
PROOFS BY DESCENT

KEITH CONRAD

As ordinary methods, such as are found in the books, are inadequate to prov-
ing such difficult propositions, I discovered at last a most singular method
. . . that I called the infinite descent. Fermat, 1659.

1. Introduction

The method of descent is a technique developed by Fermat for proving certain equations
have no (or few) integral solutions. The idea is to show that if there is an integral solution
to an equation then there is another integral solution that is smaller in some way. Repeat-
ing this process and comparing the sizes of the successive solutions leads to an infinitely
decreasing sequence

a1 > a2 > a3 > · · ·

of positive integers, and that is impossible. Let’s take a look at two examples.

Example 1.1 (Euler). We will show the equation x3 + 2y3 + 4z3 = 0 has no solution in
integers other than the obvious solution (0, 0, 0). Assume there is a solution (x, y, z) 6=
(0, 0, 0), so at least one of x, y, and z is not 0. The equation tells us x3 is even, so x is
even. Write x = 2x′. Then 8x′3 + 2y3 + 4z3 = 0. Dividing by 2 and rearranging terms,
we get y3 + 2z3 + 4x′3 = 0. This is just like our original equation, with (x, y, z) replaced
by (y, z, x′). Since y is now playing the role previously played by x, the argument used
before on x shows y is even. Writing y = 2y′, substituting this in, and removing a common
factor of 2, we get z3 + 2x′3 + 4y′3 = 0. Therefore z is even, so z = 2z′. Substituting this
in and simplifying, x′3 + 2y′3 + 4z′3 = 0. Thus (x′, y′, z′) fits the original equation and at
least one of x′, y′ or z′ is nonzero (corresponding to whichever of x, y, and z is nonzero).
Since 0 < max(|x′|, |y′|, |z′|) = (1/2) max(|x|, |y|, |z|), we have produced a smaller integral
solution measured by the maximum absolute value, which is a positive integer. This process
can be repeated infinitely often, leading to a contradiction.

The same proof shows for each prime p that the equation x3 + py3 + p2z3 = 0 has no
integral solution other than (0, 0, 0). Indeed, if (x, y, z) fits the equation then p | x3, so p | x
and we can proceed exactly as in the special case p = 2.

In Section 2 we will give proofs by descent that certain numbers are irrational. In Section
3 we will show the equation a4 + b4 = c4 (a special case of Fermat’s Last Theorem) has no
solution in positive integers using descent. In Section 4 we will use descent to show certain
equations have no solution in nonconstant rational functions. In a positive direction, descent
will be used in Section 5 to show each prime p such that −1 ≡ � mod p is a sum of two
squares and in Section 6 to show each positive integer is a sum of four squares. In Section
7 we will argue by descent that for all integers k > 0 other than 1 or 3, the equation
x2 + y2 + z2 = kxyz has no integral solutions (x, y, z) besides (0, 0, 0).
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While descent may appear to be something like “reverse induction,” it is not as widely
applicable in the whole of mathematics as induction. Descent is nevertheless quite central
to some important developments in number theory.

2. Irrationality by descent

Here is the usual proof that
√

2 is irrational, expressed using the idea of descent.

Example 2.1. We assume
√

2 is rational, so
√

2 = a/b with positive integers a and b.
Squaring both sides and clearing the denominator, 2b2 = a2. (This is an equation we want
to show is not solvable in positive integers.) Since 2 | a2, 2 | a. Write a = 2a′ for some
positive integer a′, so 2b2 = 4a′2, which is the same as b2 = 2a′2. Thus 2 | b2, so 2 | b. Write
b = 2b′, so 4b′2 = 2a′2, which is the same as 2b′2 = a′2. Since a′ and b′ are positive, we have√

2 = a′/b′, so
√

2 =
a

b
=
a′

b′
.

Since b = 2b′ and both b and b′ are positive, 0 < b′ < b, so we started with one rational
expression for

√
2 and found another rational expression with a smaller (positive) denomi-

nator. Now we can repeat this process and obtain a sequence of rational expressions for
√

2
with decreasing positive denominators. This can’t go on forever, so we have a contradiction.

Where would this proof break down if we tried to adapt it to prove
√

4 is irrational by
contradiction? Starting from

√
4 = a/b for a and b in Z+, we’d get 4 | a2, so 2 | a (not

4 | a), and writing a = 2a′, 4a′2 = a2 = 4b2, so a′2 = b2 and we can’t show b is even too.

The way this proof usually is written starts with
√

2 = a/b where the fraction is in lowest
terms. Then the fact that a = 2a′ and b = 2b′, as shown in the theorem, is a contradiction
since it means the fraction wasn’t in lowest terms. The method of descent bypassed having
to put the fraction in lowest terms, obtaining a contradiction in a different way.

Let’s take a look at another proof by descent that
√

2 is irrational. We assume
√

2 is
rational. Since 1 <

√
2 < 2, we can write

(2.1)
√

2 = 1 +
m

n
,

where m and n are positive integers with 0 < m/n < 1, so 0 < m < n. Squaring both sides
of (2.1) and clearing the denominator,

2n2 = n2 + 2mn+m2,

so m2 = n2 − 2mn = n(n− 2m). Since m2 and n are positive, so is n− 2m, and

m

n
=
n− 2m

m
.

This in between 0 and 1, by the definition of m/n, so 0 < n − 2m < m. We have reached
the descent step: the fractional part m/n of

√
2 has been written as a fraction (n− 2m)/m

with a smaller denominator than before: 0 < m < n. We can repeat this process again and
again, eventually reaching a contradiction.

This proof by descent that
√

2 is irrational is not the same as the proof by descent in
Example 2.1, since it does not use anything about even and odd numbers. It also generalizes
nicely to other square roots.

Theorem 2.2. If d ∈ Z+ and d is not a perfect square then
√
d is irrational.
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Proof. (Dedekind, 1858) Suppose
√
d is rational. Since d is not a perfect square, its positive

square root lies strictly between two consecutive integers. Let ` be the integer such that
` <
√
d < `+ 1. (Note ` is uniquely determined by

√
d.) Write

√
d = `+

m

n
,

where m and n are positive integers with 0 < m/n < 1, so 0 < m < n. Squaring both sides
and clearing the denominator,

dn2 = n2`2 + 2mn`+m2,

so m2 = nq, where q = n(d − `2) − 2m`. Since m2 and n are positive, q is positive. Then
m/n = q/m, so

√
d = `+

m

n
= `+

q

m
.

Since q/m = m/n, 0 < q/m < 1, so 0 < q < m. The fraction q/m has a smaller (positive)

denominator than m/n, so from one representation
√
d− ` = m/n we get another represen-

tation
√
d− ` = q/m with a smaller (positive) denominator. This leads to a contradiction

by repeating this process enough times. �

Here is another proof of Theorem 2.2, using descent in Z2 rather than in Z. The argument
is taken from [8].

Proof. Set A = ( 0 d
1 0 ). Its characteristic polynomial is det(λI2 − A) = λ2 − d, with an

eigenvalue
√
d and associated eigenvector

(√
d
1

)
. Assuming

√
d is rational, write

√
d = a/b

with nonzero integers a and b. A scalar multiple of an eigenvector is an eigenvector, and(√
d
1

)
=
(
a/b
1

)
can be scaled to

(
a
b

)
. This is also an eigenvector of A: A

(
a
b

)
=
(
db
a

)
=
√
d
(
a
b

)
.

Let ` be the integer such that ` <
√
d < `+ 1. Then

(A− `I2)
(
a

b

)
=
√
d

(
a

b

)
− `
(
a

b

)
= (
√
d− `)

(
a

b

)
,

where
√
d− ` lies between 0 and 1. The integral vector

(
a
b

)
is an eigenvector of the integral

matrix A− `I2 with eigenvalue between 0 and 1.
Since

(
a
b

)
is an eigenvector of A−`I2, it is also an eigenvector of (A−`I2)r for each r ≥ 1,

with eigenvalue (
√
d− `)r:

(A− `I2)r
(
a

b

)
= (
√
d− `)r

(
a

b

)
.

On the left side, for all r ≥ 1 we have a vector in Z2 since A has integer entries and a, b,
and ` are integers. On the right side we have a nonzero vector (since a, b, and

√
d − ` are

nonzero) and it is getting arbitrarily small as r grows since |
√
d − `| < 1. So we have a

sequence of nonzero vectors in Z2 with length shrinking to 0 (the descent idea). This is
impossible, so we have a contradiction. �

We can extend the same proof to cube roots, using descent in Z3.

Theorem 2.3. If d ∈ Z and d is not a perfect cube then 3
√
d is irrational.
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Proof. Suppose 3
√
d = a/b with nonzero integers a and b. Let

A =

 0 0 d
1 0 0
0 1 0

 , v =

 a2

ab
b2

 ,

so det(λI3 −A) = λ3 − d and Av = (a/b)v = 3
√
dv.

Let ` ∈ Z satisfy ` < 3
√
d < `+ 1, so (A− `I3)v = ( 3

√
d− `)v. Then

(2.2) (A− `I3)rv = (
3
√
d− `)rv

for all r ≥ 1. Since v ∈ Z3 and A has integer entries, the left side of (2.2) is a vector in Z3.

Since v 6= 0 and 0 < 3
√
d− ` < 1, the right side of (2.2) is nonzero and its length is tending

to 0 as r grows. Thus, as r →∞, the nonzero vectors (A− `I3)rv are a sequence in Z3 with

length shrinking to 0. This is impossible, so 3
√
d must be irrational. �

Remark 2.4. In a similar way one can deal with higher roots: if d ∈ Z and k ≥ 2 (with

d > 0 if k is even) and d is not a kth power in Z then k
√
d is irrational. Just assume

k
√
d = a/b is rational and use the k × k matrix and vector

A =

(
0 d

Ik−1 0

)
, v =


ak−1

ak−2b
...

bk−1

 .

3. Fermat’s Last Theorem for n = 4

We will use descent to prove the exponent 4 case of Fermat’s Last Theorem: the equation
a4 + b4 = c4 has no solution in positive integers. Fermat proved something more general,
allowing a square and not just a fourth power on the right side.

Theorem 3.1 (Fermat). There is no solution to the equation x4 + y4 = z2 in positive
integers. In particular, the equation a4 + b4 = c4 has no solution in positive integers.

Proof. We will use the parametrization of primitive Pythagorean triples, so let’s recall that:
a primitive solution to a2 + b2 = c2 where a, b, and c are positive integers with b even is

a = k2 − `2, b = 2k`, c = k2 + `2,

where k > `, (k, `) = 1, and k 6≡ ` mod 2.1

Assume there is a solution to x4 + y4 = z2 where x, y, and z are positive integers. If p is
a common prime factor of x and y then p4 | z2, so p2 | z. Then we can cancel the common
factor of p4 throughout and get a similar equation with smaller positive values of x, y, and
z. Doing this enough times, we may suppose that (x, y) = 1. Then (x, z) = 1 and (y, z) = 1
too.

We will find a second positive integer solution (x′, y′, z′) with (x′, y′) = 1 that is smaller
in a suitable sense.

Since x4 + y4 = z2 and (x, y) = 1, at least one of x and y is odd. They can’t both be
odd, since otherwise z2 ≡ 2 mod 4, which has no solution. Without loss of generality, say
x is odd and y is even. Then z is odd. Since (x2)2 + (y2)2 = z2, (x2, y2, z) is a primitive

1For a proof of this, see https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pythagtriple.pdf.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pythagtriple.pdf
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Pythagorean triple with y2 the even term, so by the formula for primitive triples we can
write

(3.1) x2 = k2 − `2, y2 = 2k`, z = k2 + `2,

where k > ` > 0 and (k, `) = 1 (also k 6≡ ` mod 2, but we don’t need this). The first equation
in (3.1) says x2 + `2 = k2. Since (k, `) = 1, (x, `, k) is another primitive Pythagorean triple.
Since x is odd, using the formula for primitive Pythagorean triples once again tells us

(3.2) x = a2 − b2, ` = 2ab, k = a2 + b2,

where a > b > 0 and (a, b) = 1. The second equation in (3.1) now says

y2 = 4(a2 + b2)ab.

Since y is even, (y
2

)2
= (a2 + b2)ab.

Since (a, b) = 1, the three factors on the right are pairwise relatively prime. They are all
positive, so their product being a square means each one is a square:

(3.3) a = x′2, b = y′2, a2 + b2 = z′2,

where x′, y′, and z′ can all be taken as positive. From (a, b) = 1, (x′, y′) = 1. The last
equation in (3.3) can be rewrittten as x′4 + y′4 = z′2, so we have another solution to our
original equation with (x′, y′) = 1. Now we compare z′ to z. Since

0 < z′ ≤ z′2 = a2 + b2 = k ≤ k2 < z,

measuring the size of positive integer solutions (x, y, z) by the size of z leads to a contra-
diction by descent. �

Remark 3.2. At the end of the proof a simple estimate showed z > z′2. We can also get
a formula for z in terms of x′, y′, and z′ that explains this inequality. By (3.1), (3.2), and
(3.3),

z = k2 + `2 = (a2 + b2)2 + (2ab)2 = z′4 + 4x′4y′4,

so in fact z > z′4, not just z > z′2 as we found before.
Let’s write x and y in terms of x′, y′, and z′ too. From (3.2) and (3.3),

x = a2 − b2 = x′4 − y′4

and y2 = 2k` = 2(a2 + b2)(2ab) = 4z′2(x′y′)2, so

y = 2x′y′z′.

This formula for y shows x′, y′, and z′ are all less than y, so 0 < max(x′, y′, z′) < y ≤
max(x, y, z). Using max(x, y, z) rather than z to measure the size of a solution (x, y, z) is
another way to get a contradiction for Theorem 3.1 by descent.

Our proof of Theorem 3.1 used the parametric formula for primitive Pythagorean triples
twice. For a proof that does not explicitly use this parametrization, see [2, pp. 55–56].

If we apply the descent technique for x4 + y4 = z2 to a4 + b4 = c4, with a fourth power
on the right side, then the proof breaks down. The reason is that the descent step will not
return another solution of a4 + b4 = c4; the smaller c that comes out will only show up as
a square, not a 4th power. So the extra generality of dealing with x4 + y4 = z2 is essential
for the descent to work as above.
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Elementary number theory books that discuss Fermat’s Last Theorem for exponent 4
introduce the equation x4 + y4 = z2 out of the blue, like we did, as if it were the most
natural thing in the world to look at this equation instead of a4 +b4 = c4. Of course it isn’t!
The reason Fermat was thinking about x4 + y4 = z2 was not in order to solve a4 + b4 = c4

in integers but for an entirely different reason, and it was natural to consider the right side
as z2 for that other problem. See Appendix A for more details.

Now we present a number of corollaries to Theorem 3.1, concerning solvability of certain
equations in integers or rationals. None of the proofs (which are mostly short) will involve
descent. They are presented here simply to show Theorem 3.1 has uses other than Fermat’s
Last Theorem for exponent 4.

Corollary 3.3. Each rational solution to x4 + y4 = z2 has x or y equal to 0.

Proof. Assume x and y are both nonzero. Then z2 > 0, so z 6= 0 too. Write x = a/d,
y = b/d, and z = c/d with a, b, c, d ∈ Z and d > 0. Then a, b, and c are nonzero. Clearing
the denominator in x4 + y4 = z2, we have a4 + b4 = (cd)2. Changing signs if necessary, a,
b, and cd are positive. Then we have a contradiction with Theorem 3.1. �

Corollary 3.4. The only rational solutions to y2 = x4 + 1 are (0,±1).

Proof. Use Corollary 3.3 to see x = 0. �

Corollary 3.5. The only rational solutions to 2y2 = x4 − 1 are (±1, 0).

Proof. Squaring both sides, 4y4 = x8 − 2x4 + 1. Add 4x4 to both sides and divide by 4
to get y4 + x4 = ((x4 + 1)/2)2. Since x 6= 0 in the original equation, we can divide by x4

to get (y/x)4 + 1 = ((x4 + 1)/2x2)2. By Corollary 3.4, y/x = 0, so y = 0 and therefore
x = ±1. �

Corollary 3.6. The integral solutions of x4 − y4 = 2z2 are (x,±x, 0) for x ∈ Z.

Proof. If y = 0 then x = z = 0 since
√

2 is irrational. If y 6= 0, then divide by y4 to get
(x/y)4 − 1 = 2(z/y2)2. By Corollary 3.5, z/y2 = 0, so z = 0 and therefore y = ±x. �

Corollary 3.7. The only rational solutions to y2 = x3 − 4x are (0, 0), (±2, 0).

Proof. There is a bijection between solutions of y2 = x3 − 4x with x 6= 0 and solutions to
v2 = u4 + 1 by

(x, y) 7→
(
y

2x
,
y2 + 8x

4x2

)
, (u, v) 7→

(
2

v − u2
,

4u

v − u2

)
.

Since each rational solution to v2 = u4 + 1 has u = 0, each rational solution to y2 = x3− 4x
has y = 0, so x = 0 or x = ±2. �

Corollary 3.8. The only rational solution to y2 = x3 + x is (0, 0).

Proof. Writing the equation as y2 = x(x2 + 1), we see x = 0 if and only if y = 0. Assume
there is a rational solution other than (0, 0) so x 6= 0 and y 6= 0. From the equation, x must
be positive.

Write x and y in reduced form as x = a/b and y = c/d where b and d are positive.
Clearing denominators in (c/d)2 = (a/b)3 + a/b, we get

b3c2 = d2(a3 + ab2).
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Therefore d2 | b3c2. Since (c, d) = 1, d2 | b3. Also b3 | d2(a3 + ab2). Since (a, b) = 1, b3 is
relatively prime to a3 + ab2, so b3 | d2. Thus b3 = d2, so by unique factorization b = t2 and
d = t3 for some positive integer t. Then (a, t) = 1 and (c, t) = 1.

In the equation y2 = x3 +x with x = a/t2 and y = c/t3, we get c2 = a3 + t4a = a(a2 + t4)
after clearing the denominator. Since (a, t) = 1, a and a2 + t4 are relatively prime and
positive. Their product is a square, so each factor is a square:

a = u2, a2 + t4 = v2.

Thus u4 + t4 = v2. By Theorem 3.1, u or t is 0. Since t 6= 0, u = 0 so x = 0 and then
y = 0. �

Remark 3.9. Conversely, Corollary 3.8 implies Theorem 3.1. If x4 + y4 = z2 in positive
integers then multiplying through by x2/y6 gives us (x/y)6 + (x/y)2 = (xz/y3)2, so Y 2 =
X3 +X for X = (x/y)2 and Y = xz/y3. Since X is a nonzero rational number, we have a
contradiction with Corollary 3.8.

Here is another theorem about fourth powers and squares proved by Fermat using descent.

Theorem 3.10 (Fermat). There is no solution to x4 − y4 = z2 in positive integers.

Proof. We will argue by descent in a similar style to the proof of Theorem 3.1. In particular,
we will use the formula for primitive Pythagorean triples twice. Since now we have z2+y4 =
x4 while in Theorem 3.1 we had x4+y4 = z2, the roles of x2 and z basically get interchanged.
For example, we will use descent on x2 (or equivalently, on x) rather than on z as we did
in Theorem 3.1.

Assume x4 − y4 = z2 with x, y, and z in Z+. There must be a solution with x, y, and
z pairwise relatively prime (see the start of the proof of Theorem 3.1; the same argument
there applies here), so we suppose this is the case. Since x4 − y4 > 0, x > y.

There are two cases to consider: z odd and z even.
Case 1: z is odd. Since z2 + y4 = x4 and z is odd, y must be even. (Otherwise z2 + y4 ≡

1+1 ≡ 2 mod 4, but 2 is not a 4th power modulo 4.) Since (x, y) = 1, (z, y2, x2) is a primitive
Pythagorean triple with y2 the even term, so the formula for primitive Pythagorean triples
says

(3.4) z = k2 − `2, y2 = 2k`, x2 = k2 + `2,

where k > ` > 0, (k, `) = 1, and k 6≡ ` mod 2. The third equation in (3.4) says (k, `, x) is a
Pythagorean triple. Since (k, `) = 1, this triple is primitive. One of k or ` is odd and the
other is even. If k is odd, the formula for primitive Pythagorean triples says

(3.5) k = a2 − b2, ` = 2ab, x = a2 + b2,

where a > b > 0, (a, b) = 1, and a 6≡ b mod 2. If ` is odd the formula says

(3.6) ` = a2 − b2, k = 2ab, x = a2 + b2,

where a > b > 0, (a, b) = 1, and a 6≡ b mod 2. Using whichever of (3.5) or (3.6) is correct
(depending on the parity of k and `), the second equation in (3.4) becomes

(3.7) y2 = 4(a2 − b2)ab.
Since y is even, we can divide by 4 (in Z):(y

2

)2
= (a2 − b2)ab.
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Since (a, b) = 1, the three factors on the right are pairwise relatively prime. They are all
positive, so their product being a square means each one is a square:

(3.8) a = x′2, b = y′2, a2 − b2 = z′2,

where x′, y′, and z′ can all be taken as positive. From (a, b) = 1, (x′, y′) = 1. The last
equation in (3.8) can be rewrittten as x′4 − y′4 = z′2, so we have another solution to our
original equation. Moreover, z′2 = a2 − b2 is odd, so our new solution again has an odd
square on the right and we are still in Case 1. Now we compare x′ to x:

0 < x′ ≤ x′2 = a < a2 + b2 = x.

Since x′ < x, by descent we have a contradiction.
Case 2: z is even. (This has no analogue in the proof of Theorem 3.1.)
Since y4 + z2 = x4, we have a primitive Pythagorean triple (y2, z, x2) with even z. Thus

y2 = m2 − n2, z = 2mn, x2 = m2 + n2,

where m and n are positive and (m,n) = 1. Multiplying the first and third equations,

(xy)2 = m4 − n4,
with xy odd. This expresses a square as the difference of two fourth powers, with the square
being odd, so by Case 1 we have a contradiction. �

Remark 3.11. In Case 1 we can solve for x, y, and z in terms of x′, y′, and z′. From (3.5)
or (3.6), x = a2 + b2. This becomes, by (3.8),

x = x′4 + y′4.

From (3.7) and (3.8), y2 = 4(a2 − b2)ab = 4z′2(x′2y′2) = (2x′y′z′)2, so

y = 2x′y′z′.

Lastly, by (3.4), (3.5) or (3.6), and (3.8),

z = k2 − `2 = ±((a2 − b2)2 − (2ab)2) = ±(z′4 − 4x′4y′4),

so z = |z′4 − 4x′4y′4|. From the formula y = 2x′y′z′ we get 0 < max(x′, y′, z′) < y ≤
max(x, y, z), so using max(x, y, z) rather than x as a measure of the size of a positive
integer solution is another way of reaching a contradiction in Case 1 by descent. This
parallels Remark 3.2.

Theorems 3.1 and 3.10 together lead to the following two results.

Corollary 3.12. There is no Pythagorean triple in which two of the terms are squares.

Proof. Such a triple would give a solution in positive integers to either x4 + y4 = z2 (the
two legs are squares) or x4 = y4 + z2 (a leg and hypotenuse are squares), but such solutions
do not exist by Theorems 3.1 and 3.10. �

Many primitive Pythagorean triples have just one term equal to a square. See Table 1.

Corollary 3.13. The only m ∈ Z+ such that 1 + 2 + 3 + · · ·+m is a fourth power is 1.

Proof. Since 1 + 2 + 3 + · · · + m = m(m + 1)/2, we are trying to solve m(m + 1)/2 = n4.
Clearing the denominator, m(m+ 1) = 2n4. Since m and m+ 1 are relatively prime,

{m,m+ 1} = {x4, 2y4}
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a b c
3 4 5
7 24 25
9 40 41
16 63 65
17 144 145
225 272 353
161 240 289

Table 1. Pythagorean triples with a square term

for some positive integers x and y, which must be relatively prime. Therefore x4−2y4 = ±1.
Rewrite as y4 = (x4 ∓ 1)/2 and square both sides followed by a little algebra to get

(3.9) y8 ± x4 =

(
x4 ± 1

2

)2

.

The right side is an integer since x is odd from x4 = 2y4 ± 1. Equation (3.9) expresses a
sum or difference of positive fourth powers as a perfect square. Using Theorems 3.1 and
3.10, we see this is impossible for a sum, and for a difference the square must be 0, so x = 1
(since x > 0). Therefore m = 1. �

Now we present consequences of Theorem 3.10 alone, paralleling the consequences of
Theorem 3.1.

Corollary 3.14. Each rational solution to x4 − y4 = z2 has y or z equal to 0.

Proof. Similar to Corollary 3.3. �

Corollary 3.15. The only rational solutions to y2 = x4 − 1 are (±1, 0).

Proof. Similar to Corollary 3.4. �

Corollary 3.16. The only rational solutions to 2y2 = x4 + 1 are (±1,±1).

Proof. Squaring both sides, 4y4 = x8 + 2x4 + 1. Subtract 4x4 from both sides and divide
by 4 to get y4 − x4 = ((x4 − 1)/2)2. Since x 6= 0 in the original equation, we can divide by
x4 to get (y/x)4− 1 = ((x4− 1)/2x2)2. By Corollary 3.15, (x4− 1)/2x2 = 0, so x = ±1 and
therefore y = ±1. �

Corollary 3.17. The integral solutions of x4 + y4 = 2z2 are (x,±x,±x2).
Proof. If y = 0 then x = z = 0 since

√
2 is irrational. If y 6= 0, then divide by y4 to

get (x/y)4 + 1 = 2(z/y2)2. By Corollary 3.16, x/y = ±1 and z/y2 = ±1, so y = ±x and
z = ±y2 = ±x2. �

Corollary 3.18. The only rational solutions to y2 = x3 + 4x are (0, 0) and (2,±4).

Proof. A bijection between solutions of y2 = x3+4x with x 6= 0 and solutions of v2 = u4−1
is given by

(x, y) 7→
(
y

2x
,
y2 − 8x

4x2

)
, (u, v) 7→

(
2

u2 − v
,

4u

u2 − v

)
.

Each rational solution to v2 = u4 − 1 has v = 0, so each rational solution to y2 = x3 + 4x
has x = 0 or y2 = 8x. The second case implies x3 = 4x, so x = ±2. Only x = 2 leads to a
solution, (x, y) = (2,±4). �
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Corollary 3.19. The only rational solutions to y2 = x3 − x are (0, 0) and (±1, 0).

Proof. This stands in relation to x4 − y4 = z2 in the same way that y2 = x3 + x does to
x4 + y4 = z2 in Corollary 3.8. Details are left to the reader as an exercise. �

Remark 3.20. In the other direction, Corollary 3.19 implies Theorem 3.10. The argument
is like that in Remark 3.9.

4. Equation with no rational function solution

There are many rational solutions to x2+y2 = 1, like (x, y) = (3/5, 4/5) or (5/13, 12/13).
These solutions are nearly all described by a single parametric formula: x = 2t/(1 + t2) and
y = (1− t2)/(1 + t2) for some t ∈ Q. Try t = 1/3, 1/4, and 1/5. Algebraically, we have an
identity of rational functions (

2t

1 + t2

)2

+

(
1− t2

1 + t2

)2

= 1

and specializing t to rational numbers gives rational solutions to x2 + y2 = 1.2

However, it is not true that rational solutions to other equations can always be fit into
a parametric formula using rational functions. For example, the equation y2 = x3 − 2 has
infinitely many rational solutions (two of them are (x, y) = (3, 5) and (129/100, 383/1000)),
but there are no rational functions f(t) and g(t) in Q(t) such that g(t)2 = f(t)3 − 2 other
than constant functions, which “parametrize” only one solution (so really do not provide a
parametric formula at all). To prove negative results like this we will use descent on the
degree in a hypothetical nonconstant solution.

Several times we will need the following lemma.

Lemma 4.1. If f(t) and g(t) in C[t] are relatively prime and fg = � in C[t] then f = �
and g = � in C[t].

Proof. By unique factorization, the multiplicity of each irreducible factor of fg is even.
Since f and g are relatively prime, it follows that the multiplicity of each irreducible factor
of f is even and likewise for g. Therefore f and g are squares up to a nonzero scaling
factor. Every nonzero complex number is the square of a complex number, so f and g are
squares. �

This lemma easily extends, by induction on the number of terms, to a product of any
finite number of polynomials in C[t] that are pairwise relatively prime.

Theorem 4.2. For distinct complex numbers r, r′, r′′, each solution to the equation y2 =
(x − r)(x − r′)(x − r′′) in rational functions x = f(t) and y = g(t) in C(t) is a constant
solution: f(t) and g(t) are in C.

The example y2 = x3 − 2 that we discussed above is the special case where r, r′, and r′′

are the three cube roots of 2.

Proof. Our argument is adapted from [3, pp. 75–76].
Assume there is a solution in rational functions: x = p1(t)/p2(t) and y = q1(t)/q2(t)

where p1(t), p2(t), q1(t), and q2(t) are polynomials in C[t]. Without loss of generality we
can assume (p1, p2) = 1 and (q1, q2) = 1 in C[t].

2This method produces all the rational solutions to x2 + y2 = 1 except for (0,−1), but we will not show
that here.
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Substituting the formulas for x and y into the equation y2 = (x− r)(x− r′)(x− r′′), we
have

q21
q22

=

(
p1
p2
− r
)(

p1
p2
− r′

)(
p1
p2
− r′′

)
=

(p1 − rp2)(p1 − r′p2)(p1 − r′′p2)
p32

,

so after clearing denominators

(4.1) p32q
2
1 = (p1 − rp2)(p1 − r′p2)(p1 − r′′p2)q22.

Since (p1, p2) = 1, the factors p1 − rp2, p1 − r′p2, and p1 − r′′p2 are relatively prime to p2
(why?). Thus by (4.1), p32 | q22. Since (q1, q2) = 1, q22 | p32, so p32 = cq22 for some nonzero
c ∈ C. Since c is a square in C, p32 is a square in C[t]. That implies p2 is a square by unique
factorization in C[t]. Write p2 = f22 .

Substituting cq22 for p32 in (4.1) and cancelling q22 from both sides,

cq21 = (p1 − rp2)(p1 − r′p2)(p1 − r′′p2).

The factors on the right side are pairwise relatively prime since (p1, p2) = 1 (why?) and the
numbers r, r′, and r′′ are distinct, so by an extension of Lemma 4.1 to a product of three
terms, p1 − rp2, p1 − r′p2, and p1 − r′′p2 are all squares in C[t]. Since p2 = f22 ,

p1 − rf22 = �, p1 − r′f22 = �, p1 − r′′f22 = �.

Writing the first equation as p1 − rf22 = f21 , the second and third equations become

(4.2) f21 − (r′ − r)f22 = �, f21 − (r′′ − r)f22 = �,

where r′ − r and r′′ − r are nonzero and distinct. We want to show f1 and f2 are constant.
Now we set up our descent statement, based on (4.2): we will show for all distinct a and

b in C that relatively prime polynomials g1 and g2 in C[t] that satisfy

(4.3) g21 − ag22 = �, g21 − bg22 = �

must both be constant. Note (4.2) is a special case of this.
Assume for some a and b that there is a solution (g1, g2) to (4.3) where g1 or g2 is not

constant. In (4.3), write a = c2 and b = d2 with c and d in C. Since a 6= b, c 6= ±d. We
can rewrite (4.3) as

(4.4) (g1 + cg2)(g1 − cg2) = �, (g1 + dg2)(g1 − dg2) = �.

A common factor of g1 + cg2 and g1 − cg2 is a factor of both g1 and g2 (why?), so it is
constant since (g1, g2) = 1. Therefore the factors on the left side of the first equation in
(4.4) are relatively prime, and the product of the factors is a square, so by Lemma 4.1

(4.5) g1 + cg2 = h21, g1 − cg2 = h22,

where h1 and h2 are relatively prime. Adding and subtracting the equations in (4.5),
g1 = (h21 + h22)/2 and g2 = (h21 − h22)/(2c). Since g1 or g2 is not constant, h1 or h2 is not
constant.

Arguing in a similar way with the second equation in (4.4),

(4.6) g1 + dg2 = �, g1 − dg2 = �.

Substituting the formulas for g1 and g2 in terms of h1 and h2 into (4.6),

1

2

(
1 +

d

c

)
h21 +

1

2

(
1− d

c

)
h22 = �,

1

2

(
1− d

c

)
h21 +

1

2

(
1 +

d

c

)
h22 = �.
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The numbers 1± d/c are nonzero since c 6= ±d, so we can divide by the coefficient of h21:

h21 +
1− d/c
1 + d/c

h22 = �, h21 +
1 + d/c

1− d/c
h22 = �.

Set a′ = −(1 − d/c)/(1 + d/c) and b′ = −(1 + d/c)/(1 − d/c) = 1/a′. Both a′ and b′ are
nonzero, a′ 6= b′, and

(4.7) h21 − a′h22 = �, h21 − b′h22 = �.

From (4.5), 2 deg h1 ≤ max(deg g1, deg g2) and 2 deg h2 ≤ max(deg g1,deg g2). Therefore

(4.8) 0 < max(deg h1, deg h2) ≤
1

2
max(deg g1,deg g2).

We can now repeat the argument leading from (4.3) to (4.7) with h1, h2, a
′, b′ in place of

g1, g2, a, b. Each repetition leads to a new version of (4.8) where the maximum degree in the
new solution is positive and smaller than the maximum degree in the previous solution. By
descent this leads to a contradiction (positive degrees can’t strictly drop forever), so each
solution to (4.3) in relatively prime polynomials g1 and g2 must be a constant solution. What
this tells us in (4.2) is that f1 and f2 are both constant, so p1 = f21 + rf22 and p2 = f22 are
constant. That makes x = p1/p2 constant, so the equation y2 = (x−r)(x−r′)(x−r′′) implies
that y2 = (q1/q2)

2 is constant. Therefore the rational function y = q1/q2 is constant. �

Corollary 4.3. Let F (x) be a polynomial with coefficients in C of degree 3 or 4 that has
distinct roots. If x and y in C(t) satisfy y2 = F (x) then x ∈ C and y ∈ C.

Proof. First suppose F (x) has degree 3. In factored form F (x) = c(x − r)(x − r′)(x − r′′)
where the roots r, r′, and r′′ are distinct and c 6= 0.3 In C, c is a square, so the equation

(4.9) y2 = c(x− r)(x− r′)(x− r′′)
can be scaled to Y 2 = (x − r)(x − r′)(x − r′′) where Y = y/

√
c. If there is a solution to

(4.9) where x, y ∈ C(t) then Y ∈ C(t). By Theorem 4.2, x ∈ C and Y ∈ C, so y ∈ C.
Next suppose F (x) has degree 4 with distinct roots r, r′, r′′, and r′′′. In factored form

F (x) = c(x− r)(x− r′)(x− r′′)(x− r′′′),
where c 6= 0. Suppose we can solve

(4.10) y2 = c(x− r)(x− r′)(x− r′′)(x− r′′′)
where x, y ∈ C(t). The roots of F are distinct, so without loss of generality x 6= r′′′.
Dividing through (4.10) by (x− r′′′)4,

y2

(x− r′′′)4
= c

(
x− r
x− r′′′

)(
x− r′

x− r′′′

)(
x− r′′

x− r′′′

)
= c

(
1 +

r′′′ − r
x− r′′′

)(
1 +

r′′ − r
x− r′′′

)(
1 +

r′ − r
x− r′′′

)
.

Set X = 1/(x− r′′′) and Y = y/(x− r′′′)2, so X and Y are in C(t). Then

Y 2 = c(1 + (r′′′ − r)X)(1 + (r′′′ − r′)X)(1 + (r′′′ − r′′)X),

where the right side is cubic in X with distinct roots. By the cubic case we already discussed,
X ∈ C and Y ∈ C, so x ∈ C and y ∈ C. �

3The difference between this case and Theorem 4.2 is that we now allow a leading coefficient besides 1.
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5. Sum of two squares

We have used descent to prove “negative” theorems, which say certain equations have
no (or very few) solutions of a certain type. Fermat’s initial applications of descent had
this flavor.4 He later found descent could be used to prove “positive” theorems like the
following.

Theorem 5.1. For a prime p, if −1 ≡ � mod p then we can write p as a sum of two
squares: p = x2 + y2 for some x and y in Z.

Proof. Write −1 ≡ s2 mod p. Since s2 ≡ (−s)2 mod p we can take 1 ≤ s ≤ p/2, so
s2 + 1 = pd with d ∈ Z. Since s2 + 1 ≤ p2/4 + 1 < p2, we have 0 < d < p. So a multiple of
p is a sum of two squares and the multiplying factor d is less than p. If d = 1 we are done.

If d > 1, we will show that pd′ is a sum of two squares for some integer d′ such that
0 < d′ < d. Then repeating the argument, by descent eventually we must reach d = 1, so
p · 1 = p is a sum of two squares.

To make our descent step recursive, generalize the specific equation pd = s2 + 1 to

pk = x2 + y2

where 0 < k < p. (For k = d this holds with x = s and y = 1, so such an equation does exist
for some choice of k.) If k > 1, we want to produce another equation of this form where k
is smaller. Reduce x and y modulo k: x ≡ r mod k and y ≡ r′ mod k, where |r|, |r′| ≤ k/2.
Squaring and adding,

r2 + r′2 ≡ x2 + y2 ≡ 0 mod k,

so
r2 + r′2 = k`

for integer ` ≥ 0. Let’s show r or r′ is not 0, so ` > 0. If r = 0 and r′ = 0 then k | x and
k | y, so k2 divides x2 + y2 = kp, so k | p, but this is not true since 0 < k < p and p is
prime. Now let’s bound ` from above. From the bounds on |r| and |r′|,

k` = r2 + r′2 ≤ k2

4
+
k2

4
=
k2

2
< k2,

so 0 < ` < k. We will show p` is a sum of two squares.
Since

(pk)(k`) = (x2 + y2)(r2 + r′2) = (x2 + y2)(r′2 + r2) = (xr′ − yr)2 + (xr + yr′)2.

Modulo k, xr′ − yr ≡ xy − yx ≡ 0 and xr + yr′ ≡ r2 + r′2 ≡ 0. Therefore xr′ − yr and
xr + yr′ are multiples of k, so we can write

pk2` = (ka)2 + (kb)2

for some positive integers a and b. Dividing by k2, p` = a2 + b2. This completes our descent
step, since 0 < ` < k. �

Remark 5.2. Fermat’s own proof by descent of Theorem 5.1 was based on counterexamples:
assuming an odd prime p with −1 ≡ � mod p is not a sum of two squares, Fermat wrote
to Huygens (without giving details) that he could show there is a smaller prime with the
same property, so by descent 5 is not a sum of two squares, but it is: a contradiction [12,
p. 67].

4Almost none of Fermat’s proofs are known in detail, but he did include in letters the statements of some
propositions that he said he had established with descent.



14 KEITH CONRAD

6. The four-square theorem

A famous theorem of Lagrange [10], called his four-square theorem, says every positive
integer is a sum of four squares in Z. (By dropping any term equal to 0, we get a sum of at
most four squares in Z+).

Example 6.1. Some numbers, like 2, 7, 15, and 23, can be written as a sum of four squares
in only one way up to the order of the terms, while other numbers like 65 have multiple
different-looking four-square representations:

65 = 12 + 82 + 02 + 02 = 42 + 72 + 02 + 02 = 22 + 52 + 62 + 02 = 22 + 32 + 42 + 62.

Euler tried to prove the four-square theorem for 40 years, ever since he first read about
it in 1730 in the work of Fermat [12, p. 173].5 Euler’s efforts led to results such as the next
two lemmas, which get used in proofs of the four-square theorem.

Lemma 6.2 (Euler, 1748). Sums of four squares in Z are closed under multiplication:

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y23 + y24) = z21 + z22 + z23 + z24 ,

where

z1 = x1y1 + x2y2 + x3y3 + x4y4,

z2 = x1y2 − x2y1 − x3y4 + x4y3,

z3 = x1y3 + x2y4 − x3y1 − x4y2,
z4 = x1y4 − x2y3 + x3y2 − x4y1.

Proof. It is left to the reader to expand both sides to check they are equal. �

Remark 6.3. Other choices of signs in the zi’s are possible. Above we used the first one
Euler wrote down, in a letter to Goldbach [5, p. 452]. In a later article (see the proof of [6,
Theorem 19]), Euler said multiple choices of signs can be used and gave the one above as
well as another with the same z1 and

z2 = x1y2 − x2y1 + x3y4 − x4y3,
z3 = x1y3 − x2y4 − x3y1 + x4y2,

z4 = x1y4 + x2y3 − x3y2 − x4y1.

A third four-square product identity was discovered by Hamilton in 1848 in his work on
quaternions, and it uses

z1 = x1y1 − x2y2 − x3y3 − x4y4,
z2 = x1y2 + x2y1 + x3y4 − x4y3,
z3 = x1y3 − x2y4 + x3y1 + x4y2,

z4 = x1y4 + x2y3 − x3y2 + x4y1.

5Fermat made a more general assertion, called the polygonal number theorem: each positive integer is
a sum of at most 3 triangular numbers, at most 4 squares, and more generally at most k k-gonal num-
bers. Pictures of triangular, square, and pentagonal numbers are in Section 3 of https://kconrad.math.
uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf. The case of triangular numbers was settled by Gauss in
1796 and the general polygonal number theorem was first proved by Cauchy in 1813.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf
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Lemma 6.4 (Euler, 1760). Let p be prime. The congruence

x2 + y2 + 1 ≡ 0 mod p

has at least one solution.

Proof. This is obvious when p = 2, so let p > 2. Rewrite the congruence as

x2 ≡ −1− y2 mod p.

Let A = {x2 mod p : x ∈ Z/(p)}, so |A| counts the number of possible values of the left side
as x varies and let B = {−1− y2 mod p : y ∈ Z/(p)}, so |B| counts the number of possible
values of the right side as y varies. We want to show A ∩B 6= ∅.

There are (p − 1)/2 nonzero squares mod p (since p > 2), so counting 0 makes the
number of squares mod p equal to 1+(p−1)/2 = (p+1)/2. Thus |A| = (p+1)/2. Likewise,
|B| = |{−1 − y2 mod p : y ∈ Z/(p)}| = |{y2 mod p : y ∈ Z/(p)}| = (p + 1)/2. Since
|A|+ |B| = (p+ 1)/2 + (p+ 1)/2 = p+ 1 > |Z/(p)|, A and B can’t be disjoint, so A and B
contain a common value: there are some x0 and y0 in Z/(p) such that x20 ≡ −1− y20 mod p,
so x20 + y20 + 1 ≡ 0 mod p. �

Remark 6.5. The way Euler stated Lemma 6.4 [6, Theorem 18] was that the congruence
x2 + y2 + z2 ≡ 0 mod p has a solution where some term is nonzero mod p. Dividing all the
terms by that nonzero square converts the congruence into the one in Lemma 6.4, where
some term is 1.

Using these two lemmas, Euler showed each positive integer is a sum of four squares in Q
(see Appendix C), but doing this in Z was frustratingly out of reach until he saw Lagrange’s
descent proof of the four-square theorem. Euler then found a descent [7, Theorem 4] that
is simpler than Lagrange’s, and it in essence is what we use next.

Theorem 6.6 (Lagrange, 1770). For each n ∈ Z+, we can write n = a2 + b2 + c2 + d2 for
some a, b, c, d ∈ Z.

Proof. The result is obvious for 1. Since each integer bigger than 1 is a product of primes,
and sums of four squares are closed under multiplication by Lemma 6.2, it suffices to show
each prime number p is a sum of four squares.

Step 1: There is k ∈ Z+ such that k < p and pk = x2 + y2 + 1 for some x and y in Z.

To show this, we start with Lemma 6.4: x2 + y2 + 1 ≡ 0 mod p for some integers x
and y. Adjusting x and y modulo p, we can assume they are in {0, 1, . . . , p − 1}. Since
x2 ≡ (−x)2 mod p, we can also assume 0 ≤ x, y ≤ p/2. The congruence mod p tells us
x2 + y2 + 1 = pk where k ≥ 1. By the bounds on x and y,

x2 + y2 + 1 ≤
(p

2

)2
+
(p

2

)2
+ 1 =

p2

2
+ 1 < p2,

so pk < p2. Thus k < p.
Step 2: Let m be a positive integer less than p such that pm is a sum of four squares. If

m > 1 then there is a positive integer n < m such that pn is a sum of four squares.
By hypothesis, we can write pm = a2 + b2 + c2 + d2 with 1 < m < p. We are going to

look at a, b, c, d mod m. They are not all 0 mod m, as otherwise a2 + b2 + c2 + d2 would be
divisible by m2, so m2 | pm, making m | p, but 1 < m < p and p is prime.

Using remainders under division by m that are smallest in absolute value (this allows
negative remainders), Z/(m) is represented by integers in the range {x : |x| ≤ m/2},
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so we can set a ≡ a′ mod m, b ≡ b′ mod m, c ≡ c′ mod m, and d ≡ d′ mod m, where
|a′|, |b′|, |c′|, |d′| ≤ m/2 and at least one of a′, b′, c′, and d′ is not 0. Then

a′2 + b′2 + c′2 + d′2 ≡ a2 + b2 + c2 + d2 ≡ 0 mod m

and the left side is positive, so a′2 + b′2 + c′2 + d′2 = mn where n ≥ 1. Using upper bounds,

(6.1) mn = a′2 + b′2 + c′2 + d′2 ≤
(m

2

)2
+
(m

2

)2
+
(m

2

)2
+
(m

2

)2
= m2,

so n ≤ m.
Let’s show n = m is impossible, so n < m. If n = m in (6.1) then the inequality there

is an equality, so |a′| = |b′| = |c′| = |d′| = m/2. (In particular, this requires m to be even.)
Then, since −m/2 ≡ m/2 mod m, we have a, b, c, d ≡ m/2 mod m, so6

pm = a2 + b2 + c2 + d2 ≡ 4
(m

2

)2
= m2 ≡ 0 mod m2,

so p ≡ 0 mod m, which is impossible since p is prime and 1 < m < p.
We have pm = a2 + b2 + c2 + d2 and mn = a′2 + b′2 + c′2 + d′2 where 1 < m < p and

1 ≤ n < m. Multiply these equations and use Lemma 6.2:

pm2n = (a2 + b2 + c2 + d2)(a′2 + b′2 + c′2 + d′2) = A2 +B2 + C2 +D2,

where

A = aa′ + bb′ + cc′ + dd′,

B = ab′ − ba′ − cd′ + dc′,

C = ac′ + bd′ − ca′ − db′,
D = ad′ − bc′ + cb′ − da′.

The numbers A, B, C, and D are each divisible by m:

A = aa′ + bb′ + cc′ + dd′ ≡ a2 + b2 + c2 + d2 = pm ≡ 0 mod m,

B = ab′ − ba′ − cd′ + dc′ ≡ ab− ba− cd+ dc ≡ 0 mod m,

C = ac′ + bd′ − ca′ − db′ ≡ ac+ bd− ca− bd ≡ 0 mod m,

D = ad′ − bc′ + cb′ − da′ ≡ ad− bc+ cb− da ≡ 0 mod m.

Set A = mA′, B = mB′, C = mC, and D = mD′, so pm2n = m2(A′2 + B′2 + C ′2 + D′2).
Divide by m2 and we have pn = A′2 +B′2 + C ′2 +D′2 where 1 ≤ n < m.

Step 3: The prime p is a sum of four squares.
This is the descent step. By Step 1, there is a positive integer m < p such that pm is a

sum of three, and thus also four, squares. If m = 1 then we’re done. If m > 1 then apply
Step 2 repeatedly, replacing m with n each time until n = 1. �

Remark 6.7. Our use of Lemma 6.2 in the proof of the four-square theorem would work
(to show A,B,C,D ≡ 0 mod m) using the first alternate choices of signs for Lemma 6.2
in Remark 6.3, but it would not work with the second alternate choice of signs related to
quaternions. There is a separate proof of the four-square theorem using quaternions.

6If a ≡ m/2 mod m, say a = m/2 + mr, then a2 = (m/2)2 + m2(r + r2) ≡ (m/2)2 mod m2.
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7. Markov’s equation

The Markov equation, introduced by Markov in 1880 [11, Sect. 10], is

x2 + y2 + z2 = 3xyz.

A solution (x, y, z) in positive integers is called a Markov triple, and every positive integer
arising as part of a Markov triple is called a Markov number. For example, 1 and 2 are
Markov numbers because of the solutions (1, 1, 1) and (2, 1, 1).

Markov’s insight about this equation is that each Markov triple (x, y, z) other than (1, 1, 1)
can be created from a “smaller” Markov triple, as follows. Bringing 3xyz to the left side
lets us interpret x as a root of the quadratic polynomial

T 2 − (3yz)T + (y2 + z2) = 0.

There is a second root of this equation (besides x), which we can find without the quadratic
formula by thinking about relations between roots and coefficients. Letting the other root
be r, our polynomial is (T − x)(T − r) = T 2 − (x + r)T + xr. Therefore x + r = 3yz, so
r = 3yz − x. From one solution (x, y, z) of Markov’s equation we get a second solution:
M1(x, y, z) := (3yz − x, y, z) = ((y2 + z2)/x, y, z). Interchanging the roles of x, y, and z,
we similarly get the additional solutions M2(x, y, z) := (x, 3xz − y, z) and M3(x, y, z) :=
(x, y, 3xy − z). From (1, 1, 1) we can successively generate, for instance, (2, 1, 1), (2, 5, 1),
and (2, 5, 29). Applying the mappings Mi to get new Markov triples from old ones leads to
a tree of solutions, the start of which is below. (Don’t apply an Mi twice in a row since it
is its own inverse.)

(1,1,1)
M1 (2,1,1)

M2 (2,5,1)

M1

M3

(13,5,1)

(2,5,29)

M2

M3

(13,34,1)

(13,5,194)

M1

M2

(433,5,29)

(2,169,29)

Markov proved every Markov triple can be produced by iteration from (1, 1, 1). An
account of his proof, which uses descent, is in [9]. Besides (1, 1, 1), (2, 1, 1), and the rear-
rangements (1, 2, 1) and (1, 1, 2), all other Markov triples (x, y, z) have distinct terms. Each
Markov number arises as the maximum number in some Markov triple, and it is an open
problem going back to 1913 [1], called the uniqueness conjecture, to prove each Markov
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number other than 1 or 2 is the maximum term of exactly one Markov triple (regarding a
triple with reordered terms as the same triple).

We want to use descent for a different purpose, also taken from [9]. We will prove a
theorem of Frobenius and Hurwitz that shows the special role of 3 as a coefficient on the
right side of Markov’s equation.

Theorem 7.1. For a positive integer k other than 1 or 3, the equation x2 + y2 + z2 = kxyz
has no integral solution except (0, 0, 0).

Proof. First we will treat the case k > 3, returning later to k = 2.
Suppose a, b, and c satisfy a2 + b2 + c2 = kabc. If a, b, or c is 0 then the equation says

the sum of the squares of the other two terms is 0, so a, b, and c are all 0. Thus, assuming
(a, b, c) 6= (0, 0, 0) means a, b, and c are all nonzero. At least one of them is positive
(otherwise the right side of the equation is negative). The other two are both positive or
both negative, and in the negative case we can change their signs to get a solution where
all are positive. So without loss of generality a, b, and c are all positive.

The numbers a, b, and c are distinct. To show this, we argue by contradiction. Suppose
(without loss of generality) that a = b. Then 2a2 + c2 = ka2c, so a2(kc− 2) = c2. Therefore
kc − 2 is a rational square, hence an integral square. Write kc − 2 = d2 with d ≥ 1, so
kc = 2 + d2. Therefore 2a2 + c2 = (2 + d2)a2, so c2 = d2a2, so c = da. Now d2 = kc− 2 =
k(da)− 2, so 2 = d(ka− d), which means d | 2, so d is 1 or 2. In either case we get ka = 3,
which contradicts k > 3.

Without loss of generality, say a > b > c ≥ 1. The triple (kbc− a, b, c) is also a solution
to x2 + y2 + z2 = kxyz, and kbc− a is positive since a(kbc− a) = b2 + c2 and a > 0. Which
coordinate in (kbc − a, b, c) is maximal? We know b > c by design. Is kbc − a > b or is
b > kbc − a? We answer this by looking at the polynomial f(x) = x2 − (kbc)x + b2 + c2.
The roots of f(x) are a and kbc− a, and

f(b) = 2b2 + c2 − kb2c ≤ 2b2 + c2 − kb2 < 3b2 − kb2 = (3− k)b2 < 0.

The region where f is negative is between its two roots. Thus b lies between a and kbc− a.
Since b < a we must have kbc− a < b < a, so

0 < max(kbc− a, b, c) = b < a = max(a, b, c),

Repeating this construction, by descent we get a contradiction, so the equation a2+b2+c2 =
kabc has only (0, 0, 0) as an integer solution when k > 3.

Now we look at k = 2. Suppose a2 + b2 + c2 = 2abc with integers a, b, and c. Since
a2 + b2 + c2 is even, a, b, and c are not all odd. If exactly 1 of them is even then reducing
both sides of the equation modulo 4 gives 2 ≡ 0 mod 4, a contradiction. If exactly 2 are
even then reducing modulo 2 gives 1 ≡ 0 mod 2, another contradiction. Therefore a, b, and
c are all even. Write a = 2a′, b = 2b′, and c = 2c′, so a′2 + b′2 + c′2 = 4a′b′c′. This is
the case k = 4, which we have already shown has no integral solution except (0, 0, 0), so
(a, b, c) = (2a′, 2b′, 2c′) = (0, 0, 0). �

Why do we avoid k = 1 in Theorem 7.1? Looking at x2 + y2 + z2 = xyz modulo 3 shows
x, y, and z are all multiples of 3 (check!). Writing x = 3x′, y = 3y′, and z = 3z′ yields
x′2 + y′2 + z′2 = 3x′y′z′, so a solution to x2 + y2 + z2 = xyz in Z is 3 times an integral
solution of Markov’s equation.

Here is another “positive” use of descent based on passing from one root of a quadratic
polynomial to the other root.
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Theorem 7.2. For m ∈ Z+, if there are a and b in Z+ such that m = (a2 + b2)/(ab + 1)
then m is a perfect square.

This was the final question on the International Math Olympiad in 1988, and there are
Numberphile videos about it, such as https://www.youtube.com/watch?v=Y30VF3cSIYQ

and https://www.youtube.com/watch?v=NcaYEaVTA4g.

Proof. We will present an argument by descent as described by Zagier7.
Rewrite the equation as a2 + b2 = m(ab+ 1), or a2 + b2−mab−m = 0. We will consider

not just solutions (a, b) in positive integers, but solutions (a, b) in nonnegative integers.
There’s no solution where a and b are both 0 (why?), but a solution where one of a or b is
0 might occur and in fact finding such a solution is the whole point: if a = 0 then m = b2

and if b = 0 then m = a2, so either way m is a perfect square. We will show that from a
solution in positive integers a and b, by descent there is a solution where a or b is 0.

Since a2 + b2 −mab−m is symmetric in a and b, we can assume a ≥ b ≥ 1. We will find
a solution (a′, b) in nonnegative integers where a′ < a.

From a2 + b2 −mab −m = 0, a is a root of x2 −mbx + (b2 −m). This polynomial has
two roots, a and a′, where a + a′ = mb and aa′ = b2 −m (the formulas linking roots and
coefficients). So a′2 + b2 −ma′b−m = 0. Obviously a′ ∈ Z, since a′ = mb− a, but why is
a′ ≥ 0 and a′ < a?

Claim: a′ ≥ 0. If a′ < 0 then −a′ > 0 and mb < a, so m = b2 − aa′ > b2 + a > a > bm,
so 1 > b, which is a contradiction.

Claim: a′ < a. Since b ≤ a (an initial assumption), aa′ = b2 −m < b2 ≤ a2, so a′ < a.
From the solution (a, b) in positive integers (where a ≥ b by symmetry), we got a solution

(a′, b′) in nonnegative integers where a′ < a and b′ = b, so 0 < a′ + b′ < a + b: the sum
of terms has gotten smaller. If a′ > 0 then we can repeat the process and get a solution
(a′′, b′′) where 0 < a′′ + b′′ < a′ + b. Eventually we must reach a solution (a(n), b(n)) where

a(n) or b(n) is 0, and that implies m is a perfect square. �

Appendix A. Areas of Right Triangles

In Section 3 we saw Fermat’s Last Theorem for exponent 4 follows from x4 + y4 = z2

having no solution in Z+. Here we will explain what led Fermat to this equation. It was
not Fermat’s Last Theorem, but the following problems about areas of right triangles:

(1) Can a right triangle and square with side lengths in Z have the same area?
(2) Can a right triangle with side lengths in Z have twice the area of a square with side

lengths in Z?

Algebraically, if (a, b, c) is a Pythagorean triple we are asking if ab/2 can be a perfect
square or twice a perfect square.

The first question is connected with x4 − y4 = z2 and the second question is connected
with x4 + y4 = z2. This is explained in Table 2. The first column shows how to turn
a Pythagorean triple (a, b, c) such that ab/2 is a perfect square into a positive integer
solution of x4 − y4 = z2. In the second column we turn such a solution (x, y, z) into a
Pythagorean triple (a, b, c) such that ab/2 is a perfect square. In the next two columns we
turn Pythagorean triples (a, b, c) with ab/2 being twice a perfect square into positive integer
solutions of x4 + y4 = z2 and vice versa. Note d in the fourth column is an integer since x
or y must be even (otherwise z2 ≡ 2 mod 4, which is impossible)

7See http://www-groups.mcs.st-andrews.ac.uk/%7Ejohn/Zagier/Solution1.3.html.

https://www.youtube.com/watch?v=Y30VF3cSIYQ
https://www.youtube.com/watch?v=NcaYEaVTA4g
http://www-groups.mcs.st-andrews.ac.uk/%7Ejohn/Zagier/Solution1.3.html
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a2 + b2 = c2, x4 − y4 = z2 a2 + b2 = c2, x4 + y4 = z2

ab/2 = d2 ab/2 = 2d2

x = c a = z2 x = b a = x2

y = 2d b = 2x2y2 y = 2d b = y2

z = |a2 − b2| c = x4 + y4 z = bc c = z
d = xyz d = xy/2

Table 2.

The transformations in the table between (a, b, c) and (x, y, z) are not inverses, but they
show there’s an integral right triangle with a certain kind of area exactly when a certain
equation has solutions in Z+.

We showed by descent in Theorems 3.1 and 3.10 that x4±y4 = z2 has no solution in Z+,
so no integral right triangle has an area that is a perfect square or twice a perfect square.

Appendix B. Another descent with sums of two squares

By descent we will show solvability of a certain equation in Q implies solvability in Z.

Theorem B.1. Let n ∈ Z+. If n is a sum of two squares in Q then it is a sum of two
squares in Z.

This says that if n = x2 + y2 has a solution for some x, y ∈ Q then it has a solution
where x, y ∈ Z. Before proving the theorem, we’ll illustrate it with an example.

Example B.2. Check 193 = (933/101)2+(1048/101)2. The point P = (933/101, 1048/101)
lies on the circle C : x2 + y2 = 193 (with radius

√
193 ≈ 13.8). Since P ≈ (9.23, 10.37), the

nearest integral point to P is Q = (9, 10), which does not lie on C. See the figure below.8

The line L through P and Q has equation y = (19/12)x− 17/4 and it meets C in a second
point besides P : P ′ = (−27/5,−64/5). Note P ′ is on C and has rational coordinates with
common denominator 5, which is less than the previous common denominator 101.

Now repeat the process: since P ′ = (−5.4,−12.8), the nearest integral point to P ′ is
Q′ = (−5,−13); note we round −12.8 to −13, the nearest integer, rather than to −12. The
point Q′ is not on C, and the line L′ through P ′ and Q′ has equation y = −(1/2)x− 31/2
and it meets C in a second point besides P ′: the integral point P ′′ = (−7,−12). We have
found an integral solution (−7,−12) to x2 + y2 = 193.

x2 + y2 = 193

x

y

L

PQ

L′

P ′

Q′P ′′

8The figure is not drawn to scale.
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As a check on your understanding, starting with 193 = (83/109)2 + (1512/109)2, and
P = (83/109, 1512/109) ≈ (.76, 13.87), apply the method above to find rational points
on C with decreasing denominators until you reach an integral point: (249/65,868/65),
(64/5,−27/5), and finally (12,−7).

Now let’s prove Theorem B.1.

Proof. Our argument is from [12, App. II, Chap. III]. The main idea is due to Aubry
(1912).

Suppose n = r21 + r22 with fractions r1 and r2. If r1 and r2 are in Z, we’re done, so
assume at least one is not in Z. Write the ri’s with a common denominator: r1 = a1/b and
r2 = a2/b, where a1, a2, and b are in Z and b > 1. We will show n = r′21 + r′22 where r′1 and
r′2 are fractions with a common denominator less than b. Repeat this enough times to get
a common denominator of 1, so n is a sum of integral squares.

The point (r1, r2) lies on the circle x2+y2 = n. Pick a nearby Z-point in the plane: choose
k1 and k2 in Z such that |ri−ki| ≤ 1/2. Since r1 and r2 are not both in Z, (r1, r2) 6= (k1, k2),
so there is a line through these two points. This line meets the circle x2+y2 = n in the point
(r1, r2). We will show this line meets the circle in a second point with rational coordinates
having a smaller common denominator than b (the common denominator of the coordinates
of (r1, r2)).

First let’s check the line through (r1, r2) and (k1, k2) meets x2 + y2 = n in a second
point. We argue by contradiction. If the line only meets the circle at (r1, r2) then the line
is tangent to the circle at (r1, r2), so the three points (r1, r2), (k1, k2), and (0, 0) are the
vertices of a right triangle (a tangent line to a point on a circle is always perpendicular to
the line connecting the origin to the point of tangency). By the Pythagorean theorem,

k21 + k22 = (r21 + r22) + ((k1 − r1)2 + (k2 − r2)2) = n+ ((k1 − r1)2 + (k2 − r2)2).
Both k21 + k22 and n are integers, so (k1 − r1)2 + (k2 − r2)2 is an integer. However, |k1 − r1|
and |k2− r2| are both less than 1/2, so 0 ≤ (k1− r1)2 + (k2− r2)2 ≤ (1/2)2 + (1/2)2 = 1/2.
Then the only way (k1 − r1)2 + (k2 − r2)2 could be an integer is if it is 0, which forces
r1 = k1 and r2 = k2. However, we are supposing r1 and r2 are not both integers, so we
have a contradiction.

Now let’s look more closely at the algebraic formula for the squared distance between
(r1, r2) and (k1, k2). This number, which is positive, equals

(r1 − k1)2 + (r2 − k2)2 =
(a1
b
− k1

)2
+
(a2
b
− k2

)2
=

(a1
b

)2
+
(a2
b

)2
− 2(a1k1 + a2k2)

b
+ k21 + k22

= n− 2(a1k1 + a2k2)

b
+ k21 + k22

= n+ k21 + k22 −
2(a1k1 + a2k2)

b
.

We can write this fraction in the form b′/b, where

b′ := b(n+ k21 + k22)− 2(a1k1 + a2k2) ∈ Z

and

(r1 − k1)2 + (r2 − k2)2 =
b′

b
=⇒ (a1 − bk1)2 + (a2 − bk2)2 = bb′.
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We will show the line through (r1, r2) and (k1, k2) meets x2 + y2 = n in a rational point
whose coordinates have b′ as a common denominator. Since (r1 − k1)

2 + (r2 − k2)
2 ≤

(1/2)2 + (1/2)2 = 1/2, we have 0 < b′/b ≤ 1/2, so

0 < b′ ≤ b

2
< b.

The line through (r1, r2) and (k1, k2) can be described parametrically by

(B.1) L(t) = (k1 + (r1 − k1)t, k2 + (r2 − k2)t).

This meets x2 + y2 = n at t = 1 (L(1) = (r1, r2)). Where else does it meet the circle? To
find out, we solve for t in

n = (k1 + (r1 − k1)t)2 + (k2 + (r2 − k2)t)2

= k21 + 2k1(r1 − k1)t+ (r1 − k1)2t2 + k22 + 2k2(r2 − k2)t+ (r2 − k2)2t2

= k21 + k22 + 2(k1r1 − k21 + k2r2 − k22)t+ ((r1 − k1)2 + (r2 − k2)2)t2

= k21 + k22 + 2(k1r1 + k2r2 − (k21 + k22))t+ ((r1 − k1)2 + (r2 − k2)2)t2

= k21 + k22 +
2(a1k1 + a2k2)− 2b(k21 + k22)

b
t+

(a1 − bk1)2 + (a2 − bk2)2

b2
t2.

Using the definition of b′ to rewrite the coefficients of t and t2, we have

n = k21 + k22 +
b(n+ k21 + k22)− b′ − 2b(k21 + k22)

b
t+

b′

b
t2

= k21 + k22 +

(
n− (k21 + k22)− b′

b

)
t+

b′

b
t2.

Bringing all terms to the right side,

0 =
b′

b
t2 +

(
n− (k21 + k22)− b′

b

)
t+ k21 + k22 − n.

This has a root at t = 1 (because L(1) is on the circle, but it can also be seen algebraically),
so we know t− 1 is a factor on the right, leading to

0 = (t− 1)

(
b′

b
t+ n− (k21 + k22)

)
.

Thus the second point of intersection of the line L(t) with the circle x2 + y2 = n is at

t =
b(k21 + k22 − n)

b′
.

Feeding this value of t into (B.1), and writing ri as ai/b, we get the point

L

(
b(k21 + k22 − n)

b′

)
=

(
k1 +

(a1 − bk1)(k21 + k22 − n)

b′
, k2 +

(a2 − bk2)(k21 + k22 − n)

b′

)
,

which shows this second point of intersection of the line and circle is a rational point and
b′ is a common denominator for its coordinates. We noted earlier that 0 < b′ ≤ b/2 < b, so
the common denominator for this new rational point on x2 + y2 = n is smaller than that
for (r1, r2), and we are done. �
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The proof of Theorem B.1 works for a sum of three squares, using lines and spheres in
three dimensions. That is, an integer that is a sum of three rational squares is also a sum
of three integral squares. The only change to be made in the proof is the following: now we
have |ai/b − ki| ≤ 1/2 for i = 1, 2, 3, and (a1/b − k1)2 + (a2/b − k2)2 + (a3/b − k3)2 ≤ 3/4
instead of ≤ 1/2. So the new rational point on the sphere x2 + y2 + z2 = n will have a
common denominator b′ ≤ (3/4)b, which is still less than b, which means everything still
works in the proof when it is done for sums of three squares.

Theorem B.1 can fail for some algebraic expressions other than x2 + y2. For example,
x2 + 82y2 = 2 has no solution in Z but infinitely many solutions in Q, such as (4/7, 1/7),
(16/13, 1/13), (40/29, 1/29), and (20/29, 7/47). And x3 + y3 = 13 has no solution in
Z but infinitely many solutions in Q, such as (7/3, 2/3), (2513/1005,−1388/1005), and
(26441619018689/18636783082845, 40343602894936/18636783082845). If we try to apply
the geometric method of Example B.2 to these curves, then we run into problems.

• The nearest integral point to (4/7, 1/7) is (1, 0) and the line through those two
points meets x2 + 82y2 = 2 in (16/13,−1/13), so the denominator has gone up,
not down. The line through (16/13,−1/13) and its nearest integral point, which is
again (1, 0), meets x2 + 82y2 = 2 in the original point (4/7, 1/7), so we return to
where we started.
• The nearest integral point to (7/3, 2/3) is (2, 1) and the line through those two

points meets x3 + y3 = 13 in (2/3, 7/3). Next, the line through (2/3, 7/3) and its
nearest integral point (1, 2) meets x3 + y3 = 13 in (7/3, 2/3), which is the original
point.

Appendix C. Some results related to the four-square theorem

Before Lagrange proved the four-square theorem, Euler made partial progress [6, Theorem
20]: the theorem below.

Theorem C.1 (Euler). If n ∈ Z+, then n = a2 + b2 + c2 + d2 where a, b, c, d are in Q.

Proof. We will be using Lemma 6.2 for Q (same proof as in Z: it’s a polynomial identity).
The theorem is obvious at n = 1, so by Lemma 6.2 (for Q) it suffices to show each prime

number is a sum of four rational squares.
Assume there are primes that are not a sum of four squares in Q and let p be the least

such prime. As in Step 1 in the proof of Theorem 6.6, there is a positive integer k < p such
that pk = x2 + y2 + 1 where x, y ∈ Z (this uses Lemma 6.4).

By the minimality of p, each prime less than p is a sum of four squares in Q, so by Lemma
6.2 (for Q) each positive integer less than p is a sum of four squares in Q. Thus k is a sum
of four squares in Q. Writing

p =
x2 + y2 + 1

k
=

(x2 + y2 + 1)k

k2
,

we have (x2 + y2 + 1)k = A2 + B2 + C2 +D2 for some A,B,C,D ∈ Q by Lemma 6.2 (for
Q). Then

p =
A2 +B2 + C2 +D2

k2
=

(
A

k

)2

+

(
B

k

)2

+

(
C

k

)2

+

(
D

k

)2

= a2 + b2 + c2 + d2,

where a = A/k, b = B/k, c = C/k, and d = D/k. This contradicts the definition of p, so
every prime is a sum of four squares in Q. �
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A summary of Lagrange’s proof of the four-square theorem is in [4, pp. 279–281]. Here
is his generalization of Lemma 6.4, which was used in the proof.

Theorem C.2. Let p be an odd prime and a, b 6≡ 0 mod p. For each c ∈ Z, the congruence

ax2 + by2 ≡ c mod p

has at least one solution.

Proof. We’ll see that the proof of Lemma 6.4 about x2 +y2 +1 ≡ 0 mod p (where a = b = 1
and c = −1) remains applicable to the more general situation above.

Rewrite ax2+by2 ≡ c mod p as ax2 ≡ c−by2 mod p and let A = {ax2 mod p : x ∈ Z/(p)}
and B = {c− by2 mod p : y ∈ Z/(p)}.

Since there are (p+ 1)/2 squares mod p (including 02) and a 6≡ 0 mod p, we have |A| =
(p+1)/2. Similarly, |B| = (p+1)/2. Since |A|+|B| = p+1 > p, A and B can’t be disjoint in
Z/(p), so some x0 and y0 in Z/(p) satisfy ax20 ≡ c−by20 mod p. Thus ax20+by20 ≡ c mod p. �
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