
DIVISIBILITY WITHOUT BEZOUT’S IDENTITY

KEITH CONRAD

The key result used in proofs of most basic theorems about divisibility and greatest
common divisors is Bezout’s identity: if a and b are in Z+, then

(a, b) = ax + by

for some integers x and y. Consequences of Bezout’s identity include

• d | a, d | b⇒ d | (a, b),
• a | bc, (a, b) = 1⇒ a | c,
• (a, b) = 1, (a, c) = 1⇒ (a, bc) = 1.

Here we will show a way to derive these without Bezout’s identity (Theorem 9 and Corol-
laries 4 and 5 below). The main tool will be the least common multiple [a, b], which often
plays a minimal (if not nonexistent) role in treatments of divisibility. Our arguments are
adapted from or inspired by [1, pp. 14, 42].

The diagram below indicates the logical dependencies of the results we will show, and
Bezout’s identity is item 12.
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All variables are in Z+ unless said otherwise.

Theorem 1. If a | m and b | m then [a, b] | m.

Proof. Write
m = [a, b]q + r, such that 0 ≤ r < [a, b].

Since m and [a, b] are both multiples of a, also r = m− [a, b]q is a multiple of a. Similarly,
r is a multiple of b. So r is a multiple of [a, b]. If r > 0, then r ≥ [a, b] by the definition of
the least common multiple. But r < [a, b], so we must have r = 0, so [a, b] | m. �

This is the last time you will see addition being used to prove results about divisibility
(until the very end when we come back to Bezout’s identity in Theorem 12). From now on,
proofs are purely multiplicative.
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Theorem 2. For all a and b, (a, b) = 1⇐⇒ [a, b] = ab.

Proof. (⇒) By Theorem 1, [a, b] | ab since ab is a common multiple of a and b. To get the
reverse inclusion, write ab = [a, b]c. We want to show c = 1.

Let [a, b] = ak and [a, b] = b`. Then ab = (ak)c and ab = (b`)c, so

b = kc, a = `c.

Thus c is a common divisor of a and b. Since a and b are relatively prime, c = 1.
(⇐) Set d = (a, b). We want to show d = 1 if [a, b] = ab. Write a = da′ and b = db′.

Then da′b′ is a common multiple of a and b:

da′b′ = ab′ = ba′.

Thus [a, b] ≤ da′b′, from the definition of the least common multiple, so ab ≤ da′b′ because
we’re assuming [a, b] = ab. Since ab = (da′)(db′) = d2a′b′, we get

d2a′b′ ≤ da′b′.

Cancelling common terms, d ≤ 1, so d = 1. �

We will generally use only the direction (⇒) of Theorem 2.

Corollary 3. If a | c, b | c, and (a, b) = 1 then ab | c.

Proof. By Theorem 1, [a, b] | c. By Theorem 2, [a, b] = ab, so ab | c. �

Corollary 4. If a | bc and (a, b) = 1 then a | c.

Proof. Since a | bc (by hypothesis) and b | bc, from Theorem 1 we get [a, b] | bc. Then ab | bc
by Theorem 2, so a | c. �

Corollary 4 implies that for a prime p, if p | mn then p | m or p | n, and that is the key
result behind the uniqueness of prime factorization in Z+.

Corollary 5. If (a, b) = 1 and (a, c) = 1 then (a, bc) = 1.

Proof. We will show [a, bc] = abc. Then the direction (⇐) of Theorem 2 implies (a, bc) = 1.
Write [a, bc] = bck. Then a | bck (since [a, bc] is a multiple of a) and (a, b) = 1, so a | ck

by Corollary 4. From a | ck and (a, c) = 1, we get a | k by Corollary 4. Hence a ≤ k, so

(1) [a, bc] = bck ≥ bca = abc.

Since abc is a common multiple of a and bc, (1) tells us abc = [a, bc], so we’re done by
Theorem 2. �

Theorem 6. For all a, b, and c, [ca, cb] = c[a, b].

Proof. This result will not rely on anything done above.
Certainly c[a, b] is a common multiple of ca and cb. Now let m be a common multiple

of ca and cb. We want to show m ≥ c[a, b], which would make c[a, b] the least common
multiple of ca and cb.

From either ca | m or cb | m we have c | m. Write m = cm′. Then ca | cm′, so a | m′,
and cb | cm′, so b | m′. Thus m′ is a common multiple of a and b, so [a, b] ≤ m′, so
c[a, b] ≤ cm′ = m. �

Theorem 7. For all a and b, ab = [a, b](a, b).
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Proof. Let d = (a, b) and write a = da′ and b = db′. Then (a′, b′) = 1 (if d′ ≥ 1 is a common
divisor of a′ and b′ then dd′ is a common divisor of a and b, so dd′ ≤ d and thus d′ = 1), so

[a, b] = [da′, db′]

= d[a′, b′] by Theorem 6

= da′b′ by Theorem 2.

Therefore [a, b](a, b) = (da′b′)d = da′ · db′ = ab. �

Corollary 8. For all a, b, and c, (ca, cb) = c(a, b).

Proof. By Theorem 7,
[ca, cb](ca, cb) = ca · cb.

By Theorem 6, this can be rewritten as

c[a, b](ca, cb) = c2ab,

so
[a, b](ca, cb) = cab.

By Theorem 7 again, cab = c[a, b](a, b), and substituting this into the above equation gives
us

[a, b](ca, cb) = c[a, b](a, b).

Now cancel [a, b] on both sides. �

Theorem 9. If d | a and d | b then d | (a, b).

Proof. Write a = dm and b = dn. Then (a, b) = (dm, dn) = d(m,n) by Corollary 8, so
d | (a, b). �

In Theorem 9, that d is a common divisor of a and b certainly forces d ≤ (a, b) by the
definition of the greatest common divisor. In order to refine this inequality to the divisibility
relation d | (a, b), you might consider writing (a, b) = dq + r with 0 ≤ r < d and trying
to show r = 0. Unfortunately, d doesn’t have a convenient property that makes it easy to
show r = 0.

Corollary 10. If a | bc, a | bd, and (c, d) = 1 then a | b.

Proof. Write bc = ak and bd = a`. Then (bc, bd) = (ak, a`), so by Corollary 8 we get

b(c, d) = a(k, `).

Therefore b = a(k, `) since (c, d) = 1, so a | b. �

Theorem 11. If (b, c) = 1 then for all a, (a, bc) = (a, b)(a, c).

Proof. Since (a, b) | b and (a, c) | c, we can write

b = (a, b)b′, c = (a, c)c′.

The numbers (a, b) and (a, c) are both factors of a, and they are relatively prime since they
are respective factors of b and c, which are relatively prime. Therefore Corollary 3 tells us
(a, b)(a, c) | a. Write

a = (a, b)(a, c)a′.

Since (a, b)(a, c) is a common factor of a and bc = (a, b)(a, c)b′c′, Corollary 8 tells us

(a, bc) = ((a, b)(a, c)a′, (a, b)b′(a, c)c′) = (a, b)(a, c)(a′, b′c′).



4 KEITH CONRAD

It remains to show (a′, b′c′) = 1.
Since a = (a, b)((a, c)a′) and b = (a, b)b′, the integers (a, c)a′ and b′ must be relatively

prime, so (a′, b′) = 1. Switching the roles of b and c we get in the same way (a′, c′) = 1.
Then Corollary 5 implies (a′, b′c′) = 1. �

Finally we can derive the result we have avoided using all along: Bezout’s identity. It
will follow from Corollary 4 (whose usual proof involves Bezout’s identity, but we did not
prove it that way).

Theorem 12. If (a, b) = 1 then ax + by = 1 for some x and y in Z.

Proof. Consider the function f : Z/(a) → Z/(a) given by f(y) = by mod a. This is one-
to-one: if f(y1) ≡ f(y2) mod a then by1 ≡ by2 mod a, so a | b(y1 − y2) in Z. Therefore
a | (y1 − y2) in Z by Corollary 4, so y1 ≡ y2 mod a.

Since f is a one-to-one function of Z/(a) with itself, and Z/(a) is finite, f is onto as well.
In particular, 1 is a value: 1 ≡ by mod a for some y ∈ Z, so 1 = by + ax for some x and y
in Z. �

Corollary 13. For all a and b, (a, b) = ax + by for some x and y in Z.

Proof. Let d = (a, b). Write a = da′ and b = db′, so (a′, b′) = 1. Then by Theorem
12, a′x + b′y = 1 for some x and y in Z. Multiply through this equation by d to get
da′x + db′y = d, so ax + by = d. �
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