
NUMBER THEORY AND CRYPTOGRAPHY

KEITH CONRAD

1. Introduction

Cryptography is the study of secret messages. For most of human history, cryptography
was important primarily for military or diplomatic purposes (look up the Zimmermann
telegram for an instance where these two themes collided), but internet commerce in the late
20th century made cryptography important for everyone. Anytime you send a text message,
buy something online, or transfer funds electronically, cryptography is at work to guarantee
– or so you hope – that nobody sees your information other than the intended recipient. The
most basic cryptographic protocols, used today by millions worldwide without realizing it,
are based on number theory. In Section 2 we will discuss some cryptographic techniques used
before the computer era that involve modular arithmetic and linear algebra. In Sections
3-5 we will describe one of the most widely used cryptographic protocols today, called
RSA after its inventors Rivest, Shamir, and Adleman [8]. It is based on exponentiation in
modular arithmetic, and the math behind it is Euclid’s algorithm, Fermat’s little theorem,
and primality testing. Section 6 discusses some of the history behind who found RSA.

In addition to cryptography, which aims to keep messages secret from eavesdroppers,
there is a related area called coding theory. The goal in coding theory is not to hide
messages, but to make sure they pass through a noisy channel without errors. This is
important in telephone networks, digital music files, and communication between NASA on
Earth and satellites in space. Number theory plays a role in coding theory, but it is not
what we will be discussing here.

2. The Caeser and Hill Ciphers

One of the oldest methods of encryption, which goes back to Julius Caesar, shifts every
letter in a message by a fixed amount. For instance, if we shift by 3 letters to the right,
then we have

A 7→ D,B 7→ E,C 7→ F, . . . ,Z 7→ C.

The message

DOODLE

is encrypted as

GRRGOH.

The encrypted message

XKFJXI

is decrypted by shifting by three letters to the left, giving us

ANIMAL.

This process of encrypting by shifting a fixed amount is called a Caesar cipher or a shift
cipher. It has (at least) three defects:

1

2 KEITH CONRAD

(1) Knowing the encrypting process reveals the decrypting process: if we encrypt by
shifting to the right by five letters then decrypting is just shifting to the left by five
letters. Therefore it is important to keep the shift value secret to make the method
secure, although the next defect shows the whole idea behind the Caesar cipher is
sort of doomed.

(2) Even if we don’t know the exact shift amount, the search space is very small: each
letter has only 25 shifts besides itself, so if we know a message was encrypted by
some Caesar cipher then a little patience will reveal the message by just trying all
the possibilities until you shift into a text that makes sense.

(3) Because every letter is shifted by the same amount, once we know the encrypted
form of one letter we know the shift for all letters, e.g., if we determine that B is
encrypted as F then B is shifted by 4 letters so every letter is shifted by 4 letters.

Mathematically, the Caesar cipher is addition by a fixed number modulo 26, where we
take A = 1, B = 2, and so on up to Z = 26 = 0. The shift by 3 letters to the right is the
encryption function E(x) = x + 3 mod 26. It is decrypted with D(y) = y − 3 mod 26. We
can get something a bit more complicated by allowing scaling before translating: E(x) =
ax + b mod 26, where (a, 26) = 1. A Caesar cipher uses a = 1. We need (a, 26) = 1 in
order to invert E(x), i.e., to decrypt a message. Suppose E(x) = 5x + 3 mod 26, so letting
x = 1, 2, 3, . . . , 25, 0 gives the encryption

A 7→ H,B 7→ M, . . . ,Z 7→ C.

When E(x) = x + 3 mod 26 we found that DOODLE becomes GRRGOH. If E(x) = 5x +
3 mod 26 then DOODLE becomes WZZWKB (check!) and if E(x) = 9x + 3 mod 26 then
DOODLE becomes MHHMGV (check!). Decryption is based on inverting a linear function.
In ordinary algebra, if y = 5x + 3 then x = (1/5)(y − 3). This works modulo 26 as well,
replacing 1/5 with the inverse of 5 mod 26, which is 21 (check!). Therefore if E(x) =
5x + 3 mod 26 then the corresponding decryption function is D(y) = 21(y − 3) = 21y + 15
(because 21(−3) = −63 ≡ 15 mod 26).

By allowing a scaling mod 26 as part of the encryption, we enlarge the number of encryp-
tion functions by more than a factor of 10: the number of encryption functions of the form
E(x) = x+ b mod 26 is 26 (really it’s 25, because the encryption function E(x) = x mod 26
is stupid), while the number of encryption functions of the form E(x) = ax + b mod 26 is
ϕ(26)26 = 12 · 26 = 312.

Even though this generalization of the Caesar cipher avoids the problem of every letter
being shifted by the same amount, it shares a flaw with the Caesar cipher that we did not
bring up earlier: a letter gets encrypted in the same way no matter where it appears in the
text. For example, when DOODLE is encrypted as GRRGOH with E(x) = x + 3 mod 26,
the D became G both times and the double O becomes a double R. When DOODLE turns
into WZZWKB using E(x) = 5x+ 3 mod 26, the D becomes W both times and the double
O becomes a double Z. The frequency statistics of letters in a language are well-known, e.g.,
the letter E is the most frequently appearing letter in plain English text and the second
most common letter is A. Therefore if we have a long amount of encrypted text and we
know it was encrypted by some function E(x) = ax + b mod 26, we could determine with
reasonable confidence which encrypted letters correspond to E and A. Just as two points
determine a line, knowing two values of the function E(x) = ax+ b mod 26 is enough to let
us recover a and b, which tells us the encryption function.

NUMBER THEORY AND CRYPTOGRAPHY 3

We can get a more sophisticated extension of the Caesar cipher by working with vectors
and matrices instead of numbers and linear functions. This is called a block cipher because
it operates on groups of letters at a time instead of one letter at a time. We will describe
the idea using two-letter blocks with 2× 2 matrices. For instance,

DOODLE

becomes

DO OD LE

and each block can be viewed as a vector of numbers mod 26 (A = 1, B = 2, and so on):(
D

O

)
=

(
4

15

)
,

(
O

D

)
=

(
15

4

)
,

(
L

E

)
=

(
12

5

)
.

Pick a 2× 2 matrix with entries mod 26, such as

A =

(
3 2
1 11

)
.

To encrypt a block of two letters, viewed as a vector with two components mod 26, multiply
the vector by the matrix A and do the calculations mod 26:

A
(

4

15

)
=

(
16

13

)
, A

(
15

4

)
=

(
1

7

)
, A

(
12

5

)
=

(
20

15

)
.

Turning each vector component back into a letter, the encrypted form of DOODLE has first
letter 16 = P, second letter 13 = M, third letter 1 = A, and so on, giving us

PMAGTO.

Notice that the D’s in DOODLE have been encrypted by different letters, and likewise for
the O’s. This system won’t be cracked by knowledge of the frequency of single letters in
English, although it would be susceptible to analysis based on a frequency of double letter
combinations in English.

Let’s turn to decryption. Suppose we received the message

UPFOOU

and we know it was encrypted by multiplication by the above matrix A = (3 2
1 11). Since

encrypting is E(v) = Av, decrypting is achieved by multiplication by the inverse of A:
D(v) = A−1v. When is a 2 × 2 matrix invertible? In a first linear algebra course you
learn that a (square) matrix with real entries is invertible precisely when its determinant is
nonzero, and in the 2× 2 case (a b

c d) has inverse

1

ad− bc

(
d −b
−c a

)
.

For matrices with entries that are integers mod m, the rule for invertibility of a matrix is
not that the determinant is nonzero. For example, taking m = 26, the matrix (1 2

3 4) has
determinant −2 ≡ 24 mod 26, which is not 0 mod 26, but this matrix is not invertible mod
26: for no 2× 2 matrix M is (1 2

3 4)M ≡ (1 0
0 1) mod 26.

Theorem 2.1. A 2×2 matrix with entries that are integers mod m has an inverse precisely
when its determinant is invertible mod m, in which case its inverse is given by the same
formula as in the real case.

4 KEITH CONRAD

Proof. Let A be the matrix. If A has an inverse matrix B, so AB ≡ (1 0
0 1) mod m, then

taking determinants of both sides implies (detA)(detB) ≡ 1 mod m. Therefore detA is
invertible mod m.

Conversely, if detA is invertible in mod m then the familiar inverse matrix formula from
(real) linear algebra actually makes sense if we apply it to the mod m matrix A and a direct
calculation shows the formula works as an inverse. �

The matrix A = (3 2
1 11) with entries mod 26 has determinant 31 ≡ 5 mod 26. The inverse

of this determinant, mod 26, is 21. Therefore

A−1 = 21

(
11 −2
−1 3

)
≡

(
23 10
5 11

)
.

Call this matrix B. (Check AB = I2 and BA = I2.) The encoded message UPFOOU has
blocks (

U

P

)
=

(
21

16

)
,

(
F

O

)
=

(
6

15

)
,

(
O

U

)
=

(
15

21

)
,

so we decrypt by multiplying each vector by B on the left:

B
(

21

16

)
=

(
19

21

)
, B

(
6

15

)
=

(
2

13

)
, B

(
15

21

)
=

(
9

20

)
.

Putting the output blocks back together and converting them into letters gives the decrypted
message:

SUBMIT.

With an encryption matrix of size 3 × 3 we can encrypt messages in blocks of three
letters at a time. By using matrices of size 6× 6 or more, attacks using frequency analysis
are difficult. This technique of encryption, using matrices and modular arithmetic, was
suggested by Lester Hill in the late 1920s and is called a Hill cipher. While the Hill cipher
avoids some bad features of the Caesar cipher (e.g., a letter being encrypted the same
way each time), it does share one of the problems of the Caesar cipher: knowledge of the
encryption and decryption functions are essentially equivalent. Anyone who knows the
encryption matrix for a Hill cipher can compute its inverse (the decryption matrix) using
row reduction or other methods of linear algebra. For the German Enigma machine (see
Figure 1, from a display at the Computer History Museum), whose cracking by the Allies
was one of the great achievements of World War II, encryption and decryption were literally
the same steps. See the videos [4], [5], and [7] for illustrations of Enigma at work.

This defect of the Caesar cipher, Hill cipher, and Enigma was a feature of cryptography
for most of human history: encryption and decryption functions were always effectively
symmetric processes, in the sense that learning how your adversary is encrypting messages
could be easily reverse-engineered to decrypt the messages. How could it be otherwise?

In the 1970s it was discovered that it could be otherwise: there are cryptographic al-
gorithms based on number theory where the encryption process can be announced to the
whole world and decryption in practice is still secure! RSA was one of the first practical
implementations of this idea, and is based on encryption that is a power function in modular
arithmetic: E(x) = xe mod m for suitable m and e. Decryption is also a power function:
D(y) = yd mod m for the same modulus m and another exponent d. When we learn how
RSA works, we will see that figuring out the decryption exponent d essentially requires
factoring m, so the ease of multiplication (to take powers for encryption) and the apparent
difficulty of factoring (to figure out the decryption exponent) keeps the system secure.

NUMBER THEORY AND CRYPTOGRAPHY 5

Figure 1. A German Enigma machine

3. Prelude to RSA: solving an ≡ b mod m for a

To prepare ourselves for RSA, we want to understand how to undo a power computation
in modular arithmetic: knowing a modulus m, positive integer n, and a power an mod m,
can we figure out a mod m?

Example 3.1. Let’s find an a satisfying a3 ≡ 14 mod 55. Of course we could take a =
0, 1, 2, . . . , 54 until we find an answer, but we want to approach the task more systematically,
regarding the modulus 55 merely as a prototype for what in practice would be a very large
modulus (too large to illustrate the ideas simply).

The right side of the congruence, 14, is invertible mod 55, so a has to be invertible mod
55 if it exists at all. Since ϕ(55) = ϕ(5 · 11) = (5 − 1)(11 − 1) = 40, a40 ≡ 1 mod 55 by
Euler’s theorem, so in the power an mod 55, n only matters modulo ϕ(55): for each t ∈ Z+,

an+40t = an(a40)t ≡ an mod 55.

Returning to a3 ≡ 14 mod 55, which we want to solve, raise both sides to the kth power:

a3k ≡ 14k mod 55.

The left side only depends on 3k mod 40, so if we can choose k ≥ 1 so that 3k ≡ 1 mod 40,
then a3k ≡ a1 ≡ a mod 55. To solve 3k ≡ 1 mod 40 means inverting 3 modulo 40. Since

6 KEITH CONRAD

(3, 40) = 1, by Euclid’s algorithm or other methods we can find the inverse: it is 27 mod 40.
Use k = 27:

a3 ≡ 14 mod 55 =⇒ a3·27 ≡ 1427 mod 55 =⇒ a ≡ 1427 mod 55.

Using a computer, 1427 ≡ 9 mod 55, so a ≡ 9 mod 55. As a check that this works,

93 = 729 = 14 + 715 = 14 + 55 · 13 ≡ 14 mod 55.

To solve a3 ≡ 14 mod 55, it was crucial that the exponent 3 is relatively prime to 40,
which is ϕ(55). Changing the exponent from 3 to 6, which is not relatively prime to 40,
the congruence a6 ≡ 14 mod 55 has four solutions ±3,±8 mod 55 rather than one solution,
and the congruence a6 ≡ 19 mod 55 has no solutions.

When (a,m) = 1, the expression an mod m depends on the base a and the exponent n
in different ways: it depends on the base a modulo m and it depends on the exponent n
modulo ϕ(m). Understand this! The separate modular variation in the base (mod m) and
the exponent (mod ϕ(m)), along with the apparent difficulty of figuring out ϕ(m) from m
if we don’t know how to factor m, is the rough idea behind what makes RSA secure.

4. RSA explained

The first ingredient for RSA is a modulus that is a product of two different primes p
and q. In practice they are hundreds of digits each, but for illustrative purposes we’ll use
much smaller p and q. Set m = pq. Then ϕ(m) = (p− 1)(q − 1), which is easy to compute
knowing p and q.

The second ingredient for RSA is an integer e ≥ 1 such that (e, ϕ(m)) = 1. This will be
the encryption exponent. To verify that (e, ϕ(m)) = 1 you could use Euclid’s algorithm.

The third ingredient for RSA is an integer d ≥ 1 such that ed ≡ 1 mod ϕ(m), which will
be the decryption exponent. It can be found by Bezout’s identity if you know e and ϕ(m).

Now we are ready for RSA. Having chosen your primes p and q, setting m = pq, and
choosing an e ≥ 1 such that (e, ϕ(m)) = 1, compute d ≥ 1 such that ed ≡ 1 mod ϕ(m).
Announce to the world m and e. The numbers m and e are called your public key. The
primes p and q and the number d are your private key. Messages to be sent to you should
be integers x with 0 ≤ x ≤ m− 1. (A longer message can be broken up into blocks that are
each less than m; we’ll see examples of this below.) Someone who wants to send you the
message x should instead send you the encrypted message E(x) = xe mod m. To decipher
an encrypted message y mod m that you receive, compute D(y) ≡ yd mod m.

Example 4.1. If p = 43 and q = 97 then m = pq = 4171 and ϕ(m) = 42 · 96 = 4032. Since
(5, ϕ(m)) = 1 use e = 5. A solution to 5d ≡ 1 mod ϕ(m) is d = 1613. So E(x) = x5 mod m
and D(y) = y1613 mod m are a pair of encryption and decryption functions. For instance,
if x = 24 then E(x) = 245 ≡ 185 mod m and D(185) = 1851613 ≡ 24 mod m.

To show the encryption and decryption processes always undo each other, let’s compute
what happens if we encrypt and then decrypt a number x:

D(E(x)) ≡ E(x)d mod m ≡ (xe)d mod m ≡ xed mod m,

so we want to verify that

ed ≡ 1 mod ϕ(m) =⇒ xed ≡ x mod m

no matter what x is. Knowing x mod m tells us x if 0 ≤ x ≤ m− 1.

NUMBER THEORY AND CRYPTOGRAPHY 7

Theorem 4.2. Let p and q be different prime numbers and set m = pq. If positive integers
e and d are chosen so that ed ≡ 1 mod ϕ(m), then for all x ∈ Z,

xed ≡ x mod m.

Proof. Write ed = 1 + ϕ(m)t where t ≥ 0. For every integer x,

xed = x1+ϕ(m)t = x(xϕ(m))t.

If (x,m) = 1 then xϕ(m) ≡ 1 mod m by Euler’s theorem, so xed = x(xϕ(m))t ≡ x mod m.

If (x,m) > 1, then xϕ(m) 6≡ 1 mod m (a power of x can’t be congruent to 1 mod m if x
has a factor greater than 1 in common with m), but nevertheless we will see that it is still

true that xed ≡ x mod m, or equivalently x · xϕ(m)t ≡ x mod m, by using the fact that m is
a product of two different primes p and q (we didn’t use that m has this special form yet).
In fact, the argument we give will work for all x ∈ Z in the same way, making the previous
separate consideration of the case (x,m) = 1 superfluous.

Since p and q are relatively prime, for all x ∈ Z we have

x · xϕ(m)t ≡ x mod pq ⇐⇒ x · xϕ(m)t ≡ x mod p and x · xϕ(m)t ≡ x mod q.

We have ϕ(m) = ϕ(p)ϕ(q) = (p − 1)(q − 1), so x · xϕ(m)t = x · x(p−1)(q−1)t. Therefore to
check that

x · x(p−1)(q−1)t ?≡ x mod p

for all x ∈ Z, we can take two cases:

1) If x ≡ 0 mod p then both sides are 0 mod p, hence they are congruent.

2) If x 6≡ 0 mod p then xp−1 ≡ 1 mod p by Fermat’s little theorem, so x(p−1)(q−1)t ≡
1 mod p. Thus x · x(p−1)(q−1)t ≡ x · 1 ≡ x mod p.

Showing x · x(p−1)(q−1)t ≡ x mod q for all x ∈ Z uses the same argument, with q in place
of p (take cases if x ≡ 0 mod q and x 6≡ 0 mod q). We are done. �

In our proof of Theorem 4.2 we started with Euler’s theorem if (x,m) = 1, but then to
handle the general case our argument only relied on Fermat’s little theorem, not on Euler’s
theorem. In practice a random x mod m is likely to be relatively prime to m when m is a
product of two big primes, but it’s good to know Theorem 4.2 works with no exceptions
in x at all, even when (x,m) > 1, and to handle all x Euler’s theorem is not used. It is a
common misconception that Euler’s theorem explains why encryption and decryption undo
each other in RSA. The basis for RSA is Fermat’s little theorem, not Euler’s theorem. In [8,
§VI], where Rivest, Shamir, and Adleman give “the underlying mathematics” behind RSA,

they start by reminding the reader of Euler’s theorem xϕ(m) ≡ 1 mod m if (x,m) = 1, but
they never use it. What they actually use is Fermat’s little theorem in an argument having
two cases, exactly as presented above.

Remark 4.3. Theorem 4.2 applies not only if m is a product of two different primes, but
also if m is a product of an arbitrary number of different primes: xed ≡ x mod m for all
x when ed ≡ 1 mod ϕ(m). If someone ever discovers a way to rapidly factor numbers that
are products of two different primes then we might change RSA to use a modulus that is
a product of three or more different primes (assuming an efficient technique for factoring
numbers of the form pq doesn’t also work on products of more than two different primes).

Example 4.4. My public key is m = 2823907 and e = 3. To send me the message
x = 71520, encrypt it as E(x) = x3 ≡ 83246 mod m and send me 83246 instead.

8 KEITH CONRAD

Suppose a spy intercepts 83246. How can the spy decrypt it? The spy needs to solve
x3 ≡ 83246 mod m. To do this without a brute force search (real m have thousands of
digits, not 7 digits as in this example1), the spy wants to invert the encryption exponent
3 mod ϕ(m): if 3d ≡ 1 mod ϕ(m) then

D(y) = yd mod m,

so x ≡ D(E(x)) = 83246d mod m. Finding d requires the spy to know ϕ(m), the number
modulo which 3 has to be inverted; you can’t solve 3d ≡ 1 mod ?? when the number ?? is a
mystery. All the spy knows is m = 2823907 (and e). And that is the whole point: while it’s
easy for me to figure out d because I picked the primes p and q (which the spy hasn’t been
told) and these let me compute ϕ(m) = (p− 1)(q− 1), there is no known way in general for
the spy to figure out ϕ(m) knowing only m as a plain integer but not its prime factors.

Let’s reveal how m factors to see what the decryption exponent is. It turns out that
m = 1223 · 2309. I had used p = 1223 and q = 2309. Then ϕ(m) = (p − 1)(q − 1) =
2820376. A solution to 3d ≡ 1 mod ϕ(m) is d = 1880251, so the decryption function is
D(y) ≡ y1880251 mod m. Check that 823461880251 ≡ 71520 mod m, which is consistent with
the start of this example when we saw that the original message was x = 71520.

If I receive the new message 230748, so E(x) = 230748 for some unknown x, I can find x
by computing D(230748) = 2307481880251 ≡ 270513 mod m. So x = 270513. As long as a
spy who is eavesdropping on me can’t factor m, the spy can’t compute ϕ(m) and thereby
d, and thus can’t decrypt messages to me that the spy is intercepting.

Summary of RSA: Pick two different primes p and q. Set m = pq and choose e ∈ Z+

such that (e, ϕ(m)) = 1. The pair of numbers (m, e) is your public key and everyone can
be told these numbers in order to encrypt a message x mod m to you as E(x) = xe mod m.
The triple of numbers (p, q, d), where d ∈ Z+ is determined by ed ≡ 1 mod ϕ(m), is your
private key that you can use to decrypt messages by D(y) ≡ yd mod m. This works since
xed ≡ x mod m for all x by Theorem 4.2, so D(E(x)) ≡ x mod m for all x mod m. The
private key has to stay secret: anyone knowing p or q knows both factors since m = pq is
public. From p, q, and e it’s easy to find d and then decrypt messages sent to you.2

The first step in developing a public key is choosing two large primes, so RSA depends
on being able to recognize when a large number is prime. How can we check a large
number p is prime? One possibility is to run Fermat’s compositeness test 20 times without
finding a Fermat witness (that is, be unsuccessful in finding an a from 1 to p− 1 such that
ap−1 6≡ 1 mod p). If p passes 20 such tests we may be morally convinced p is prime and use
it. But maybe p is actually a Carmichael number.3 In practice there are better probabilistic
methods of primality testing that are used, such as the Miller–Rabin test, which don’t have
analogues of Carmichael numbers.

1In 1874, William Stanley Jevons wrote [6, p. 141] “what two numbers multiplied together will produce
the number 8,616,460,799? I think it unlikely that any one but myself will ever know; for they are two
large primes. . .”. With a computer it takes almost no time today to factor that number as 89681 · 96079.
Jevons went on to say “The work would probably occupy a good computer for many weeks,” but he was not
referring to a machine. In the 1800s, the word “computer” referred to a person who did calculations.

2Since E(D(x)) ≡ xde ≡ D(E(x)) mod m for all x, the mathematical roles of e and d are interchangeable.
This is important for the cryptographic development of digital signatures: use your private decryption
exponent d to encrypt a confirmation message and everyone else can decrypt it using the public encryption
exponent e. Nobody without knowledge of d is likely to be able to encrypt a meaningful message with d.

3See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/fermattest.pdf.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/fermattest.pdf

NUMBER THEORY AND CRYPTOGRAPHY 9

The second step needed for an RSA public key, after selecting the modulus m = pq, is
choosing the encryption exponent e, from which the decryption exponent is found by solving
ed ≡ 1 mod ϕ(m). Some care is needed here: if d (which is to be kept secret as part of the
private key) is less than around 4

√
m then it is susceptible to discovery using the continued

fraction expansion of e/m. This is Wiener’s continued fraction attack [9].

5. Examples of RSA encryption

Let’s see examples of RSA starting with a message in English text, so the process feels
more like real encryption. (It’s hard to be excited about encrypting a number like 4932,
although that is done when you send a credit card number over the Internet.) Encrypt
letters as 2-digit strings: A = 01, B = 02, and so on up to Z = 26, and let space = 27.

Example 5.1. We have MOM = 131513. Using m = 2823907 and e = 3 from Example 4.4,
E(MOM) = 1315133 ≡ 1842379 mod m. (An historically important example of a message
encrypted as a sequence of numbers, not letters, is the Zimmermann telegram.)

If a message has length exceeding the modulus, break it into smaller parts. For modulus
m = 2823907, which has 7 digits, a message block should have at most 3 letters (leading to
a number of at most 6 digits). For modulus m = 12964553, which has 8 digits but leading
pair of digits 12, which is less than 27, we should use a message block with at most 3 letters
since for instance the letter N is encrypted as 14 and 14 > 12; a 4-letter block that starts
with N will exceed the modulus.

Example 5.2. If m = 2823907 and e = 3, then E(x) = x3 mod m and we saw in Example
4.4 that D(y) = y1880251 mod m.

The message STOP NOW is 1920151627141523 (the 27 is a space), and using blocks of
length at most 3 from left to right this is (192015, 162714, 1523). Apply E(x) = x3 mod m
to each block: the first block is encrypted as 1920153 ≡ 859833 mod m, and similarly with
the other two blocks. The encrypted form of this message is (859833, 1395490, 2758917).

Going the other way, if we receive the encrypted message (1294545, 1214153) then the
original message is found by applying the decryption function to each block:

D(1294545) = 12945451880251 mod m ≡ 11209 mod m

and

D(1214153) = 12141531880251 mod m ≡ 2205 mod m.

As blocks of letters, the decrypted strings should have an even number of digits, but the
first one has 5 digits, which means we are missing a leading zero: the original message is
(011209,2205) = (ALI,VE) = ALIVE.

Remark 5.3. Pay attention to what you’re doing when a message is broken into smaller
parts. For example, don’t break up the message in Example 5.2 into 4-letter blocks since the
modulus only has 7 digits. Using the public key in Example 5.2 to encrypt STOP = 19201516
as a single block of digits, you’d get 192015165 ≡ 2086151 mod m, but the decrypted form
of y = 2086151 is D(y) = y1880251 ≡ 2722781 mod m and 2722781 = 02722781 can’t be
turned into a word since “72” and “81” do not belong to {01, 02, . . . , 27}. We can only
reasonably encrypt letters in blocks of at most 3 at a time for the public key modulus in
Example 5.2.

Here are some considerations when thinking about why RSA works.

10 KEITH CONRAD

1. If (e, ϕ(m)) > 1 then the system need not work. For example, if m = 217 = 7 · 31
and e = 3, we have ϕ(m) = 6 · 30 and (e, ϕ(m)) > 1. Using E(x) = x3 mod m, we
have 83 ≡ 78 mod 217 and 93 ≡ 78 mod 217, so E(8) ≡ E(9) mod m. That is bad,
as it means different messages could be encrypted in the same way.

2. We said in Remark 4.3 that RSA would work when the modulus m is a product of
two or more different primes, not just two different primes. The primes must be
different. If m has a repeated prime factor then the system need not work even if
(e, ϕ(m)) = 1. For example, let m = 275 = 52 · 11 and e = 3. Then ϕ(m) = 200, so
(e, ϕ(m)) = 1 and a solution to 3d ≡ 1 mod ϕ(m) is d = 67. Using E(x) = x3 mod m
and D(y) = y67 mod m, for x = 15 we have D(E(x)) = (x3)67 = x201 = 15201 ≡
125 mod m 6≡ 15 mod m, so applying the encryption and decryption operations in
succession did not return the original message.

If we know the prime factorization m = pq then we can compute ϕ(m) as (p− 1)(q − 1)
and solve for d in the congruence ed ≡ 1 mod ϕ(m), thereby getting the decryption function
D(y) = yd mod m. We said at the end of Sections 2 and 3 that the security of RSA is due
to the apparent difficulty of computing ϕ(m) from knowing m without also knowing the
prime factorization of m. How accurate is that claim? An astute reader might wonder if,
from an RSA public key (m, e), there could be a way of computing ϕ(m) without using the
prime factors of m. If so, then we could solve for d in the congruence ed ≡ 1 mod ϕ(m)
and thereby get the decryption function D(y) = yd mod m without having to factor m.
The next theorem shows that a method that lets us determine ϕ(m) for an RSA modulus
m leads to a method of computing the prime factors of m, so knowledge of ϕ(m) and the
factorization of m are basically equivalent.

Theorem 5.4. Let m = pq where p and q are different primes. If we know m and ϕ(m)
then we can compute p and q.

Proof. Expand out ϕ(m) = (p − 1)(q − 1) = pq − (p + q) + 1 = m − (p + q) + 1, so
p + q = m + 1−ϕ(m). Therefore if we know m and ϕ(m) we know the product pq and the
sum p + q, which up to sign are the coefficients of the quadratic polynomial with roots p
and q:

(X − p)(X − q) = X2 − (p + q)X + pq = X2 − (m + 1− ϕ(m))X + m.

When m and ϕ(m) are known, the coefficients of the polynomial on the right side are known,
so the roots of the polynomial can be found with the quadratic formula. Thus we can figure
out p and q from m and ϕ(m), which shows we can factor m from knowing m and ϕ(m)
when m is a product of two different primes. �

Example 5.5. Let m = 3297523 and suppose we somehow know that ϕ(m) = 3292840. If
m = pq for two different primes p and q, then by the proof of Theorem 5.4 the numbers p
and q are roots of

X2 − (m + 1− ϕ(m))X + m = X2 − 4684X + 3297523.

Using the quadratic formula on a computer, the roots of this polynomial are approximately
863.00000 and 3821.00000, and since the roots are supposed to be integers we expect the
prime factors of m are 863 and 3821. These factors can be checked by directly multiplying
them together and getting m.

To break RSA, ultimately it isn’t really ϕ(m) we care about, but rather the decryption
exponent d. If we know an RSA public key (m, e), could there be a way of computing d

NUMBER THEORY AND CRYPTOGRAPHY 11

without using the factors of m? If so, then we would know ed − 1, which is a multiple of
ϕ(m) since ed ≡ 1 mod ϕ(m), and ed− 1 is a positive integer (nobody would use e = d = 1
in RSA). The next theorem explains how knowing m and some positive multiple of ϕ(m)
lets us find the prime factors of m.

Theorem 5.6. Let m be a product of two different odd primes and let the positive integer
N be a multiple of ϕ(m). Write N = 2rk where r ≥ 1 and k is odd.4 Over half of all
a ∈ {2, . . . ,m− 2} satisfy one of the following conditions:

(1) 1 < (a,m) < m,

(2) (a,m) = 1, the least i ∈ {0, 1, . . . , r} such that a2
ik ≡ 1 mod m is positive, and

1 < (a2
i−1k − 1,m) < m.

A proof of Theorem 5.6 is omitted5, but the next example shows how it works.

Example 5.7. We are told m = 9,330,443 is an RSA modulus and, somehow, we know
N = 11,347,658,496 is a multiple of ϕ(m). Factoring out the largest power of 2 from N , we
get N = 28 ·44,326,791 = 2rk. Asking a computer for a random positive integer up to m−1,

we are offered a = 5,662,037. By Euclid’s algorithm, (a,m) = 1. Computing a2
ik mod m

for i = 0, . . . , 8, we find a2
5k ≡ 4,259,023 mod m and a2

6k ≡ 1 mod m, so i = 6. By Euclid’s

algorithm, (a2
5k − 1,m) = (4,259,022,m) = 2699, so we have discovered a nontrivial factor

of m. The complementary factor is m/2699 = 3457.

Theorem 5.6 provides a probabilistic algorithm to factor m from knowing m and a multiple
of ϕ(m) because a random choice of a ∈ {2, . . . ,m − 2} has more than a 50% chance of
fitting one of the two conditions in the theorem, and both conditions lead to a nontrivial

factor of m as either (a,m) or (a2
i−1k − 1,m). When m = pq, a nontrivial factor of m is

either p or q, so knowing one of them tells us both of them. It should not take more than
a few random values of a before we get one that leads to a nontrivial factor of m by the
algorithm in Theorem 5.6.

The only type of RSA modulus that Theorem 5.6 does not apply to is an even one:
m = 2q for an odd prime q. This is irrelevant in practice since nobody would use an RSA
modulus with 2 as a prime factor.

If we know an RSA public key (m, e) then Theorem 5.6 tells us that determining either
d or the prime factorization of m are practically equivalent computational tasks: we get d
from p and q by using Euclid’s algorithm to solve for d in ed ≡ 1 mod (p − 1)(q − 1), and
we get p and q from d by using the probabilistic algorithm in Theorem 5.6 with N = ed− 1
to find a nontrivial factor of m.

Cryptographic protocols like the Caesar cipher, the Hill cipher, and the German Enigma
machine, are called symmetric since the encryption and decryption processes can each be
determined from the other one in a computationally efficient way (in the case of Enigma
messages, encryption and decryption were exactly the same). Using a symmetric cipher
requires keeping the encryption operation hidden from adversaries. By comparison, RSA
is called an asymmetric cipher since knowing how to encrypt does not – as far as we can
tell – easily tell us how to decrypt. Asymmetric ciphers were created for the first time in

4We have r ≥ 1 since ϕ(m) is even, so its multiple N is also even.
5Theorem 5.6 is in fact true for all odd m > 1 that are not prime powers, not just RSA moduli pq.

A proof of the theorem is based on ideas similar to what is needed to justify the Miller–Rabin primality
test. See Corollary A.2 in https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf with
ϕ(n) = 2ek there replaced by N = 2rk here.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf

12 KEITH CONRAD

the 1970s, with RSA being one of the earliest examples. The term for ciphers where the
data needed to do encryption can be made public without sacrificing the security of the
decryption process is “public key cryptography.”

An asymmetric cipher may appear to be a superior method of encryption compared to
a symmetric cipher, but the reality is that both techniques are used together. Modern
symmetric ciphers run much faster than asymmetric ciphers (especially on the decryption
end), so RSA is not convenient to use for the exchange of long messages. In practice RSA
is used for two parties to exchange a small piece of information (called a “key exchange”)
that can be used to set up communication through a symmetric cipher like the Advanced
Encryption Standard. Since the information needed to establish a common symmetric
cipher was transmitted through RSA, the encryption function for the symmetric cipher has
not been revealed to the public and is safe to use for that one-time session.

6. History of RSA

The RSA algorithm was created in 1977 and first publicized in Martin Gardner’s Scien-
tific American column that year [3]. Nobody knew at the time that the idea had essentially
already been developed by British intelligence a few years before. Clifford Cocks, who
worked for GCHQ (Government Communications Headquarters, which is the British coun-
terpart to the NSA), had studied number theory as a student at Cambridge and proposed
in a classified report in 1973 exactly the RSA algorithm with the choice e = m. That is,
Cocks took the encryption exponent to be the modulus, so he had to assume the primes
p and q satisfy (pq, (p − 1)(q − 1)) = 1, or equivalently (p, q − 1) = 1 and (q, p − 1) = 1
since obviously p is relatively prime to p − 1 and q is relatively prime to q − 1. This is
less flexible than RSA, but the underlying math is the same. Due to the lack of powerful
enough computers at the time, GCHQ did not develop this work into a practical system
before it was rediscovered by Rivest, Shamir, and Adleman. The original work at GCHQ
was declassified in 1997, 20 years after the public (re)discovery of RSA.

At GCHQ the name that had been used in place of “public key cryptography” was “non-
secret encryption,” which is how Cocks refers to it in the title of his report [1]. An historical
summary of how this idea was developed at GCHQ has been written by James Ellis [2].

References

[1] C. Cocks, A Note on Non-Secret Encryption, CESG report, November 20, 1973. URL http://crypto

cellar.org/cesg/notense.pdf.
[2] J. H. Ellis, The Story of Non-Secret Encryption, CESG Report, 1987. URL https://cryptocellar.

org/cesg/possnse.pdf.
[3] M. Gardner, A new kind of cipher that would take millions of years to break, Scientific American 237

(Aug. 1977), 120–124.
[4] J. Grime, Enigma Machine - Numberphile, https://www.youtube.com/watch?v=G2 Q9FoD-oQ.
[5] J. Grime, Flaw in the Enigma Code - Numberphile, https://www.youtube.com/watch?v=V4V2bpZlqx8.
[6] W. S. Jevons, “The Principles of Science: a Treatise on Logic and Scientific Method,” MacMil-

lan & Co., New York, 1874. URL https://archive.org/stream/principlesofscie00jevorich#page/

n165/mode/2up.
[7] J. Owen, How did the Enigma Machine work? https://www.youtube.com/watch?v=ybkkiGtJmkM.
[8] R. L. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryp-

tosystems, Comm. ACM 21, Feb. 1978. URL https://people.csail.mit.edu/rivest/pubs/RSA78.pdf.
[9] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on Info. Theory 36 (1990),

553-558.

http://cryptocellar.org/cesg/notense.pdf
http://cryptocellar.org/cesg/notense.pdf
https://cryptocellar.org/cesg/possnse.pdf
https://cryptocellar.org/cesg/possnse.pdf
https://www.youtube.com/watch?v=G2_Q9FoD-oQ
https://www.youtube.com/watch?v=V4V2bpZlqx8
https://archive.org/stream/principlesofscie00jevorich#page/n165/mode/2up
https://archive.org/stream/principlesofscie00jevorich#page/n165/mode/2up
https://www.youtube.com/watch?v=ybkkiGtJmkM
https://people.csail.mit.edu/rivest/pubs/RSA78.pdf

	1. Introduction
	2. The Caeser and Hill Ciphers
	3. Prelude to RSA: solving an b -5mumod5mu-m for a
	4. RSA explained
	5. Examples of RSA encryption
	6. History of RSA
	References

