QUADRATIC RESIDUE PATTERNS MODULO A PRIME

KEITH CONRAD

1. Introduction

Let p be an odd prime. Among the nonzero numbers in \mathbf{F}_{p}, half are squares and half are nonsquares. The former are called quadratic residues and the latter are called quadratic nonresidues. We do not consider 0 to be a quadratic residue or nonresidue, even though it is of course a square.

If a is a quadratic residue in \mathbf{F}_{p}^{\times}, is $a+1$ more or less likely to be a quadratic residue? If a is a quadratic nonresidue in \mathbf{F}_{p}^{\times}, is $a+1$ more or less likely to be a quadratic nonresidue? Let's look at some data.

Example 1.1. Taking $p=19$, the 9 quadratic residues are $1,4,5,6,7,9,11,16,17$, and the 9 quadratic nonresidues are $2,3,8,10,12,13,14,15,18$. In the table below we indicate when a and $a+1$ are quadratic residues (QR) for $a \in \mathbf{F}_{19}^{\times}$.

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
a is QR?	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					\checkmark	\checkmark	
$a+1$ is QR?			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					\checkmark	\checkmark		

There are 17 pairs ($a, a+1$) where a and $a+1$ are nonzero in \mathbf{F}_{19} (all a aside from 0 and 18). The table above tells us that 4 pairs have a and $a+1$ as quadratic residues ($a=4,5,6,16$), 5 pairs have a as a quadratic residue and $a+1$ as a quadratic nonresidue ($a=1,7,9,11,17$), 4 pairs have a as a quadratic nonresidue and $a+1$ as a quadratic residue ($a=3,8,10,15$), and 4 pairs have a and $a+1$ as quadratic nonresidues ($a=2,12,13,14$, noting 18 doesn't count since $18+1=0$). The four options for a and $a+1$ to be quadratic residues or nonresidues are approximately equally likely (around 25% each).
Example 1.2. When $p=101$, there are 99 pairs $(a, a+1)$ where a and $a+1$ are nonzero in \mathbf{F}_{101} (all $a \neq 0,100$). Among these pairs, a and $a+1$ are quadratic residues 24 times, a is a quadratic residue and $a+1$ is a quadratic nonresidue 25 times, a is a quadratic nonresidue and $a+1$ is a quadratic residue 25 times, and a and $a+1$ are quadratic nonresidues 25 times. These counts are equal or nearly equal.

There are 98 triples $(a, a+1, a+2)$ where $a, a+1$, and $a+2$ are nonzero in $\mathbf{F}_{101}^{\times}$: all a aside from 0,99 , and 100. Using + to denote a quadratic residue and - to denote a quadratic nonresidue, the following table says the frequency of the quadratic residue patterns among the triples $(a, a+1, a+2)$ in $\mathbf{F}_{101}^{\times}$is nearly uniform.

$$
\begin{array}{c|cccc}
(a, a+1, a+2) & (+,+,+) & (+,+,-) & (+,-,+) & (-,+,+) \\
\hline \text { Count } & 12 & 12 & 12 & 12 \\
(a, a+1, a+2) & (+,-,-) & (-,+,-) & (-,-,+) & (-,-,-) \\
\hline \text { Count } & 13 & 12 & 13 & 12
\end{array}
$$

Example 1.3. The tables below count how many pairs $(a, a+1)$ and triples $(a, a+1, a+2)$ in $\mathbf{F}_{1009}^{\times}$have different quadratic residue patterns. The counts look nearly uniform in each case.

$(a, a+1)$	$(+,+)$	$(+,-)$	$(-,+)$	$(-,-)$
Count	251	252	252	252
$(a, a+1, a+2)$	$(+,+,+)$	$(+,+,-)$	$(+,-,+)$	$(-,+,+)$
Count	128	122	122	122
$(a, a+1, a+2)$	$(+,-,-)$	$(-,+,-)$	$(-,-,+)$	$(-,-,-)$
Count	130	130	130	122

These examples suggest that the possible quadratic residue patterns of a fixed length in \mathbf{F}_{p}^{\times}are approximately equally likely. For a set of r consecutive numbers in \mathbf{F}_{p}^{\times}, allowing for 2^{r} choices of their quadratic residue or nonresidue status, we will show the frequency of each quadratic residue pattern is nearly $p / 2^{r}$, which is what we'd expect if we were discussing r independent random variables on \mathbf{F}_{p} that each have two outcomes.

2. The main theorem

For $r \geq 1$ and an odd prime $p>r$, we want to count how many r-tuples of consecutive numbers $a, a+1, \ldots, a+r-1$ in \mathbf{F}_{p}^{\times}have predetermined quadratic residue or nonresidue behavior. (We need $p>r$ so that \mathbf{F}_{p}^{\times}contains at least r elements.) We will use the Legendre symbol. For a choice of r signs $\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{ \pm 1\}$, set

$$
\begin{aligned}
N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) & =\left|\left\{a \in \mathbf{F}_{p}^{\times}:\left(\frac{a}{p}\right)=\varepsilon_{1},\left(\frac{a+1}{p}\right)=\varepsilon_{2}, \ldots,\left(\frac{a+r-1}{p}\right)=\varepsilon_{r}\right\}\right| \\
& \left.=\left\lvert\,\left\{a \in \mathbf{F}_{p}^{\times}:\left(\frac{a+i-1}{p}\right)=\varepsilon_{i} \text { for } i=1, \ldots, r\right\}\right. \right\rvert\, .
\end{aligned}
$$

In the tables in Examples 1.2 and 1.3, the + corresponds to Legendre symbol 1 and the corresponds to Legendre symbol -1. For instance, Example 1.2 tells us that $N_{101}(1,1,1)=$ 12 and $N_{101}(1,-1,-1)=13$. Here is the main result.

Theorem 2.1. For r signs $\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{ \pm 1\}$ and an odd prime $p>r, N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)=$ $p / 2^{r}+O_{r}(\sqrt{p})$. More precisely,

$$
\left|N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)-\frac{p}{2^{r}}\right|<(r-1) \sqrt{p}+\frac{r}{2} .
$$

Proof. We will write down a formula for $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ in terms of a sum of Legendre symbol products, extract the main term $p / 2^{r}$, and bound what is left.

We begin with a counting formula. For $b \in \mathbf{F}_{p}^{\times}$and $\varepsilon= \pm 1$,

$$
1+\varepsilon\left(\frac{b}{p}\right)= \begin{cases}2, & \text { if }\left(\frac{b}{p}\right)=\varepsilon \\ 0, & \text { if }\left(\frac{b}{p}\right) \neq \varepsilon\end{cases}
$$

so

$$
\frac{1}{2}\left(1+\varepsilon\left(\frac{b}{p}\right)\right)= \begin{cases}1, & \text { if }\left(\frac{b}{p}\right)=\varepsilon \tag{2.1}\\ 0, & \text { if }\left(\frac{b}{p}\right) \neq \varepsilon\end{cases}
$$

Therefore if $b_{1}, \ldots, b_{r} \in \mathbf{F}_{p}^{\times}$and $\varepsilon_{1}, \ldots, \varepsilon_{r} \in \mathbf{F}_{p}^{\times}$,

$$
\prod_{i=1}^{r} \frac{1}{2}\left(1+\varepsilon_{i}\left(\frac{b_{i}}{p}\right)\right)= \begin{cases}1, & \text { if }\left(\frac{b_{i}}{p}\right)=\varepsilon_{i} \text { for all } i \in\{1, \ldots, r\}, \\ 0, & \text { if }\left(\frac{b_{i}}{p}\right) \neq \varepsilon_{i} \text { for some } i \in\{1, \ldots, r\},\end{cases}
$$

so

$$
\begin{aligned}
N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) & \left.=\left\lvert\,\left\{a \in \mathbf{F}_{p}^{\times}:\left(\frac{a+i-1}{p}\right)=\varepsilon_{i} \text { for } i=1, \ldots, r\right\}\right. \right\rvert\, \\
& =\sum_{\substack{a \in \mathbf{F}_{p} \\
a, a+1, \ldots, a+r-1 \neq 0}} \prod_{i=1}^{r} \frac{1}{2}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right) .
\end{aligned}
$$

What can we say about missing terms in the outer sum, where $a+j-1=0$ in \mathbf{F}_{p} for some $j \in\{1, \ldots, r\}$? Then $\frac{1}{2}\left(1+\varepsilon_{j}\left(\frac{a+j-1}{p}\right)\right)=\frac{1}{2}$ while $\frac{1}{2}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right)$ is 0 or 1 for $i \neq j$, so

$$
\left|\prod_{i=1}^{r} \frac{1}{2}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right)\right| \leq \frac{1}{2}
$$

There are r such terms (corresponding to $a=0, a=-1, \ldots, a=-(r-1)$ in \mathbf{F}_{p}), so

$$
\begin{aligned}
N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) & =\sum_{a \in \mathbf{F}_{p}} \prod_{i=1}^{r} \frac{1}{2}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right)+\frac{e_{r}}{2}, \quad \text { where }\left|e_{r}\right| \leq r \\
& =\frac{1}{2^{r}} \sum_{a \in \mathbf{F}_{p}} \prod_{i=1}^{r}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right)+\frac{e_{r}}{2}
\end{aligned}
$$

Let's expand the product inside the sum: for each $a \in \mathbf{F}_{p}$,

$$
\begin{aligned}
\prod_{i=1}^{r}\left(1+\varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right) & =1+\sum_{\substack{S \subset\{1, \ldots, r\} \\
S \neq \emptyset}}\left(\prod_{i \in S} \varepsilon_{i}\left(\frac{a+i-1}{p}\right)\right) \\
& =1+\sum_{\substack{S \subset\{1, \ldots, r\} \\
S \neq \emptyset}}\left(\prod_{i \in S} \varepsilon_{i}\right)\left(\frac{f_{S}(a)}{p}\right),
\end{aligned}
$$

where $f_{S}(x)=\prod_{i \in S}(x+i-1)$. The polynomial $f_{S}(x) \in \mathbf{F}_{p}[x]$ is separable with degree $|S|$. Feeding the above expression for the product into the formula for $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ and swapping the order of summation,

$$
\begin{aligned}
N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) & =\frac{1}{2^{r}} \sum_{a \in \mathbf{F}_{p}}\left(1+\sum_{\substack{S \subset\{1, \ldots, r\} \\
S \neq \emptyset}}\left(\prod_{i \in S} \varepsilon_{i}\right)\left(\frac{f_{S}(a)}{p}\right)\right)+\frac{e_{r}}{2} \\
& =\frac{p}{2^{r}}+\frac{1}{2^{r}} \sum_{\substack{S \subset\{1, \ldots, r\} \\
S \neq \emptyset}}\left(\prod_{i \in S} \varepsilon_{i}\right) \sum_{a \in \mathbf{F}_{p}}\left(\frac{f_{S}(a)}{p}\right)+\frac{e_{r}}{2} .
\end{aligned}
$$

We have found the desired term $p / 2^{r}$ in the formula for $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ and want to show the rest of the formula is small. ${ }^{1}$

[^0]The product $\prod_{i \in S} \varepsilon_{i}$ is ± 1, so by the triangle inequality

$$
\begin{equation*}
\left|N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)-\frac{p}{2^{r}}\right| \leq \frac{1}{2^{r}} \sum_{\substack{S \subset\{1, \ldots, r\} \\ S \neq \emptyset}}\left|\sum_{a \in \mathbf{F}_{p}}\left(\frac{f_{S}(a)}{p}\right)\right|+\frac{r}{2} \tag{2.2}
\end{equation*}
$$

The inner sum over \mathbf{F}_{p} on the right side can be estimated with Weil's bound, which says in a special case that for nonconstant $f(x) \in \mathbf{F}_{p}[x]$ having no repeated roots (that is, are separable),

$$
\begin{equation*}
\left|\sum_{a \in \mathbf{F}_{p}}\left(\frac{f(a)}{p}\right)\right| \leq(\operatorname{deg} f-1) \sqrt{p} \tag{2.3}
\end{equation*}
$$

(This inequality is an equality if $\operatorname{deg} f=1$, and generally is a strict inequality if $\operatorname{deg} f \geq 2$.) Applying (2.3) to the polynomials $f_{S}(x)$, which each have no repeated roots, we get

$$
\left|\sum_{a \in \mathbf{F}_{p}}\left(\frac{f_{S}(a)}{p}\right)\right| \leq\left(\operatorname{deg} f_{S}-1\right) \sqrt{p}=(|S|-1) \sqrt{p} \leq(r-1) \sqrt{p} .
$$

This upper bound is independent of S, so feeding it into (2.2) gives us

$$
\begin{aligned}
\left|N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)-\frac{p}{2^{r}}\right| & \leq \frac{1}{2^{r}} \sum_{\substack{S \subset\{1, \ldots, r\} \\
S \neq \emptyset}}((r-1) \sqrt{p})+\frac{r}{2} \\
& =\frac{1}{2^{r}}\left(2^{r}-1\right)(r-1) \sqrt{p}+\frac{r}{2} \\
& <(r-1) \sqrt{p}+\frac{r}{2} .
\end{aligned}
$$

For each r, the count $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)=p / 2^{r}+O_{r}(\sqrt{p})$ tends to ∞ as $p \rightarrow \infty$, so in particular $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right) \geq 1$ for all large p. We can determine the largest prime modulo which there are not r consecutive quadratic residues $\bmod p$ by setting $N_{p}(1,1, \ldots, 1)=0$ in Theorem 2.1 to get an upper bound on the possible p.

Example 2.2. We will show for all odd primes p that $N_{p}(1,-1) \geq 1$. By Theorem 2.1,

$$
\left|N_{p}(1,-1)-\frac{p}{4}\right|<\sqrt{p}+1
$$

If $N_{p}(1,-1)=0$ then we have $p<4(\sqrt{p}+1)$. The only positive solution to $t=4(\sqrt{t}+1)$ is around 23.313, so $p<4(\sqrt{p}+1)$ for $p \leq 23$ and not for $p \geq 29$. Thus $N_{p}(1,-1) \geq 1$ when $p \geq 29$. For the primes $p=3,5, \ldots, 23$ we can do a direct search: for $p \leq 19$, the sign pattern $\left(\frac{a}{p}\right)=1$ and $\left(\frac{a+1}{p}\right)=-1$ holds for $a=1$ or $a=2$, and for $p=23$ we get that pattern for $a=4$.

For similar reasons, $N_{p}\left(\varepsilon_{1}, \varepsilon_{2}\right) \geq 1$ when $p \geq 7$ no matter what the signs ε_{1} and ε_{2} are: it holds for $p \geq 29$ as above and a direct search for $p=7,11, \ldots, 23$ shows each consecutive quadratic residue pattern $(1,1),(-1,1)$, and $(-1,-1)$ occurs at least once. These three patterns don't occur for $p=3$ and $(1,1)$ also doesn't occur for $p=5$.

That $N_{p}(1,1) \geq 1$ for $p \geq 7$ can be proved using an argument by contradiction instead of a formula for $N_{p}(1,1)$. We'll show $(1,2),(4,5)$, or $(9,10)$ is a pair of consecutive squares $\bmod p$. Since $\left(\frac{1}{p}\right)=1$ and $\left(\frac{4}{p}\right)=1$, if 2 and 5 are not squares $\bmod p$ then $\left(\frac{2}{p}\right)=-1$ and
$\left(\frac{5}{p}\right)=-1$ since $p>5$. Therefore $\left(\frac{9}{p}\right)=1$ and $\left(\frac{10}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)=(-1)(-1)=1$. This kind of reasoning can't be used to prove $N_{p}(1,-1), N_{p}(-1,1)$, or $N_{p}(-1,-1)$ is positive for $p \geq 7$ since each initial interval of integers $\{1,2, \ldots, n\}$ is entirely quadratic residues $\bmod p$ for some prime p. For example, $\left(\frac{a}{p}\right)=1$ for $a \leq 20$ when p is the prime number 193993801.
Example 2.3. What is the largest prime p for which there are not 3 consecutive quadratic residues mod p ? This is asking for the largest p such that $N_{p}(1,1,1)=0$. The bound in Theorem 2.1 implies $p / 8<2 \sqrt{p}+3 / 2$, so $p<16 \sqrt{p}+12$. That implies $p<279.4$, so $p \leq 277$. Checking all primes up to 277 , the last one without 3 consecutive quadratic residues is $p=17$.

That there are three consecutive quadratic residues modulo p for $p \geq 19$ is due to Jacobsthal [6, p. 30].

The proof of Theorem 2.1 can be used to count quadratic residue patterns with gaps that are not necessarily consecutive: if $p>r$ and c_{1}, \ldots, c_{r} are distinct in \mathbf{F}_{p}, the set

$$
\left\{a \in \mathbf{F}_{p}^{\times}:\left(\frac{a+c_{i}}{p}\right)=\varepsilon_{i} \text { for } i=1, \ldots, r\right\}
$$

for each choice of signs $\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{ \pm 1\}$ has a size N_{p}, say, that satisfies the same estimate as in Theorem 2.1:

$$
\left|N_{p}-\frac{p}{2^{r}}\right|<(r-1) \sqrt{p}+\frac{r}{2} .
$$

The only change needed in the proof of Theorem 2.1 is to replace the polynomial $f_{S}(x)=$ $\prod_{i \in S}(x+i-1)$ with $\prod_{i \in S}\left(x+c_{i}\right)$.

The Weil bound (2.3) extends to all finite fields, not just those of odd prime order p, with the Legendre symbol on \mathbf{F}_{p} replaced by a nontrivial multiplicative character on \mathbf{F}_{q} and \sqrt{p} in the Weil bound replaced by \sqrt{q}. In particular, for an odd prime power q, if χ is the quadratic character on \mathbf{F}_{q}^{\times}then for distinct c_{1}, \ldots, c_{r} in \mathbf{F}_{q} and signs $\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{ \pm 1\}$, the number

$$
N_{q}:=\mid\left\{a \in \mathbf{F}_{q}^{\times}: \chi\left(a+c_{i}\right)=\varepsilon_{i} \text { for } i=1, \ldots, r\right\} \mid
$$

satisfies 2

$$
\left|N_{q}-\frac{q}{2^{r}}\right|<(r-1) \sqrt{q}+\frac{r}{2} .
$$

3. Some history

The first work on counting quadratic residue patterns of two or more consecutive terms in \mathbf{F}_{p}^{\times}was by Aladov [1] in 1896. He counted each quadratic residue pattern of length 2 , and some (but not all) quadratic residue patterns of length 3 . The counts of length 2 were computed explicitly as in the table below, depending on $p \bmod 4$. The formulas are consistent with the determination of when $N_{p}\left(\varepsilon_{1}, \varepsilon_{2}\right)>0$ in Example 2.3.

$$
\begin{array}{c|cccc}
p \bmod 4 & N_{p}(1,1) & N_{p}(1,-1) & N_{p}(-1,1) & N_{p}(-1,-1) \\
\hline 1 & (p-5) / 4 & (p-1) / 4 & (p-1) / 4 & (p-1) / 4 \\
3 & (p-3) / 4 & (p+1) / 4 & (p-3) / 4 & (p-3) / 4
\end{array}
$$

We can write these formulas for $N_{p}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ as $p / 4+O(1)$. In 1898, von Sterneck [8] counted patterns of length 3 and 4 with restrictions (each pattern was counted along with its opposite, e.g., $(+,+,-)$ and $(-,-,+)$ together, not separately). In 1906, Jacobsthal [6, Chap. III] in his dissertation found exact formulas for the number of quadratic residue

[^1]patterns of length 2 and 3 in \mathbf{F}_{p}^{\times}. The length 3 counts imply $N_{p}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right)=p / 8+O(\sqrt{p})$ in all cases (and it is $p / 8+O(1)$ for $p \equiv 3 \bmod 4$).

Davenport considered this counting problem for $r \geq 4$ throughout the 1930s. In [2] he showed $\left|N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)-p / 2^{r}\right|=O_{r}\left(p^{3 / 4}\right)$ for $r=4$ and 5 by ad hoc methods that did not extend easily to $r \geq 6$. In [3] he used other tricks for $6 \leq r \leq 9$ that led to bounds $O_{r}\left(p^{7 / 8}\right)$ for $r=6$ and 7 , and $O_{r}\left(p^{19 / 20}\right)$ for $r=8$ and 9 , and he could reduce the bound when $r=4$ from $O_{r}\left(p^{3 / 4}\right)$ to $O_{r}\left(p^{2 / 3}\right)$. Reducing the exponent on p in the O-bound is closely related to bounding the real parts of the zeros of the zeta-function of curves $y^{2}=f(x)$ over \mathbf{F}_{p}. Davenport continued to refine his techniques throughout the 1930s, and in [4, Theorem 5] he got a bound of the form $O_{r}\left(p^{1-\theta_{r}}\right)$ for general r with an explicit formula for θ_{r} that tends to 0 as $r \rightarrow \infty$. A definitive bound $O_{r}(\sqrt{p})$ for all r, coming from the bound in (2.3), was given by Weil [9] (see also [5, Theorem 3.1]) as a consequence of his proof of the Riemann hypothesis for curves over finite fields.

An account of Davenport's work and its influence on Hasse and Mordell is in [7, Sect. 3].

Appendix A. Extending Theorem 2.1 Beyond the Legendre symbol

The Weil bound (2.3) for the Legendre symbol on \mathbf{F}_{p} has a generalization to other multiplicative characters on finite fields: if χ is a nontrivial multiplicative character on \mathbf{F}_{q} with order $n \geq 2$ and $f(x) \in \mathbf{F}_{q}[x]$ is monic and not an n-th power, then

$$
\begin{equation*}
\left|\sum_{a \in \mathbf{F}_{q}} \chi(f(a))\right| \leq(r-1) \sqrt{q} \tag{A.1}
\end{equation*}
$$

where $f(x)$ has r distinct roots (the roots need not be simple) in a splitting field over \mathbf{F}_{q}. This is [5, Theorem 3.1] ${ }^{3}$.

Using (A.1) we will prove the following generalization of Theorem 2.1.
Theorem A.1. Let $\chi_{1}, \ldots, \chi_{r}$ be nontrivial multiplicative characters on \mathbf{F}_{q}, where χ_{i} has order $n_{i} \geq 2$. For $r<q$, pick distinct c_{1}, \ldots, c_{r} in \mathbf{F}_{q} and an n_{i}-th root of unity ε_{i} in \mathbf{C} for $i=1, \ldots, r$. Set

$$
N_{q}=\mid\left\{a \in \mathbf{F}_{q}: \chi_{i}\left(a+c_{i}\right)=\varepsilon_{i} \text { for } i=1, \ldots, r\right\} \mid
$$

Then

$$
\left|N_{q}-\frac{q}{n_{1} \ldots n_{r}}\right|<(r-1) \sqrt{q}+\frac{r}{2}
$$

When $q=p$ and all χ_{i} are quadratic $\left(n_{i}=2\right.$ for all $\left.i\right)$, Theorem A. 1 becomes Theorem 2.1.

We take $r<q$ in Theorem A. 1 because if $r \geq q$ then for each $a \in \mathbf{F}_{q}$ the numbers $a+c_{1}, \ldots, a+c_{r}$ fill up \mathbf{F}_{q} so one of these is 0 , and thus $N_{q}=0$, which is uninteresting.

[^2]Proof. For $b \in \mathbf{F}_{q}^{\times}$, a nontrivial multiplicative character χ on \mathbf{F}_{q}^{\times}of order n, and an n-th root of unity ε in \mathbf{C}, the finite geometric series of n terms with ratio $\chi(b) / \varepsilon$ equals

$$
1+\frac{\chi(b)}{\varepsilon}+\left(\frac{\chi(b)}{\varepsilon}\right)^{2}+\ldots+\left(\frac{\chi(b)}{\varepsilon}\right)^{n-1}= \begin{cases}n, & \text { if } \chi(b)=\varepsilon \\ 0, & \text { if } \chi(b) \neq \varepsilon\end{cases}
$$

SO

$$
\frac{1}{n}\left(1+\frac{\chi(b)}{\varepsilon}+\left(\frac{\chi(b)}{\varepsilon}\right)^{2}+\ldots+\left(\frac{\chi(b)}{\varepsilon}\right)^{n-1}\right)= \begin{cases}1, & \text { if } \chi(b)=\varepsilon \\ 0, & \text { if } \chi(b) \neq \varepsilon\end{cases}
$$

which generalizes (2.1). Therefore

$$
N_{q}=\sum_{\substack{a \in \mathbf{F}_{q} \\ \text { all } a+c_{j} \neq 0}} \prod_{i=1}^{r} \frac{1}{n_{i}}\left(1+\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{2}+\cdots+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{n_{i}-1}\right)
$$

This sum over \mathbf{F}_{q} is missing terms at those a for which $a+c_{j}=0$ for some j. For such an a, the product over $1 \leq i \leq r$ associated to it in the above formula would be 0 or $1 / n_{j}$, so we can write N_{q} as a sum over all of \mathbf{F}_{q} by including an additional error term:

$$
\begin{aligned}
N_{q} & =\sum_{a \in \mathbf{F}_{q}} \prod_{i=1}^{r} \frac{1}{n_{i}}\left(1+\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{2}+\cdots+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{n_{i}-1}\right)+e \\
& =\frac{1}{n_{1} \cdots n_{r}} \sum_{a \in \mathbf{F}_{q}} \prod_{i=1}^{r}\left(1+\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{2}+\cdots+\left(\frac{\chi_{i}\left(a+c_{i}\right)}{\varepsilon_{i}}\right)^{n_{i}-1}\right)+e
\end{aligned}
$$

where $|e| \leq 1 / n_{1}+\cdots+1 / n_{r} \leq r / 2\left(\right.$ since $\left.n_{i} \geq 2\right)$. Multiplying out all the sums,

$$
\begin{aligned}
N_{q} & =\frac{1}{n_{1} \cdots n_{r}} \sum_{a \in \mathbf{F}_{q}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\
\text { for all } i}} \frac{\chi_{1}\left(a+c_{1}\right)^{t_{1}} \cdots \chi_{r}\left(a+c_{r}\right)^{t_{r}}}{\varepsilon_{1}^{t_{1}} \cdots \varepsilon_{r}^{t_{r}}}+e \\
& =\frac{1}{n_{1} \cdots n_{r}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\
\text { for all } i}} \frac{1}{\varepsilon_{1}^{t_{1}} \cdots \varepsilon_{r}^{t_{r}}} \sum_{a \in \mathbf{F}_{q}} \chi_{1}\left(a+c_{1}\right)^{t_{1}} \cdots \chi_{r}\left(a+c_{r}\right)^{t_{r}}+e .
\end{aligned}
$$

The inner term when all t_{i} are 0 is $\sum_{a \in \mathbf{F}_{q}} 1=q$, so

$$
\left|N_{q}-\frac{q}{n_{1} \cdots n_{r}}\right| \leq \frac{1}{n_{1} \cdots n_{r}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\ \text { some } t_{i} \neq 0}}\left|\sum_{a \in \mathbf{F}_{q}} \chi_{1}\left(a+c_{1}\right)^{t_{1}} \cdots \chi_{r}\left(a+c_{r}\right)^{t_{r}}\right|+\frac{r}{2}
$$

We will use (A.1) to show each inner sum over \mathbf{F}_{q} on the right side has magnitude at most $(r-1) \sqrt{q}$, which would give us what we want:

$$
\begin{aligned}
\left|N_{q}-\frac{q}{n_{1} \cdots n_{r}}\right| & \leq \frac{1}{n_{1} \cdots n_{r}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\
\text { some } t_{i} \neq 0}}((r-1) \sqrt{q})+\frac{r}{2} \\
& =\frac{1}{n_{1} \cdots n_{r}}\left(n_{1} \cdots n_{r}-1\right)(r-1) \sqrt{q}+\frac{r}{2} \\
& <(r-1) \sqrt{q}+\frac{r}{2}
\end{aligned}
$$

It remains to show

$$
\left|\sum_{a \in \mathbf{F}_{q}} \chi_{1}\left(a+c_{1}\right)^{t_{1}} \cdots \chi_{r}\left(a+c_{r}\right)^{t_{r}}\right| \leq(r-1) \sqrt{q}
$$

when $0 \leq t_{i} \leq n_{i}-1$ with some t_{i} not 0 . Since \mathbf{F}_{q}^{\times}is cyclic, its character group is cyclic: let χ be a generator of the character group of \mathbf{F}_{q}^{\times}and write $\chi_{i}=\chi^{m_{i}}$ for $m_{i} \in \mathbf{Z}^{+}$. Then

$$
\begin{aligned}
\sum_{a \in \mathbf{F}_{q}} \chi_{1}\left(a+c_{1}\right)^{t_{1}} \cdots \chi_{r}\left(a+c_{r}\right)^{t_{r}} & =\sum_{a \in \mathbf{F}_{q}} \chi\left(a+c_{1}\right)^{t_{1} m_{1}} \cdots \chi\left(a+c_{r}\right)^{t_{r} m_{r}} \\
& =\sum_{a \in \mathbf{F}_{q}} \chi\left(\left(a+c_{1}\right)^{t_{1} m_{1}} \cdots\left(a+c_{r}\right)^{t_{r} m_{r}}\right) \\
& =\sum_{a \in \mathbf{F}_{q}} \chi(f(a))
\end{aligned}
$$

where $f(x)=\left(x+c_{1}\right)^{t_{1} m_{1}} \cdots\left(x+c_{r}\right)^{t_{r} m_{r}}$. This polynomial is monic with r distinct roots. In order to apply (A.1) to bound $\left|\sum_{a \in \mathbf{F}_{q}} \chi(f(a))\right|$, all that remains to be checked is that $f(x)$ is not a $(q-1)$-th power in $\mathbf{F}_{q}[x]$ (since χ has order $q-1$). That is equivalent, since f is monic, to the root multiplicities $t_{1} m_{1}, \ldots, t_{r} m_{r}$ not all being multiples of $q-1$.

Having $(q-1) \mid t_{i} m_{i}$ is the same as having $(q-1) /\left(q-1, m_{i}\right) \mid t_{i}$ since $(q-1) /\left(q-1, m_{i}\right)$ and $m_{i} /\left(q-1, m_{i}\right)$ are relatively prime. The order of χ is $q-1$ and the order of χ_{i} is n_{i}, so from $\chi_{i}=\chi^{m_{i}}$ we get $n_{i}=(q-1) /\left(q-1, m_{i}\right)$. Therefore $(q-1) \mid t_{i} m_{i}$ is equivalent to $n_{i} \mid t_{i}$. Recalling that $0 \leq t_{i} \leq n_{i}-1$. we can have $n_{i} \mid t_{i}$ only if $t_{i}=0$. Since some t_{i} is not 0 this completes the proof that $f(x)$ is not an n-th power.

References

[1] N. S. Aladov, "Sur la distribution des résidus quadratiques et non-quadratiques d'un nombre premier P dans la suite $1,2, \ldots, P-1, "$ (Russian) Mat. Sb. 18 (1896), 61-75. URL http://mi.mathnet.ru/eng/ msb/v18/i1/p61.
[2] H. Davenport, "On the Distribution of Quadratic Residues (mod p)," J. London Math. Society 6 (1931), 49-54.
[3] H. Davenport, "On the Distribution of Quadratic Residues (mod p) (Second paper)," J. London Math. Society 8 (1933), 46-52.
[4] H. Davenport, "On Character Sums in Finite Fields," Acta Math. 71 (1939), 99-121.
[5] E. Kowalski, Exponential sums over finite fields, I: elementary methods. URL https://people.math. ethz.ch/~kowalski/exp-sums.pdf.
[6] E. Jacobsthal, Anwendungen einer Formel aus der Theorie der quadratischen Reste, Dissertation, Univ. Berlin, 1906. URL https://gdz.sub.uni-goettingen.de/id/PPN317964577.
[7] P. Roquette, "The Riemann hypothesis in characteristic p, its origin and development. Part 2. The first steps by Davenport and Hasse." Mitt. Math. Ges. Hamburg 22 (2004), 1-68. URL https://www.mathi. uni-heidelberg.de/~roquette/rv2.pdf.
[8] R. von Sterneck, "On the distribution of quadratic residues and nonresidues of a prime number," (Russian) Mat. Sb. 20 (1898), 269-284. URL http://mi.mathnet.ru/eng/msb/v20/i2/p269.
[9] A. Weil, "On some exponential sums," Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.

[^0]: ${ }^{1}$ This technique of relating $N_{p}\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ to $p / 2^{r}$ goes back at least to Jacobsthal in 1906 when $r=2[6$, p. 27]. For a more recent account of it, see replies to the MathOverflow post "Consecutive non-quadratic residues" at https://mathoverflow.net/questions/161271/consecutive-non-quadratic-residues.

[^1]: ${ }^{2}$ We need $q>r$ in order to have r nonzero numbers $a+c_{i}$ in \mathbf{F}_{q} at all.

[^2]: ${ }^{3}$ In [5] it is assumed for (A.1) that $f(x)$ is not an n-th power but it is not explicitly stated that $f(x)$ is not monic too. For non-monic f we get counterexamples to (A.1): if $f(x)=c g(x)^{n}$ with $c \in \mathbf{F}_{q}^{\times}$not an n-th power, then $\sum_{a \in \mathbf{F}_{q}} \chi(f(a))=\sum_{a \in \mathbf{F}_{q}} \chi\left(c g(a)^{n}\right)=\chi(c)\left(q-\left\{a \in \mathbf{F}_{q}: g(a) \neq 0\right\}\right)$, so $\left|\sum_{a \in \mathbf{F}_{q}} \chi(f(a))\right|=$ $q-\left|\left\{a \in \mathbf{F}_{q}: g(a) \neq 0\right\}\right| \geq q-r$, which contradicts (A.1) if r is small, such as $r=1\left(f(x)=c x^{n}\right)$ for any q or $r=2\left(f(x)=c x^{n}(x-1)^{n}\right)$ for $q>4$.

