AN EXAMPLE OF DESCENT BY EULER

KEITH CONRAD

As an illustration of the technique of descent where the equation has a few rational solutions, we discuss the following theorem of Euler [2, Theorem 10].
Theorem 1 (Euler, 1738). The only rational solutions to $y^{2}=x^{3}+1$ are $(-1,0),(0, \pm 1)$, and $(2, \pm 3)$.

Proof. Our proof is an elaboration on the sketch in [3, Sect. 5].
Suppose we have a rational solution (x, y). Since $y^{2} \geq 0, x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, and $x^{2}-x+1=(x-1 / 2)^{2}+3 / 4>0$, we must have $x \geq-1$. When $x=-1, y=0$. From now on take $x>-1$.

Write $x=a / b$ where $(a, b)=1$ and $b>0$. From $x>-1$ we get $a+b>0$. Since

$$
x^{3}+1=\left(\frac{a}{b}\right)^{3}+1=\frac{b\left(a^{3}+b^{3}\right)}{b^{4}},
$$

$x^{3}+1$ is a rational square precisely when $b\left(a^{3}+b^{3}\right)$ is a rational square, necessarily an integral square. To think about how $b\left(a^{3}+b^{3}\right)$ could be a square, we will factor $a^{3}+b^{3}$, hoping to get relatively prime factors:

$$
b\left(a^{3}+b^{3}\right)=b(a+b)\left(a^{2}-a b+b^{2}\right) .
$$

What are common divisors of the three factors on the right? Since $(a, b)=1, b$ is relatively prime to $a+b$ and to $a^{2}-a b+b^{2}$. What about $\left(a+b, a^{2}-a b+b^{2}\right)$? Since $a^{2}-a b+b^{2}=$ $(a+b)^{2}-3 a b,\left(a+b, a^{2}-a b+b^{2}\right)=(a+b,-3 a b)$ is either 1 or 3 . We have $\left(a+b, a^{2}-a b+b^{2}\right)=3$ if and only if $3 \mid(a+b)$. Our calculations are hinting that we should be keeping track of $a+b$ and not just a and b, so let's give $a+b$ a name. Set $c=a+b$, so

$$
b(a+b)\left(a^{2}-a b+b^{2}\right)=b c\left(c^{2}-3 b c+3 b^{2}\right) .
$$

Our task is to figure out when this can be a square in \mathbf{Z}. We know b is relatively prime to c and to $c^{2}-3 b c+3 b^{2}$ and $\left(c, c^{2}-3 b c+3 b^{2}\right)=(c, 3)$.

Case 1: $(3, c)=1$. Now all three of b, c, and $c^{2}-3 b c+3 b^{2}$ are pairwise relatively prime. All are positive (complete the square on $c^{2}-3 b c+3 b^{2}$ to check this), so their product is a square only when each is a square. We will see later that, under these conditions, $b=c=1$. Since $c=a+b$, we get $a=0$ and therefore $(x, y)=(0, \pm 1)$.

Case 2: $3 \mid c$. Write $c=3 d$, so from $(b, c)=1$ we get $(b, 3)=1$ and $(b, d)=1$. Therefore

$$
b c\left(c^{2}-3 b c+3 b^{2}\right)=9 b d\left(3 d^{2}-3 b d+b^{2}\right)=9 d b\left(b^{2}-3 d b+3 d^{2}\right) .
$$

For this to be an integral square, the square factor 9 doesn't matter, so we want to know when $d b\left(b^{2}-3 d b+3 d^{2}\right)$ is a square in \mathbf{Z}. This is exactly the same situation as in Case 1 , since $(b, d)=1$ and $(3, b)=1$. Therefore, granting the way Case 1 is claimed to turn out, we must have $b=d=1$, so $c=3 d=3$. Since $c=a+b, a=c-b=2$ and $x=a / b=2$, meaning $(x, y)=(2, \pm 3)$.

It remains to complete the analysis of Case 1: if $u, v \in \mathbf{Z}^{+}$satisfy $u=\square, v=\square$, $u^{2}-3 u v+3 v^{2}=\square,(u, v)=1$, and $(3, u)=1$, then $u=v=1$. We will prove this by descent.

Write

$$
\begin{equation*}
u^{2}-3 u v+3 v^{2}=w^{2} \tag{1}
\end{equation*}
$$

Since $(3, u)=1$, also $(3, w)=1$. We have a choice of sign on w. Since $u, w \not \equiv 0 \bmod 3$ we may pick the sign so that $w \equiv-u \bmod 3$.

Now pick $r \in \mathbf{Q}$ so that $u+r v=w$. That is, $r=(w-u) / v$. Since our sign convention on w forces $w-u \equiv 2 w \not \equiv 0 \bmod 3, r \neq 0$. Write r in reduced form as $r=m / n$, where $n>0$. Then $m \mid(w-u)$ and $n \mid v$, so $(3, m)=1$.

Rewrite (1) using r :

$$
u^{2}-3 u v+3 v^{2}=(u+r v)^{2}=u^{2}+2 r u v+r^{2} v^{2}
$$

so

$$
\left(3-r^{2}\right) v^{2}=(2 r+3) u v
$$

The left side is not zero, so $2 r+3 \neq 0$. Collecting the r terms on one side and the u and v terms on the other,

$$
\frac{u}{v}=\frac{3-r^{2}}{2 r+3}=\frac{3-(m / n)^{2}}{2(m / n)+3}=\frac{3 n^{2}-m^{2}}{n(2 m+3 n)}
$$

Let's show this last fraction is in reduced form. Since $(m, n)=1, n$ is prime to $3 n^{2}-m^{2}$. To show $\left(3 n^{2}-m^{2}, 2 m+3 n\right)=1$ we argue by contradiction. If some prime p divides $3 n^{2}-m^{2}$ and $2 m+3 n$ then $m^{2} \equiv 3 n^{2} \bmod p$ and $2 m \equiv-3 n \bmod p$. Squaring the second congruence and comparing it with the first gives $4 m^{2} \equiv 3 m^{2} \bmod p$ and $12 n^{2} \equiv 9 n^{2} \bmod p$. Thus $m^{2} \equiv 0 \bmod p$ and $3 n^{2} \equiv 0 \bmod p$. Since $(m, n)=1$, we get $p \mid m$ and $p=3$, but $(3, m)=1$. This is a contradiction.

Since u / v and $\left(3 n^{2}-m^{2}\right) /(n(2 m+3 n))$ are equal and in reduced form, the numerators and denominators match up to the same sign:

$$
u=\varepsilon\left(3 n^{2}-m^{2}\right), \quad v=\varepsilon n(2 m+3 n)
$$

for some $\varepsilon= \pm 1$. Reducing the first equation modulo $3, u \equiv-\varepsilon m^{2} \equiv-\varepsilon \bmod 3$. By hypothesis $u=\square$ in \mathbf{Z}, so $\varepsilon=-1$ since $-1 \bmod 3$ is not a square. Having identified ε,

$$
u=m^{2}-3 n^{2}, \quad v=-n(2 m+3 n) .
$$

Since u and v are squares, we write $m^{2}-3 n^{2}=k^{2}$ for some integer k. Then $k \not \equiv 0 \bmod 3$. We are free to choose the sign on k. Pick the sign so that $k \equiv-m \bmod 3$.

Now choose $s \in \mathbf{Q}$ so that $m+s n=k$. That is, $s=(k-m) / n$. From our sign convention on $k, k-m \equiv 2 k \not \equiv 0 \bmod 3$, so $s \neq 0$. Write s in reduced form as $s=u^{\prime} / v^{\prime}$, where $v^{\prime}>0$. Then $u^{\prime} \mid(k-m)$ and $v^{\prime} \mid n$, so $\left(3, u^{\prime}\right)=1$. (Our choice of notation u^{\prime} and v^{\prime} is deliberate. They will be the pair to replace u and v in the descent step.)

Since $m^{2}-3 n^{2}=k^{2}=(m+s n)^{2}=m^{2}+2 m n s+s^{2} n^{2}, 2 m n s=-\left(3+s^{2}\right) n^{2}$. Collecting the s-terms on one side,

$$
\frac{2 m}{n}=-\frac{3+s^{2}}{s}
$$

Now $v=-n(2 m+3 n)=-n^{2}(2 m / n+3)$, so

$$
\begin{aligned}
v & =-n^{2}\left(-\frac{3+s^{2}}{s}+3\right) \\
& =n^{2}\left(\frac{s^{2}-3 s+3}{s}\right) \\
& =n^{2} \frac{u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{\prime 2}}{u^{\prime} v^{\prime}}
\end{aligned}
$$

Since $v=\square$ in \mathbf{Z}, multiplying through by $\left(u^{\prime} v^{\prime}\right)^{2}$ shows

$$
\begin{equation*}
u^{\prime} v^{\prime}\left(u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{\prime 2}\right)=\square \tag{2}
\end{equation*}
$$

Since $\left(u^{\prime}, v^{\prime}\right)=1$ and $\left(3, u^{\prime}\right)=1, u^{\prime}$ and v^{\prime} are both relatively prime to $u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{\prime 2}$. Since $v^{\prime}>0$ and $u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{\prime 2}=\left(u^{\prime}-(3 / 2) v^{\prime}\right)^{2}+(3 / 4) v^{\prime 2}>0$, from (2) we must have $u^{\prime}>0$. The three terms on the left side of (2) are positive are pairwise relatively prime, so each is a square:

$$
u^{\prime}=\square, \quad v^{\prime}=\square, \quad u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{2}=\square
$$

Now all the hypotheses on u and v have been checked on u^{\prime} and v^{\prime}. Let's find a sense in which the pair u^{\prime} and v^{\prime} is smaller than the pair u and v.

Since $n \mid v$ and

$$
\frac{v}{n}=\frac{n\left(u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{2}\right)}{u^{\prime} v^{\prime}}
$$

we have $u^{\prime} v^{\prime} \mid n$ because u^{\prime} and v^{\prime} are prime to $u^{\prime 2}-3 u^{\prime} v^{\prime}+3 v^{\prime 2}$. Therefore $u^{\prime} v^{\prime} \mid v$, so from positivity $0<u^{\prime} v^{\prime} \leq v$, which implies $0<v^{\prime} \leq v$.

As long as $v^{\prime}<v$ we can repeat this construction, getting $u^{\prime \prime}$ and $v^{\prime \prime}$ with $0<v^{\prime \prime} \leq v^{\prime}$, and so on. This can't continue forever, so at some point we will have $v=v^{\prime}$, where now we write u and v for the pair that occur at the step where the construction doesn't produce a smaller solution. Since $u^{\prime} v^{\prime} \mid n$ and $n \mid v^{\prime}$, from $v=v^{\prime}$ we get $v^{\prime}=n$ and $u^{\prime}=1$.

Now

$$
s=\frac{k-m}{n}=\frac{u^{\prime}}{v^{\prime}}=\frac{1}{n}
$$

so $k=m+1$. Then $m^{2}-3 n^{2}=k^{2}=m^{2}+2 m+1$, so $2 m+1=-3 n^{2}$. Then

$$
n=v=-n(2 m+3 n) \Longrightarrow 2 m+3 n=-1 \Longrightarrow 2 m+1=-3 n
$$

so $-3 n^{2}=-3 n$. Since $n \neq 0, n=1$ and therefore $v^{\prime}=n=1$. That means $s=1$ and $2 m+1=-3$, so $m=-2$ and $u=m^{2}-3 n^{2}=4-3=1$.

We have proved that at some point this iterative construction of smaller pairs (measuring size by the size of v) will have to lead to the pair $(1,1)$. We also showed that at the step before we reached $(1,1)$, the pair was also $(1,1)$. Since $(1,1)$ only lifts back to $(1,1)$, the only possible choice for u and v is $u=1$ and $v=1$.

Corollary 2. The only rational solution to the equation $x^{3}+y^{3}=2$ is $(1,1)$ and the only rational solutions to $a^{3}-2 b^{3}=1$ are $(1,0)$ and $(-1,-1)$.

Proof. Suppose (x, y) is a rational solution of $x^{3}+y^{3}=2$, so x and y are both nonzero. Then the pair

$$
(u, v)=\left(\frac{2 x}{y^{2}}, 1-\frac{4}{y^{3}}\right)
$$

satisfies $v^{2}=u^{3}+1$, as a simple check confirms. Since u are v are both nonzero, we must have $(u, v)=(2, \pm 3)$ by Theorem 1. Therefore $x=y^{2}$ and $1-4 / y^{3}= \pm 3$. In the second equation the $+\operatorname{sign}$ leads to $y^{3}=-2$, which is impossible. The $-\operatorname{sign}$ leads to $y^{3}=1$, so $y=1$ and then $x=y^{2}=1$.

If $a^{3}-2 b^{3}=1$ with rational a and b, and $b \neq 0$, then $2=(a / b)^{3}+(-1 / b)^{3}$. Therefore $a / b=1$ and $-1 / b=1$, making $b=-1$ and $a=b=-1$. If instead $b=0$ then of course $a=1$.

Remark 3. To prove Theorem 1 for solutions in \mathbf{Z} rather than in \mathbf{Q} does not make things much easier. That is, proving the integral solutions to $y^{2}=x^{3}+1$ are $(-1,0),(0, \pm 1)$, and $(2, \pm 3)$ is not simple. Let's show this is equivalent to the integral solutions to $a^{3}-2 b^{3}=1$ being $(1,0)$ and $(-1,-1)$.

- Suppose the integral solutions to $y^{2}=x^{3}+1$ are the five known examples. Then if $a^{3}-2 b^{3}=1$ in \mathbf{Z}, the pair $(x, y)=\left(2 a b, 4 b^{3}+1\right)$ satisfies $y^{2}=x^{3}+1$ with $y \equiv 1 \bmod 4$, so $\left(2 a b, 4 b^{3}+1\right)=(0,1)$ or $(2,-3)$ and therefore $(a, b)=(1,0)$ or $(-1,-1)$.
- Suppose the integral solutions to $a^{3}-2 b^{3}=1$ are $(1,0)$ and $(-1,-1)$. Then if $y^{2}=x^{3}+1$ in \mathbf{Z}, arguments with unique factorization in \mathbf{Z} imply $(x, y)=(-1,0)$ if y is even. For odd y, choose the sign on y to make $y \equiv 1 \bmod 4$. Then it can be shown with unique factorization in \mathbf{Z} that $(y+1) / 2$ and $(y-1) / 4$ are both cubes: $(y+1) / 2=a^{3}$ and $(y-1) / 4=b^{3},{ }^{1}$ so $y=2 a^{3}-1=4 b^{3}+1$, which implies $a^{3}-2 b^{3}=1$. Setting $(a, b)=(1,0)$ and $(-1,-1)$ we get $y=1$ and -3 . If $y=1$ then $x^{3}=y^{2}-1=0$ so $(x, y)=(0,1)$, and if $y=-3$ the $x^{3}=y^{2}-1=8$ so $(x, y)=(2,-3)$. Recalling we had adjusted the sign on y to force $y \equiv 1 \bmod 4$, allowing sign changes gives us $(x, y)=(0,-1)$ and $(2,3)$ too.
For comparison to $x^{3}+y^{3}=2$, the equation $x^{3}+y^{3}=6$ has no integral solutions, but it has infinitely many rational solutions, the smallest one being ($17 / 21,37 / 21$).

The equation $x^{3}+y^{3}=9$ has only two integral solutions, the obvious ones: $(1,2)$ and $(2,1)$. A rational solution is $(20 / 7,-17 / 7)$, with $y<0$. If you want a non-integral rational solution (x, y) with $x>0$ and $y>0$, then you have to deal with fractions having very large numerators and denominators. The positive rational solution to $x^{3}+y^{3}=9$ besides $(1,2)$ and $(2,1)$ with smallest denominator is

$$
\left(\frac{415280564497}{348671682660}, \frac{676702467503}{348671682660}\right) \approx(1.191036,1.940801)
$$

Here is an interesting application of Corollary 2. There are infinitely many 3 -term arithmetic progressions of perfect squares, with the simplest being 1, 24, and 49 What about 3 -term arithmetic progressions of perfect cubes? Well, there are two trivial constructions: n^{3}, n^{3}, n^{3} and $(-n)^{3}, 0^{3}, n^{3}$.

Corollary 4. A 3-term arithmetic progressions of nonzero cubes in \mathbf{Z} has all terms equal.
Proof. Say the progression is a^{3}, b^{3}, c^{3}, with $a^{3} \leq b^{3} \leq c^{3}$. As an arithmetic progression, $b^{3}-a^{3}=c^{3}-b^{3}$, so $2 b^{3}=a^{3}+c^{3}$. Since $b \neq 0,2=(a / b)^{3}+(c / b)^{3}$. By Corollary $2, a / b=1$ and $c / b=1$, so $a=b=c$.

[^0]What about higher powers? A 3-term arithmetic progression of nth powers in \mathbf{Z} corresponds to an integral solution of the equation $x^{n}+y^{n}=2 z^{n}$. It can be proved that any such solution has all terms equal or one term equal to 0 . This is proved by the same techniques used to prove Fermat's Last Theorem. See [1] and [4].

References

[1] H. Darmon and L. Merel, "Winding quotients and some variants of Fermat's last theorem," J. Reine Angew. Math. 490 (1997), 81-100.
[2] L. Euler, Theorematum quorundam arithmeticorum demonstrationes, Comm. Acad. Sci. Petrop. 10 (1738), 125-146. English translation online at https://scholarlycommons.pacific.edu/euler-works/ 98/.
[3] F. Lemmermeyer, "A note on Pépin's counterexamples to the Hasse principle for curves of genus 1," Abh. Math. Sem. Hamburg 69 (1999), 335-345. Online at http://www.fen.bilkent.edu. tr/~franz/publ.html.
[4] K. Ribet, "On the Equation $a^{p}+2^{\alpha} b^{p}+c^{p}=0, "$ Acta Arith. 79 (1997), 7-16.

[^0]: ${ }^{1}$ See Example 3.6 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/mordelleqn1.pdf for details of these arguments involving unique factorization in \mathbf{Z} when y is even or odd.

