
AN EXAMPLE OF DESCENT BY EULER

KEITH CONRAD

As an illustration of the technique of descent where the equation has a few rational
solutions, we discuss the following theorem of Euler [2, Theorem 10].

Theorem 1 (Euler, 1738). The only rational solutions to y2 = x3 + 1 are (−1, 0), (0,±1),
and (2,±3).

Proof. Our proof is an elaboration on the sketch in [3, Sect. 5].
Suppose we have a rational solution (x, y). Since y2 ≥ 0, x3 + 1 = (x + 1)(x2 − x + 1),

and x2 − x + 1 = (x− 1/2)2 + 3/4 > 0, we must have x ≥ −1. When x = −1, y = 0. From
now on take x > −1.

Write x = a/b where (a, b) = 1 and b > 0. From x > −1 we get a + b > 0. Since

x3 + 1 =
(a
b

)3
+ 1 =

b(a3 + b3)

b4
,

x3 + 1 is a rational square precisely when b(a3 + b3) is a rational square, necessarily an
integral square. To think about how b(a3 + b3) could be a square, we will factor a3 + b3,
hoping to get relatively prime factors:

b(a3 + b3) = b(a + b)(a2 − ab + b2).

What are common divisors of the three factors on the right? Since (a, b) = 1, b is relatively
prime to a + b and to a2 − ab + b2. What about (a + b, a2 − ab + b2)? Since a2 − ab + b2 =
(a+b)2−3ab, (a+b, a2−ab+b2) = (a+b,−3ab) is either 1 or 3. We have (a+b, a2−ab+b2) = 3
if and only if 3|(a+ b). Our calculations are hinting that we should be keeping track of a+ b
and not just a and b, so let’s give a + b a name. Set c = a + b, so

b(a + b)(a2 − ab + b2) = bc(c2 − 3bc + 3b2).

Our task is to figure out when this can be a square in Z. We know b is relatively prime to
c and to c2 − 3bc + 3b2 and (c, c2 − 3bc + 3b2) = (c, 3).

Case 1: (3, c) = 1. Now all three of b, c, and c2 − 3bc+ 3b2 are pairwise relatively prime.
All are positive (complete the square on c2 − 3bc + 3b2 to check this), so their product is a
square only when each is a square. We will see later that, under these conditions, b = c = 1.
Since c = a + b, we get a = 0 and therefore (x, y) = (0,±1).

Case 2: 3|c. Write c = 3d, so from (b, c) = 1 we get (b, 3) = 1 and (b, d) = 1. Therefore

bc(c2 − 3bc + 3b2) = 9bd(3d2 − 3bd + b2) = 9db(b2 − 3db + 3d2).

For this to be an integral square, the square factor 9 doesn’t matter, so we want to know
when db(b2 − 3db + 3d2) is a square in Z. This is exactly the same situation as in Case 1,
since (b, d) = 1 and (3, b) = 1. Therefore, granting the way Case 1 is claimed to turn out,
we must have b = d = 1, so c = 3d = 3. Since c = a + b, a = c − b = 2 and x = a/b = 2,
meaning (x, y) = (2,±3).
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It remains to complete the analysis of Case 1: if u, v ∈ Z+ satisfy u = �, v = �,
u2 − 3uv + 3v2 = �, (u, v) = 1, and (3, u) = 1, then u = v = 1. We will prove this by
descent.

Write

(1) u2 − 3uv + 3v2 = w2.

Since (3, u) = 1, also (3, w) = 1. We have a choice of sign on w. Since u,w 6≡ 0 mod 3 we
may pick the sign so that w ≡ −u mod 3.

Now pick r ∈ Q so that u + rv = w. That is, r = (w − u)/v. Since our sign convention
on w forces w − u ≡ 2w 6≡ 0 mod 3, r 6= 0. Write r in reduced form as r = m/n, where
n > 0. Then m|(w − u) and n|v, so (3,m) = 1.

Rewrite (1) using r:

u2 − 3uv + 3v2 = (u + rv)2 = u2 + 2ruv + r2v2,

so

(3− r2)v2 = (2r + 3)uv.

The left side is not zero, so 2r + 3 6= 0. Collecting the r terms on one side and the u and v
terms on the other,

u

v
=

3− r2

2r + 3
=

3− (m/n)2

2(m/n) + 3
=

3n2 −m2

n(2m + 3n)
.

Let’s show this last fraction is in reduced form. Since (m,n) = 1, n is prime to 3n2 −m2.
To show (3n2 − m2, 2m + 3n) = 1 we argue by contradiction. If some prime p divides
3n2 −m2 and 2m + 3n then m2 ≡ 3n2 mod p and 2m ≡ −3n mod p. Squaring the second
congruence and comparing it with the first gives 4m2 ≡ 3m2 mod p and 12n2 ≡ 9n2 mod p.
Thus m2 ≡ 0 mod p and 3n2 ≡ 0 mod p. Since (m,n) = 1, we get p|m and p = 3, but
(3,m) = 1. This is a contradiction.

Since u/v and (3n2 −m2)/(n(2m + 3n)) are equal and in reduced form, the numerators
and denominators match up to the same sign:

u = ε(3n2 −m2), v = εn(2m + 3n)

for some ε = ±1. Reducing the first equation modulo 3, u ≡ −εm2 ≡ −ε mod 3. By
hypothesis u = � in Z, so ε = −1 since −1 mod 3 is not a square. Having identified ε,

u = m2 − 3n2, v = −n(2m + 3n).

Since u and v are squares, we write m2 − 3n2 = k2 for some integer k. Then k 6≡ 0 mod 3.
We are free to choose the sign on k. Pick the sign so that k ≡ −m mod 3.

Now choose s ∈ Q so that m+sn = k. That is, s = (k−m)/n. From our sign convention
on k, k −m ≡ 2k 6≡ 0 mod 3, so s 6= 0. Write s in reduced form as s = u′/v′, where v′ > 0.
Then u′|(k −m) and v′|n, so (3, u′) = 1. (Our choice of notation u′ and v′ is deliberate.
They will be the pair to replace u and v in the descent step.)

Since m2− 3n2 = k2 = (m+ sn)2 = m2 + 2mns+ s2n2, 2mns = −(3 + s2)n2. Collecting
the s-terms on one side,

2m

n
= −3 + s2

s
.
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Now v = −n(2m + 3n) = −n2(2m/n + 3), so

v = −n2

(
−3 + s2

s
+ 3

)
= n2

(
s2 − 3s + 3

s

)
= n2u

′2 − 3u′v′ + 3v′2

u′v′
.

Since v = � in Z, multiplying through by (u′v′)2 shows

(2) u′v′(u′2 − 3u′v′ + 3v′2) = �.

Since (u′, v′) = 1 and (3, u′) = 1, u′ and v′ are both relatively prime to u′2 − 3u′v′ + 3v′2.
Since v′ > 0 and u′2 − 3u′v′ + 3v′2 = (u′ − (3/2)v′)2 + (3/4)v′2 > 0, from (2) we must have
u′ > 0. The three terms on the left side of (2) are positive are pairwise relatively prime, so
each is a square:

u′ = �, v′ = �, u′2 − 3u′v′ + 3v′2 = �.

Now all the hypotheses on u and v have been checked on u′ and v′. Let’s find a sense in
which the pair u′ and v′ is smaller than the pair u and v.

Since n|v and

v

n
=

n(u′2 − 3u′v′ + 3v′2)

u′v′
,

we have u′v′|n because u′ and v′ are prime to u′2 − 3u′v′ + 3v′2. Therefore u′v′|v, so from
positivity 0 < u′v′ ≤ v, which implies 0 < v′ ≤ v.

As long as v′ < v we can repeat this construction, getting u′′ and v′′ with 0 < v′′ ≤ v′,
and so on. This can’t continue forever, so at some point we will have v = v′, where now we
write u and v for the pair that occur at the step where the construction doesn’t produce a
smaller solution. Since u′v′|n and n|v′, from v = v′ we get v′ = n and u′ = 1.

Now

s =
k −m

n
=

u′

v′
=

1

n
,

so k = m + 1. Then m2 − 3n2 = k2 = m2 + 2m + 1, so 2m + 1 = −3n2. Then

n = v = −n(2m + 3n) =⇒ 2m + 3n = −1 =⇒ 2m + 1 = −3n,

so −3n2 = −3n. Since n 6= 0, n = 1 and therefore v′ = n = 1. That means s = 1 and
2m + 1 = −3, so m = −2 and u = m2 − 3n2 = 4− 3 = 1.

We have proved that at some point this iterative construction of smaller pairs (measuring
size by the size of v) will have to lead to the pair (1, 1). We also showed that at the step
before we reached (1, 1), the pair was also (1, 1). Since (1, 1) only lifts back to (1, 1), the
only possible choice for u and v is u = 1 and v = 1. �

Corollary 2. The only rational solution to the equation x3 + y3 = 2 is (1, 1) and the only
rational solutions to a3 − 2b3 = 1 are (1, 0) and (−1,−1).

Proof. Suppose (x, y) is a rational solution of x3 + y3 = 2, so x and y are both nonzero.
Then the pair

(u, v) =

(
2x

y2
, 1− 4

y3

)
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satisfies v2 = u3 + 1, as a simple check confirms. Since u are v are both nonzero, we must
have (u, v) = (2,±3) by Theorem 1. Therefore x = y2 and 1 − 4/y3 = ±3. In the second
equation the + sign leads to y3 = −2, which is impossible. The − sign leads to y3 = 1, so
y = 1 and then x = y2 = 1.

If a3 − 2b3 = 1 with rational a and b, and b 6= 0, then 2 = (a/b)3 + (−1/b)3. Therefore
a/b = 1 and −1/b = 1, making b = −1 and a = b = −1. If instead b = 0 then of course
a = 1. �

Remark 3. To prove Theorem 1 for solutions in Z rather than in Q does not make things
much easier. That is, proving the integral solutions to y2 = x3 + 1 are (−1, 0), (0,±1), and
(2,±3) is not simple. Let’s show this is equivalent to the integral solutions to a3 − 2b3 = 1
being (1, 0) and (−1,−1).

• Suppose the integral solutions to y2 = x3 + 1 are the five known examples. Then
if a3 − 2b3 = 1 in Z, the pair (x, y) = (2ab, 4b3 + 1) satisfies y2 = x3 + 1 with
y ≡ 1 mod 4, so (2ab, 4b3 + 1) = (0, 1) or (2,−3) and therefore (a, b) = (1, 0) or
(−1,−1).
• Suppose the integral solutions to a3 − 2b3 = 1 are (1, 0) and (−1,−1). Then if
y2 = x3 + 1 in Z, arguments with unique factorization in Z imply (x, y) = (−1, 0)
if y is even. For odd y, choose the sign on y to make y ≡ 1 mod 4. Then it can
be shown with unique factorization in Z that (y + 1)/2 and (y − 1)/4 are both
cubes: (y + 1)/2 = a3 and (y − 1)/4 = b3,1 so y = 2a3 − 1 = 4b3 + 1, which implies
a3 − 2b3 = 1. Setting (a, b) = (1, 0) and (−1,−1) we get y = 1 and −3. If y = 1
then x3 = y2 − 1 = 0 so (x, y) = (0, 1), and if y = −3 the x3 = y2 − 1 = 8 so
(x, y) = (2,−3). Recalling we had adjusted the sign on y to force y ≡ 1 mod 4,
allowing sign changes gives us (x, y) = (0,−1) and (2, 3) too.

For comparison to x3 + y3 = 2, the equation x3 + y3 = 6 has no integral solutions, but it
has infinitely many rational solutions, the smallest one being (17/21, 37/21).

The equation x3 + y3 = 9 has only two integral solutions, the obvious ones: (1, 2) and
(2, 1). A rational solution is (20/7,−17/7), with y < 0. If you want a non-integral rational
solution (x, y) with x > 0 and y > 0, then you have to deal with fractions having very large
numerators and denominators. The positive rational solution to x3 + y3 = 9 besides (1, 2)
and (2, 1) with smallest denominator is(

415280564497

348671682660
,
676702467503

348671682660

)
≈ (1.191036, 1.940801)

Here is an interesting application of Corollary 2. There are infinitely many 3-term arith-
metic progressions of perfect squares, with the simplest being 1, 24, and 49 What about
3-term arithmetic progressions of perfect cubes? Well, there are two trivial constructions:
n3, n3, n3 and (−n)3, 03, n3.

Corollary 4. A 3-term arithmetic progressions of nonzero cubes in Z has all terms equal.

Proof. Say the progression is a3, b3, c3, with a3 ≤ b3 ≤ c3. As an arithmetic progression,
b3−a3 = c3− b3, so 2b3 = a3 + c3. Since b 6= 0, 2 = (a/b)3 + (c/b)3. By Corollary 2, a/b = 1
and c/b = 1, so a = b = c. �

1See Example 3.6 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/mordelleqn1.pdf for de-
tails of these arguments involving unique factorization in Z when y is even or odd.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/mordelleqn1.pdf
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What about higher powers? A 3-term arithmetic progression of nth powers in Z corre-
sponds to an integral solution of the equation xn+yn = 2zn. It can be proved that any such
solution has all terms equal or one term equal to 0. This is proved by the same techniques
used to prove Fermat’s Last Theorem. See [1] and [4].
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