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1. Introduction

Let p be an odd prime. Among the nonzero numbers in Fp, half are squares and half are
nonsquares. The former are called quadratic residues and the latter are called quadratic
nonresidues. We do not consider 0 to be a quadratic residue or nonresidue, even though it
is of course a square.

If a is a quadratic residue in F×p , is a+ 1 more or less likely to be a quadratic residue? If

a is a quadratic nonresidue in F×p , is a+ 1 more or less likely to be a quadratic nonresidue?
Let’s look at some data.

Example 1.1. Taking p = 19, the 9 quadratic residues are 1, 4, 5, 6, 7, 9, 11, 16, 17, and
the 9 quadratic nonresidues are 2, 3, 8, 10, 12, 13, 14, 15, 18. In the table below we indicate
when a and a+ 1 are quadratic residues (QR) for a ∈ F×19.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a is QR? X X X X X X X X X

a+ 1 is QR? X X X X X X X X

There are 17 pairs (a, a + 1) where a and a + 1 are nonzero in F19 (all a aside from
0 and 18). The table above tells us that 4 pairs have a and a + 1 as quadratic residues
(a = 4, 5, 6, 16), 5 pairs have a as a quadratic residue and a + 1 as a quadratic nonresidue
(a = 1, 7, 9, 11, 17), 4 pairs have a as a quadratic nonresidue and a+1 as a quadratic residue
(a = 3, 8, 10, 15), and 4 pairs have a and a + 1 as quadratic nonresidues (a = 2, 12, 13, 14,
noting 18 doesn’t count since 18 + 1 = 0). The four options for a and a+ 1 to be quadratic
residues or nonresidues are approximately equally likely (around 25% each).

Example 1.2. When p = 101, there are 99 pairs (a, a+1) where a and a+1 are nonzero in
F101 (all a 6= 0, 100). Among these pairs, a and a+ 1 are quadratic residues 24 times, a is a
quadratic residue and a+ 1 is a quadratic nonresidue 25 times, a is a quadratic nonresidue
and a + 1 is a quadratic residue 25 times, and a and a + 1 are quadratic nonresidues 25
times. These counts are equal or nearly equal.

There are 98 triples (a, a+1, a+2) where a, a+1, and a+2 are nonzero in F×101: all a aside
from 0, 99, and 100. Using + to denote a quadratic residue and − to denote a quadratic
nonresidue, the following table says the frequency of the quadratic residue patterns among
the triples (a, a+ 1, a+ 2) in F×101 is nearly uniform.

(a, a+ 1, a+ 2) (+,+,+) (+,+,−) (+,−,+) (−,+,+)
Count 12 12 12 12

(a, a+ 1, a+ 2) (+,−,−) (−,+,−) (−,−,+) (−,−,−)
Count 13 12 13 12

Example 1.3. The tables below count how many pairs (a, a+1) and triples (a, a+1, a+2)
in F×1009 have different quadratic residue patterns. The counts look nearly uniform in each
case.
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(a, a+ 1) (+,+) (+,−) (−,+) (−,−)
Count 251 252 252 252

(a, a+ 1, a+ 2) (+,+,+) (+,+,−) (+,−,+) (−,+,+)
Count 128 122 122 122

(a, a+ 1, a+ 2) (+,−,−) (−,+,−) (−,−,+) (−,−,−)
Count 130 130 130 122

These examples suggest that the possible quadratic residue patterns of a fixed length in
F×p are approximately equally likely. For a set of r consecutive numbers in F×p , allowing for
2r choices of their quadratic residue or nonresidue status, we will show the frequency of each
quadratic residue pattern is nearly p/2r, which is what we’d expect if we were discussing r
independent random variables on Fp that each have two outcomes.

2. The main theorem

For r ≥ 1 and an odd prime p > r, we want to count how many r-tuples of consecutive
numbers a, a + 1, . . . , a + r − 1 in F×p have predetermined quadratic residue or nonresidue

behavior. (We need p > r so that F×p contains at least r elements.) We will use the Legendre
symbol. For a choice of r signs ε1, . . . , εr ∈ {±1}, set

Np(ε1, . . . , εr) =

∣∣∣∣{a ∈ F×p :

(
a

p

)
= ε1,

(
a+ 1

p

)
= ε2, . . . ,

(
a+ r − 1

p

)
= εr

}∣∣∣∣
=

∣∣∣∣{a ∈ F×p :

(
a+ i− 1

p

)
= εi for i = 1, . . . , r

}∣∣∣∣ .
In the tables in Examples 1.2 and 1.3, the + corresponds to Legendre symbol 1 and the −
corresponds to Legendre symbol −1. For instance, Example 1.2 tells us that N101(1, 1, 1) =
12 and N101(1,−1,−1) = 13. Here is the main result.

Theorem 2.1. For r signs ε1, . . . , εr ∈ {±1} and an odd prime p > r, Np(ε1, . . . , εr) =
p/2r +Or(

√
p). More precisely,∣∣∣Np(ε1, . . . , εr)−

p

2r

∣∣∣ < (r − 1)
√
p+

r

2
.

Proof. We will write down a formula for Np(ε1, . . . , εr) in terms of a sum of Legendre symbol
products, extract the main term p/2r, and bound what is left.

We begin with a counting formula. For b ∈ F×p and ε = ±1,

1 + ε

(
b

p

)
=

{
2, if ( bp) = ε,

0, if ( bp) 6= ε,

so

(2.1)
1

2

(
1 + ε

(
b

p

))
=

{
1, if ( bp) = ε,

0, if ( bp) 6= ε.

Therefore if b1, . . . , br ∈ F×p and ε1, . . . , εr ∈ F×p ,

r∏
i=1

1

2

(
1 + εi

(
bi
p

))
=

{
1, if ( bip ) = εi for all i ∈ {1, . . . , r},
0, if ( bip ) 6= εi for some i ∈ {1, . . . , r},
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so

Np(ε1, . . . , εr) =

∣∣∣∣{a ∈ F×p :

(
a+ i− 1

p

)
= εi for i = 1, . . . , r

}∣∣∣∣
=

∑
a∈Fp

a,a+1,...,a+r−16=0

r∏
i=1

1

2

(
1 + εi

(
a+ i− 1

p

))
.

What can we say about missing terms in the outer sum, where a+ j− 1 = 0 in Fp for some

j ∈ {1, . . . , r}? Then 1
2

(
1 + εj(

a+j−1
p )

)
= 1

2 while 1
2

(
1 + εi(

a+i−1
p )

)
is 0 or 1 for i 6= j, so∣∣∣∣∣

r∏
i=1

1

2

(
1 + εi

(
a+ i− 1

p

))∣∣∣∣∣ ≤ 1

2
.

There are r such terms (corresponding to a = 0, a = −1, . . . , a = −(r − 1) in Fp), so

Np(ε1, . . . , εr) =
∑
a∈Fp

r∏
i=1

1

2

(
1 + εi

(
a+ i− 1

p

))
+
er
2
, where |er| ≤ r,

=
1

2r

∑
a∈Fp

r∏
i=1

(
1 + εi

(
a+ i− 1

p

))
+
er
2
.

Let’s expand the product inside the sum: for each a ∈ Fp,

r∏
i=1

(
1 + εi

(
a+ i− 1

p

))
= 1 +

∑
S⊂{1,...,r}

S 6=∅

(∏
i∈S

εi

(
a+ i− 1

p

))

= 1 +
∑

S⊂{1,...,r}
S 6=∅

(∏
i∈S

εi

)(
fS(a)

p

)
,

where fS(x) =
∏
i∈S(x + i − 1). The polynomial fS(x) ∈ Fp[x] is separable with degree

|S|. Feeding the above expression for the product into the formula for Np(ε1, . . . , εr) and
swapping the order of summation,

Np(ε1, . . . , εr) =
1

2r

∑
a∈Fp

1 +
∑

S⊂{1,...,r}
S 6=∅

(∏
i∈S

εi

)(
fS(a)

p

)+
er
2

=
p

2r
+

1

2r

∑
S⊂{1,...,r}

S 6=∅

(∏
i∈S

εi

) ∑
a∈Fp

(
fS(a)

p

)
+
er
2
.

We have found the desired term p/2r in the formula for Np(ε1, . . . , εr) and want to show
the rest of the formula is small.1

1This technique of relating Np(ε1, . . . , εr) to p/2r goes back at least to Jacobsthal in 1906 when r = 2 [6,
p. 27]. For a more recent account of it, see replies to the MathOverflow post “Consecutive non-quadratic
residues” at https://mathoverflow.net/questions/161271/consecutive-non-quadratic-residues.

https://mathoverflow.net/questions/161271/consecutive-non-quadratic-residues
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The product
∏
i∈S εi is ±1, so by the triangle inequality

(2.2)
∣∣∣Np(ε1, . . . , εr)−

p

2r

∣∣∣ ≤ 1

2r

∑
S⊂{1,...,r}

S 6=∅

∣∣∣∣∣∣
∑
a∈Fp

(
fS(a)

p

)∣∣∣∣∣∣+
r

2
.

The inner sum over Fp on the right side can be estimated with Weil’s bound, which says
in a special case that for nonconstant f(x) ∈ Fp[x] having no repeated roots (that is, are
separable),

(2.3)

∣∣∣∣∣∣
∑
a∈Fp

(
f(a)

p

)∣∣∣∣∣∣ ≤ (deg f − 1)
√
p.

(This inequality is an equality if deg f = 1, and generally is a strict inequality if deg f ≥ 2.)
Applying (2.3) to the polynomials fS(x), which each have no repeated roots, we get∣∣∣∣∣∣

∑
a∈Fp

(
fS(a)

p

)∣∣∣∣∣∣ ≤ (deg fS − 1)
√
p = (|S| − 1)

√
p ≤ (r − 1)

√
p.

This upper bound is independent of S, so feeding it into (2.2) gives us∣∣∣Np(ε1, . . . , εr)−
p

2r

∣∣∣ ≤ 1

2r

∑
S⊂{1,...,r}

S 6=∅

((r − 1)
√
p) +

r

2

=
1

2r
(2r − 1)(r − 1)

√
p+

r

2

< (r − 1)
√
p+

r

2
. �

For each r, the count Np(ε1, . . . , εr) = p/2r + Or(
√
p) tends to ∞ as p → ∞, so in

particular Np(ε1, . . . , εr) ≥ 1 for all large p. We can determine the largest prime modulo
which there are not r consecutive quadratic residues mod p by setting Np(1, 1, . . . , 1) = 0
in Theorem 2.1 to get an upper bound on the possible p.

Example 2.2. We will show for all odd primes p that Np(1,−1) ≥ 1. By Theorem 2.1,∣∣∣Np(1,−1)− p

4

∣∣∣ < √p+ 1.

If Np(1,−1) = 0 then we have p < 4(
√
p + 1). The only positive solution to t = 4(

√
t + 1)

is around 23.313, so p < 4(
√
p + 1) for p ≤ 23 and not for p ≥ 29. Thus Np(1,−1) ≥ 1

when p ≥ 29. For the primes p = 3, 5, . . . , 23 we can do a direct search: for p ≤ 19, the
sign pattern (ap ) = 1 and (a+1

p ) = −1 holds for a = 1 or a = 2, and for p = 23 we get that

pattern for a = 4.
For similar reasons, Np(ε1, ε2) ≥ 1 when p ≥ 7 no matter what the signs ε1 and ε2 are:

it holds for p ≥ 29 as above and a direct search for p = 7, 11, . . . , 23 shows each consecutive
quadratic residue pattern (1, 1), (−1, 1), and (−1,−1) occurs at least once. These three
patterns don’t occur for p = 3 and (1, 1) also doesn’t occur for p = 5.

That Np(1, 1) ≥ 1 for p ≥ 7 can be proved using an argument by contradiction instead
of a formula for Np(1, 1). We’ll show (1, 2), (4, 5), or (9, 10) is a pair of consecutive squares
mod p. Since (1p) = 1 and (4p) = 1, if 2 and 5 are not squares mod p then (2p) = −1 and
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(5p) = −1 since p > 5. Therefore (9p) = 1 and (10p ) = (2p)(5p) = (−1)(−1) = 1. This kind of

reasoning can’t be used to prove Np(1,−1), Np(−1, 1), or Np(−1,−1) is positive for p ≥ 7
since each initial interval of integers {1, 2, . . . , n} is entirely quadratic residues mod p for
some prime p. For example, (ap ) = 1 for a ≤ 20 when p is the prime number 193993801.

Example 2.3. What is the largest prime p for which there are not 3 consecutive quadratic
residues mod p? This is asking for the largest p such that Np(1, 1, 1) = 0. The bound
in Theorem 2.1 implies p/8 < 2

√
p + 3/2, so p < 16

√
p + 12. That implies p < 279.4,

so p ≤ 277. Checking all primes up to 277, the last one without 3 consecutive quadratic
residues is p = 17.

That there are three consecutive quadratic residues modulo p for p ≥ 19 is due to Jacob-
sthal [6, p. 30].

The proof of Theorem 2.1 can be used to count quadratic residue patterns with gaps that
are not necessarily consecutive: if p > r and c1, . . . , cr are distinct in Fp, the set{

a ∈ F×p :

(
a+ ci
p

)
= εi for i = 1, . . . , r

}
for each choice of signs ε1, . . . , εr ∈ {±1} has a size Np, say, that satisfies the same estimate
as in Theorem 2.1: ∣∣∣Np −

p

2r

∣∣∣ < (r − 1)
√
p+

r

2
.

The only change needed in the proof of Theorem 2.1 is to replace the polynomial fS(x) =∏
i∈S(x+ i− 1) with

∏
i∈S(x+ ci).

The Weil bound (2.3) extends to all finite fields, not just those of odd prime order p,
with the Legendre symbol on Fp replaced by a nontrivial multiplicative character on Fq
and
√
p in the Weil bound replaced by

√
q. In particular, for an odd prime power q, if χ is

the quadratic character on F×q then for distinct c1, . . . , cr in Fq and signs ε1, . . . , εr ∈ {±1},
the number

Nq :=
∣∣{a ∈ F×q : χ(a+ ci) = εi for i = 1, . . . , r

}∣∣
satisfies2 ∣∣∣Nq −

q

2r

∣∣∣ < (r − 1)
√
q +

r

2
.

3. Some history

The first work on counting quadratic residue patterns of two or more consecutive terms
in F×p was by Aladov [1] in 1896. He counted each quadratic residue pattern of length
2, and some (but not all) quadratic residue patterns of length 3. The counts of length 2
were computed explicitly as in the table below, depending on p mod 4. The formulas are
consistent with the determination of when Np(ε1, ε2) > 0 in Example 2.3.

p mod 4 Np(1, 1) Np(1,−1) Np(−1, 1) Np(−1,−1)
1 (p− 5)/4 (p− 1)/4 (p− 1)/4 (p− 1)/4
3 (p− 3)/4 (p+ 1)/4 (p− 3)/4 (p− 3)/4

We can write these formulas for Np(ε1, ε2) as p/4 + O(1). In 1898, von Sterneck [8]
counted patterns of length 3 and 4 with restrictions (each pattern was counted along with
its opposite, e.g., (+,+,−) and (−,−,+) together, not separately). In 1906, Jacobsthal
[6, Chap. III] in his dissertation found exact formulas for the number of quadratic residue

2We need q > r in order to have r nonzero numbers a+ ci in Fq at all.
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patterns of length 2 and 3 in F×p . The length 3 counts imply Np(ε1, ε2, ε3) = p/8 +O(
√
p)

in all cases (and it is p/8 +O(1) for p ≡ 3 mod 4).
Davenport considered this counting problem for r ≥ 4 throughout the 1930s. In [2] he

showed |Np(ε1, . . . , εr)− p/2r| = Or(p
3/4) for r = 4 and 5 by ad hoc methods that did not

extend easily to r ≥ 6. In [3] he used other tricks for 6 ≤ r ≤ 9 that led to bounds Or(p
7/8)

for r = 6 and 7, and Or(p
19/20) for r = 8 and 9, and he could reduce the bound when r = 4

from Or(p
3/4) to Or(p

2/3). Reducing the exponent on p in the O-bound is closely related
to bounding the real parts of the zeros of the zeta-function of curves y2 = f(x) over Fp.
Davenport continued to refine his techniques throughout the 1930s, and in [4, Theorem 5]
he got a bound of the form Or(p

1−θr) for general r with an explicit formula for θr that tends
to 0 as r → ∞. A definitive bound Or(

√
p) for all r, coming from the bound in (2.3), was

given by Weil [9] (see also [5, Theorem 3.1]) as a consequence of his proof of the Riemann
hypothesis for curves over finite fields.

An account of Davenport’s work and its influence on Hasse and Mordell is in [7, Sect. 3].

Appendix A. Extending Theorem 2.1 beyond the Legendre symbol

The Weil bound (2.3) for the Legendre symbol on Fp has a generalization to other
multiplicative characters on finite fields: if χ is a nontrivial multiplicative character on
Fq with order n ≥ 2 and f(x) ∈ Fq[x] is monic and not an n-th power, then

(A.1)

∣∣∣∣∣∣
∑
a∈Fq

χ(f(a))

∣∣∣∣∣∣ ≤ (r − 1)
√
q.

where f(x) has r distinct roots (the roots need not be simple) in a splitting field over Fq.
This is [5, Theorem 3.1]3.

Using (A.1) we will prove the following generalization of Theorem 2.1.

Theorem A.1. Let χ1, . . . , χr be nontrivial multiplicative characters on Fq, where χi has
order ni ≥ 2. For r < q, pick distinct c1, . . . , cr in Fq and an ni-th root of unity εi in C for
i = 1, . . . , r. Set

Nq = |{a ∈ Fq : χi(a+ ci) = εi for i = 1, . . . , r}| .

Then ∣∣∣∣Nq −
q

n1 . . . nr

∣∣∣∣ < (r − 1)
√
q +

r

2
.

When q = p and all χi are quadratic (ni = 2 for all i), Theorem A.1 becomes Theorem
2.1.

We take r < q in Theorem A.1 because if r ≥ q then for each a ∈ Fq the numbers
a+ c1, . . . , a+ cr fill up Fq so one of these is 0, and thus Nq = 0, which is uninteresting.

3In [5] it is assumed for (A.1) that f(x) is not an n-th power but it is not explicitly stated that f(x) is
not monic too. For non-monic f we get counterexamples to (A.1): if f(x) = cg(x)n with c ∈ F×q not an
n-th power, then

∑
a∈Fq

χ(f(a)) =
∑

a∈Fq
χ(cg(a)n) = χ(c)(q−{a ∈ Fq : g(a) 6= 0}), so |

∑
a∈Fq

χ(f(a))| =
q − |{a ∈ Fq : g(a) 6= 0}| ≥ q − r, which contradicts (A.1) if r is small, such as r = 1 (f(x) = cxn) for any q
or r = 2 (f(x) = cxn(x− 1)n) for q > 4.
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Proof. For b ∈ F×q , a nontrivial multiplicative character χ on F×q of order n, and an n-th
root of unity ε in C, the finite geometric series of n terms with ratio χ(b)/ε equals

1 +
χ(b)

ε
+

(
χ(b)

ε

)2

+ . . .+

(
χ(b)

ε

)n−1
=

{
n, if χ(b) = ε,

0, if χ(b) 6= ε,

so

1

n

(
1 +

χ(b)

ε
+

(
χ(b)

ε

)2

+ . . .+

(
χ(b)

ε

)n−1)
=

{
1, if χ(b) = ε,

0, if χ(b) 6= ε,

which generalizes (2.1). Therefore

Nq =
∑
a∈Fq

all a+cj 6=0

r∏
i=1

1

ni

(
1 +

χi(a+ ci)

εi
+

(
χi(a+ ci)

εi

)2

+ · · ·+
(
χi(a+ ci)

εi

)ni−1
)
.

This sum over Fq is missing terms at those a for which a+ cj = 0 for some j. For such
an a, the product over 1 ≤ i ≤ r associated to it in the above formula would be 0 or 1/nj ,
so we can write Nq as a sum over all of Fq by including an additional error term:

Nq =
∑
a∈Fq

r∏
i=1

1

ni

(
1 +

χi(a+ ci)

εi
+

(
χi(a+ ci)

εi

)2

+ · · ·+
(
χi(a+ ci)

εi

)ni−1
)

+ e

=
1

n1 · · ·nr

∑
a∈Fq

r∏
i=1

(
1 +

χi(a+ ci)

εi
+

(
χi(a+ ci)

εi

)2

+ · · ·+
(
χi(a+ ci)

εi

)ni−1
)

+ e,

where |e| ≤ 1/n1 + · · ·+ 1/nr ≤ r/2 (since ni ≥ 2). Multiplying out all the sums,

Nq =
1

n1 · · ·nr

∑
a∈Fq

∑
0≤ti≤ni−1

for all i

χ1(a+ c1)
t1 · · ·χr(a+ cr)

tr

εt11 · · · ε
tr
r

+ e

=
1

n1 · · ·nr

∑
0≤ti≤ni−1

for all i

1

εt11 · · · ε
tr
r

∑
a∈Fq

χ1(a+ c1)
t1 · · ·χr(a+ cr)

tr + e.

The inner term when all ti are 0 is
∑

a∈Fq
1 = q, so∣∣∣∣Nq −

q

n1 · · ·nr

∣∣∣∣ ≤ 1

n1 · · ·nr

∑
0≤ti≤ni−1
some ti 6=0

∣∣∣∣∣∣
∑
a∈Fq

χ1(a+ c1)
t1 · · ·χr(a+ cr)

tr

∣∣∣∣∣∣+
r

2
.

We will use (A.1) to show each inner sum over Fq on the right side has magnitude at most
(r − 1)

√
q, which would give us what we want:∣∣∣∣Nq −

q

n1 · · ·nr

∣∣∣∣ ≤ 1

n1 · · ·nr

∑
0≤ti≤ni−1
some ti 6=0

((r − 1)
√
q) +

r

2

=
1

n1 · · ·nr
(n1 · · ·nr − 1)(r − 1)

√
q +

r

2

< (r − 1)
√
q +

r

2
.
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It remains to show ∣∣∣∣∣∣
∑
a∈Fq

χ1(a+ c1)
t1 · · ·χr(a+ cr)

tr

∣∣∣∣∣∣ ≤ (r − 1)
√
q

when 0 ≤ ti ≤ ni − 1 with some ti not 0. Since F×q is cyclic, its character group is cyclic:

let χ be a generator of the character group of F×q and write χi = χmi for mi ∈ Z+. Then∑
a∈Fq

χ1(a+ c1)
t1 · · ·χr(a+ cr)

tr =
∑
a∈Fq

χ(a+ c1)
t1m1 · · ·χ(a+ cr)

trmr

=
∑
a∈Fq

χ((a+ c1)
t1m1 · · · (a+ cr)

trmr)

=
∑
a∈Fq

χ(f(a)),

where f(x) = (x+ c1)
t1m1 · · · (x+ cr)

trmr . This polynomial is monic with r distinct roots.
In order to apply (A.1) to bound |

∑
a∈Fq

χ(f(a))|, all that remains to be checked is that

f(x) is not a (q − 1)-th power in Fq[x] (since χ has order q − 1). That is equivalent, since
f is monic, to the root multiplicities t1m1, . . . , trmr not all being multiples of q − 1.

Having (q−1) | timi is the same as having (q−1)/(q−1,mi) | ti since (q−1)/(q−1,mi)
and mi/(q − 1,mi) are relatively prime. The order of χ is q − 1 and the order of χi is ni,
so from χi = χmi we get ni = (q − 1)/(q − 1,mi). Therefore (q − 1) | timi is equivalent to
ni | ti. Recalling that 0 ≤ ti ≤ ni − 1. we can have ni | ti only if ti = 0. Since some ti is
not 0 this completes the proof that f(x) is not an n-th power. �
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