are divided by 41.

We have shown that any number that has a purely periodic decimal expansion is rational
between 0 and 1 and admits an expression as a fraction whose denominator is 10d − 1 for
some d. Now we want to go the other way: starting with a fraction, say 28/303, can we
decided if its decimal expansion is (purely) periodic or not?

The calculations above, passing from a purely periodic decimal for a number x to its
expression as a fraction with denominator 10d − 1, can be read forwards and backwards.
Reading it in reverse shows that any fraction between 0 and 1 with a denominator of the
form 10d − 1 has a purely periodic decimal expansion. So the numbers that have purely
periodic decimal expansions are precisely the fractions between 0 and 1 with a denominator
of the form 10d − 1. Of course, a denominator having the form 10d − 1 might not be the
reduced form denominator, e.g., 7/2439 from Example 4.2 has to be written as 287/99999
to get its denominator to be 1 less than a power of 10. So we ask: is there a simple
description of the fractions that admit a representation (not necessarily reduced!) with a
denominator of the form 10d − 1? Since 10d − 1 is not divisible by 2 or 5, and the reduced
form denominator is a factor of any other denominator for the fraction, if a fraction has a
denominator 10d − 1 then its reduced form denominator must be relatively prime to 10. It
turns out the converse is also true, and the key tool to prove this is Euler’s theorem:

Theorem 4.3. Any reduced form fraction a/b with (10, b) = 1 can be written as a fraction
with denominator 10d − 1 for some d ≥ 1. Moreover, the period length of the decimal
expansion for a/b is the smallest d ≥ 1 such that 10d ≡ 1 mod b. In particular, d ≤ ϕ(b)
and the period length is independent of the numerator a.

Proof. Let the fraction be a/b, where (10, b) = 1. By Euler’s theorem, 10ϕ(b) ≡ 1 mod b.

That means 10ϕ(b)−1 is a multiple of b, so we can rewrite a/b as a fraction with denominator

10ϕ(b) − 1.
Let d ≥ 1 be minimal such that 10d ≡ 1 mod b, so d ≤ ϕ(b). Write 10d − 1 = bn, so

a

b
=
an

bn
=

an

10d − 1
,
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Since a/b < 1, we have an < bn = 10d − 1. Therefore the base 10 expansion of an requires
no more than d digits, so we can write an = c110d−1 + c210d−2 + · · ·+ cd for some digits ci.
(Some of the top ci’s may be 0 if an is substantially less than 10d − 1.)

Our earlier calculations showed that for any decimal digits c1, . . . , cd,

(4.1) .c1c2 · · · cd =
c110d−1 + c210d−2 + · · ·+ cd

10d − 1
,

so a/b = (c110d−1 + · · ·+ cd)/(10d − 1) has a periodic decimal expansion of length d.
To show d is the minimal period of the decimal expansion of a/b when d is the smallest

positive integer such that 10d ≡ 1 mod b, assume we could write a/b as a decimal expansion
with a repeating block of some length `. Then a/b can be written as a fraction with
denominator 10` − 1. Since a/b is the reduced form of the fraction, this means 10` − 1 is a
multiple of b, so 10` ≡ 1 mod b. Therefore ` ≥ d (why?), so d is the minimal period length
of the decimal expansion of a/b.

Since the least d such that 10d ≡ 1 mod b has nothing to do with a, we see that the
period length of a/b is independent of a (provided the fraction is written in reduced form,
i.e., (a, b) = 1). �

Example 4.4. A numerical computation suggests the decimal expansions of 1/7, 2/7, 3/7,
4/7, 5/7, and 6/7 all have period length 6 and the decimal expansions of 1/303 and 28/303
both have period length 4. To prove this, check the least d such that 10d ≡ 1 mod 7 is 6
and the least d such that 10d ≡ 1 mod 303 is 4.

By seeing explicitly how 106 − 1 is a multiple of 7 and 104 − 1 is a multiple of 303, we
can even figure out (without a calculator) what the decimal expansions of these fractions
are. Since 106 − 1 = 7 · 142857,

3

7
=

3 · 142857

7 · 143857
=

428571

106 − 1
= .428571428571 . . . .

Since 104 − 1 = 303 · 33,

28

303
=

28 · 33

303 · 33
=

924

104 − 1
= .092409240924 . . . .

The whole theory of periodic decimals (e.g., determining which numbers have purely
periodic decimal expansions, and how long the periods can be) is explained by Euler’s
theorem and results related to it. So this is a concrete elementary application of number
theory to explain a mystery from elementary school mathematics familiar to all students.

Remark 4.5. The requirement in Theorem 4.3 that a/b lie between 0 and 1 is a red herring.
This is best explained by an example. Consider 1543/303. To find its decimal expansion,
first extract the integer part. Since 1543 = 303 · 5 + 28, we have 1543/303 = 5 + 28/303. So
the decimal part of 1543/303 is the same as that of 28/303, and we can apply Theorem 4.3
to 28/303. Since 28/303 = .092409240924 . . . , we have 1543/303 = 5.092409240924 . . . .

In general, check that for any reduced form fraction a/b > 1, subtracting its integer part
leaves a fraction between 0 and 1 that still has b as its reduced form denominator, so the
period of the decimal expansion of a/b is still completely determined by b.

There are further interesting questions worth asking about decimal expansions:

(1) Which numbers have finite decimal expansions (such as 5/16 = .3125)?
(2) Which numbers have periodic decimal expansions with an initial nonrepeating block

(such as 7/15 = .466666 . . . )?
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(3) If we compare all the reduced proper fractions with the same denominator b, they
may all have the same expansion as 1/b except for a shift, e.g.,

1/7 = .142857, 2/7 = .285714,

3/7 = .428571, 4/7 = .571428,

5/7 = .714285, 6/7 = .857142,

Can you explain when all the reduced fractions with denominator b have this feature?
(4) For some denominators, more than one digit sequence (up to shifting) occurs, e.g.,

there are two possibilities when the denominator is 13:

1/13 = .076923, 2/13 = .153846,

3/13 = .230769, 4/13 = .307692,

5/13 = .384615, 6/13 = .461538,

7/13 = .538461, 8/13 = .615384,

9/13 = .692307, 10/13 = .769230,

11/13 = .846153, 12/13 = .923076.

Every decimal expansion here is a shift of the expansion for 1/13 or 2/13. If we
collect numerators of fractions above whose decimal expansions have the same digit
sequence, the 12 numerators fall into two sets of size 6: {1, 3, 4, 9, 10, 12} and
{2, 5, 6, 7, 8, 11}. Is there some significance to these two sets of numbers? More
generally, can you explain how many digit sequences (up to shifting) will occur
among all the reduced fractions with a given denominator, and can you predict
which fractions will have decimal digits that are shifts of each other?

These questions were studied in Europe from the 1760s to the 1790s. Mathematicians
wanted to understand decimal expansions for fractions so as to “mechanize division” to save
the labors of astronomers and others who needed to do many computations. (Pocket calcu-
lators only became available about 200 years later!) Papers by J. H. Lambert, J. Bernoulli,
and K. F. Hindenburg during this time contained a mixture of rules and conjectures about
periodic decimals. They recognized a connection between period lengths for prime denomi-
nators and Fermat’s little theorem, for instance, but they offered little explanation of their
observations. In 1793, the 16-year old Gauss came across these papers and a few years later
he settled nearly all the basic questions in this area through a systematic use of modular
arithmetic5, putting his results in the sixth section of the Disquisitiones Arithmeticae.

5. Other Extensions of Fermat’s Little Theorem

Euler’s theorem is not the only generalization of Fermat’s little theorem to composite
moduli. To see another one, write the congruence in Fermat’s little theorem as

(5.1) ap ≡ a mod p.

For a 6≡ 0 mod p, dividing by a shows this is the same as ap−1 ≡ 1 mod p, which is the usual
form of Fermat’s little theorem. The “advantage” of writing it as ap ≡ a mod p is that now
the congruence holds for all a without exception. We will present here a few congruences

5Two fractions a/b and a′/b with denominator b have the same decimal part if and only if a/b − a′/b
is an integer, which means a ≡ a′ mod b. So the study of decimal expansions might be what led Gauss to
discover modular arithmetic in the first place.
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for composite moduli that each generalize (5.1) and work for all a without exception, unlike
Euler’s theorem.

First generalization. For all m ≥ 2 and all a ∈ Z,

(5.2) am ≡ am−ϕ(m) mod m.

(The exponent m−ϕ(m) is positive since ϕ(m) ≤ m− 1 by the definition of ϕ(m).) When

m = p is prime, (5.2) says ap ≡ ap−(p−1) ≡ a mod p, which is (5.1). When m = pq is a
product of two different primes, (5.2) says apq ≡ ap+q−1 mod pq for all a ∈ Z.

The congruence (5.2) for general m is true when (a,m) = 1 since am ≡ am−ϕ(m)aϕ(m) ≡
am−ϕ(m) mod m by Euler’s theorem. To prove (5.2) for general a, it suffices to prove for

all prime powers pe dividing m (here e > 0) that am ≡ am−ϕ(m) mod pe (taking for pe

the maximal powers of the prime factors of m, this congruence for each pe implies the
congruence mod m). We now take cases depending on whether or not p | a.

Case 1: p - a. In this case (a, pe) = 1, so aϕ(p
e) ≡ 1 mod pe. The number ϕ(m) is divisible

by ϕ(pe), so aϕ(m) ≡ 1 mod pe and therefore am ≡ am−ϕ(m)aϕ(m) ≡ am−ϕ(m) mod pe.

Case 2: p | a. We will show pm−ϕ(m) ≡ 0 mod pe. Both am and am−ϕ(m) are divisible by

pm−ϕ(m), so both are 0 mod pe and thus are congruent modulo pe.
When pe | m, ϕ(m) is divisible by ϕ(pe) = pe−1(p − 1), so m and ϕ(m) are divisible by

pe−1. Therefore pm−ϕ(m) is a power of pp
e−1

, so we’d be done by showing pe−1 ≥ e. The
smallest prime is 2, so pe−1 ≥ 2e−1, and 2e−1 ≥ e for all e ≥ 1 by induction on e.

Second generalization. For all m ≥ 2 and all a ∈ Z,

(5.3)
m−1∑
k=0

a(k,m) ≡ 0 mod m.

When m = p is prime, this becomes ap + (p − 1)a ≡ 0 mod p, which is the same as
ap − a ≡ 0 mod p since the pa mod p term is 0 no matter what a is. So we have recovered
(5.1) as a special case. When m = pq with distinct primes p and q, (5.3) says

(5.4) apq + (q − 1)ap + (p− 1)aq + (p− 1)(q − 1)a ≡ 0 mod pq.

for all a ∈ Z. That’s quite different from Euler’s congruence mod pq in Example 3.2.
In (5.3) the exponents are divisors of m, and collecting terms with the same exponent

yields
m−1∑
k=0

a(k,m) =
∑
d|m

|{1 ≤ k ≤ m : (k,m) = d}|ad =
∑
d|m

ϕ(m/d)ad,

where we leave it to the reader to show |{1 ≤ k ≤ m : (k,m) = d}| = ϕ(m/d) for each
(positive) divisor d of m. Thus (5.3) can be rewritten as

(5.5)
∑
d|m

ϕ(m/d)ad ≡ 0 mod m

for all a ∈ Z, and in the form (5.5) this congruence is due to MacMahon [5, p. 309] in the
1890s. A more recent account of (5.5), using group actions, is in [3, Theorem C].

Third generalization. Our last generalization of Fermat’s little theorem will use the
Möbius function µ(n). This function on positive integers has values in {0, 1,−1} by the
following rules: µ(1) = 1, µ(p1 · · · pr) = (−1)r if the pi’s are distinct, and µ(n) = 0 if n has
a repeated prime factor. Here is a small table of values.
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
µ(m) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1 1 1 0

A generalization of Fermat’s little theorem involving the Möbius function is that for all
m ≥ 2 and all a ∈ Z,

(5.6)
∑
d|m

µ(m/d)ad ≡ 0 mod m.

When m = p is prime this says ap − a ≡ 0 mod p, which is (5.1). When m = pq is a
product of distinct primes, this says apq−ap−aq +a ≡ 0 mod pq; the left side is not strictly
equal to the left side of (5.4), but they are congruent modulo pq since their difference is
q(ap − a) + p(aq − a) + pqa and each term here is a multiple of pq.

A proof of (5.6) can be found in [4] and [6]. A history of (5.6) and its extension to a
congruence using traces of integer matrices is in [7].

References

[1] L. Euler, “Speculationes circa quasdam insignes proprietates numerorum,” Acta Acad. Sci. Imp. Petropol.
4 (1784), 18–30. URL https://scholarlycommons.pacific.edu/euler-works/564/. English translation
at https://arxiv.org/abs/0705.3929v1.

[2] C. F. Gauss, Disquisitiones Arithmeticae, translated by A. A. Clarke, Yale Univ. Press, New Haven,
1966.

[3] I. M. Isaacs and M. R. Pournaki, “Generalizations of Fermat’s Little Theorem Using Group Theory,”
Amer. Math. Monthly 112 (2005), 734–740.

[4] L. Levine, “Fermat’s Little Theorem: A Proof by Function Iteration,” Math. Mag. 72 (1999), 308–309.
[5] P. A. MacMahon, “Applications of the Theory of Permutations in Circular Procession to the Theory of

Numbers,” Proc. London Math. Soc. 23 (1891–2), 305–313.
[6] C. Smyth, “A Coloring Proof of a Generalisation of Fermat’s Little Theorem,” Amer. Math. Monthly

93 (1986), 469–471.
[7] H. Steinlein, “Fermat’s Little Theorem and Gauss Congruence: Matrix Versions and Cyclic Permuta-

tions,” Amer. Math. Monthly 124 (2017), 548–553.

https://scholarlycommons.pacific.edu/euler-works/564/
https://arxiv.org/abs/0705.3929v1

	1. Introduction
	2. From Fermat to Euler
	3. Computing (m) in special cases
	4. Application: Periodic Decimal Expansions
	5. Other Extensions of Fermat's Little Theorem
	References

