1. Introduction

Let p be an odd prime. Among the nonzero numbers in \mathbb{F}_p, half are squares and half are nonsquares. The former are called quadratic residues and the latter are called quadratic nonresidues. We do not consider 0 to be a quadratic residue or nonresidue, even though it is of course a square.

If a is a quadratic residue in \mathbb{F}_p^\times, is $a + 1$ more or less likely to be a quadratic residue? If a is a quadratic nonresidue in \mathbb{F}_p^\times, is $a + 1$ more or less likely to be a quadratic nonresidue?

Let’s look at some data.

Example 1.1. Taking $p = 19$, the 9 quadratic residues are 1, 4, 5, 6, 7, 9, 11, 16, 17, and the 9 quadratic nonresidues are 2, 3, 8, 10, 12, 13, 14, 15, 18. In the table below we indicate when a and $a + 1$ are quadratic residues (QR) for $a \in \mathbb{F}_19^\times$.

<table>
<thead>
<tr>
<th>a</th>
<th>QR?</th>
<th>$a + 1$ is QR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

There are 17 pairs $(a,a + 1)$ where a and $a + 1$ are nonzero in \mathbb{F}_19 (all a aside from 0 and 18). The table above tells us that 4 pairs have a and $a + 1$ as quadratic residues ($a = 4, 5, 6, 16$), 5 pairs have a as a quadratic residue and $a + 1$ as a quadratic nonresidue ($a = 1, 7, 9, 11, 17$), 4 pairs have a as a quadratic nonresidue and $a + 1$ as a quadratic residue ($a = 3, 8, 10, 15$), and 4 pairs have a and $a + 1$ as quadratic nonresidues ($a = 2, 12, 13, 14$, noting 18 doesn’t count since $18 + 1 = 0$). The four options for a and $a + 1$ to be quadratic residues or nonresidues are approximately equally likely (around 25% each).

Example 1.2. When $p = 101$, there are 99 pairs $(a,a + 1)$ where a and $a + 1$ are nonzero in \mathbb{F}_{101} (all $a \neq 0, 100$). Among these pairs, a and $a + 1$ are quadratic residues 24 times, a is a quadratic residue and $a + 1$ is a quadratic nonresidue 25 times, a is a quadratic nonresidue and $a + 1$ is a quadratic residue 25 times, and a and $a + 1$ are quadratic nonresidues 25 times. These counts are equal or nearly equal.

There are 98 triples $(a,a + 1,a + 2)$ where a, $a + 1$, and $a + 2$ are nonzero in \mathbb{F}_{101}^\times: all a aside from 0, 99, and 100. Using + to denote a quadratic residue and − to denote a quadratic nonresidue, the following table says the frequency of the quadratic residue patterns among the triples $(a,a + 1,a + 2)$ in \mathbb{F}_{101}^\times is nearly uniform.

<table>
<thead>
<tr>
<th>$(a,a + 1,a + 2)$</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+,+,+)</td>
<td>12</td>
</tr>
<tr>
<td>(+,+,−)</td>
<td>12</td>
</tr>
<tr>
<td>(+,−,+),−</td>
<td>12</td>
</tr>
<tr>
<td>(−,+)+</td>
<td>12</td>
</tr>
</tbody>
</table>

Example 1.3. The tables below count how many pairs $(a,a + 1)$ and triples $(a,a + 1,a + 2)$ in \mathbb{F}_{1009}^\times have different quadratic residue patterns. The counts look nearly uniform in each case.
\[
\begin{array}{c|cccc}
(a, a+1) & (+,+) & (+,-) & (-,+) & (-,-) \\
\hline
\text{Count} & 251 & 252 & 252 & 252 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
(a, a+1, a+2) & (+,+,+) & (+,+-) & (-,+-) & (-,+,+) \\
\hline
\text{Count} & 128 & 122 & 122 & 122 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
(a, a+1, a+2) & (+,-,-) & (-,+-) & (-,-+) & (-,-,-) \\
\hline
\text{Count} & 130 & 130 & 130 & 122 \\
\end{array}
\]

These examples suggest that the possible quadratic residue patterns of a fixed length in \(F_p^\times\) are approximately equally likely. For a set of \(r\) consecutive numbers in \(F_p^\times\), allowing for \(2^r\) choices of their quadratic residue or nonresidue status, we will show the frequency of each quadratic residue pattern is nearly \(p/2^r\), which is what we’d expect if we were discussing \(r\) independent random variables on \(F_p\) that each have two outcomes.

2. The main theorem

For \(r \geq 1\) and an odd prime \(p > r\), we want to count how many \(r\)-tuples of consecutive numbers \(a, a+1, \ldots, a+r-1\) in \(F_p^\times\) have predetermined quadratic residue or nonresidue behavior. (We need \(p > r\) so that \(F_p^\times\) contains at least \(r\) elements.) We will use the Legendre symbol. For a choice of \(r\) signs \(\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}\), set

\[
N_p(\varepsilon_1, \ldots, \varepsilon_r) = \left| \left\{ a \in F_p^\times : \left(\frac{a}{p} \right) = \varepsilon_1, \left(\frac{a+1}{p} \right) = \varepsilon_2, \ldots, \left(\frac{a+r-1}{p} \right) = \varepsilon_r \right\} \right|
\]

In the tables in Examples 1.2 and 1.3, the + corresponds to Legendre symbol 1 and the − corresponds to Legendre symbol −1. For instance, Example 1.2 tells us that \(N_{101}(1, 1, 1) = 12\) and \(N_{101}(1, -1, -1) = 13\). Here is the main result.

Theorem 2.1. For \(r\) signs \(\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}\) and an odd prime \(p > r\), \(N_p(\varepsilon_1, \ldots, \varepsilon_r) = p/2^r + O_r(\sqrt{p})\). More precisely,

\[
\left| N_p(\varepsilon_1, \ldots, \varepsilon_r) - \frac{p}{2^r} \right| < (r-1)\sqrt{p} + \frac{r}{2}.
\]

Proof. We will write down a formula for \(N_p(\varepsilon_1, \ldots, \varepsilon_r)\) in terms of a sum of Legendre symbol products, extract the main term \(p/2^r\), and bound what is left.

We begin with a counting formula. For \(b \in F_p^\times\) and \(\varepsilon = \pm 1\),

\[
1 + \varepsilon \left(\frac{b}{p} \right) = \begin{cases}
2, & \text{if } \left(\frac{b}{p} \right) = \varepsilon, \\
0, & \text{if } \left(\frac{b}{p} \right) \neq \varepsilon,
\end{cases}
\]

so

\[
\frac{1}{2} \left(1 + \varepsilon \left(\frac{b}{p} \right) \right) = \begin{cases}
1, & \text{if } \left(\frac{b}{p} \right) = \varepsilon, \\
0, & \text{if } \left(\frac{b}{p} \right) \neq \varepsilon.
\end{cases}
\]

Therefore if \(b_1, \ldots, b_r \in F_p^\times\) and \(\varepsilon_1, \ldots, \varepsilon_r \in F_p^\times\),

\[
\prod_{i=1}^r \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{b_i}{p} \right) \right) = \begin{cases}
1, & \text{if } \left(\frac{b_i}{p} \right) = \varepsilon_i \text{ for all } i \in \{1, \ldots, r\}, \\
0, & \text{if } \left(\frac{b_i}{p} \right) \neq \varepsilon_i \text{ for some } i \in \{1, \ldots, r\}.
\end{cases}
\]
\[N_p(\varepsilon_1, \ldots, \varepsilon_r) = \left| \left\{ a \in \mathbb{F}_p^\times : \left(\frac{a + i - 1}{p} \right) = \varepsilon_i \text{ for } i = 1, \ldots, r \right\} \right| \]

\[= \sum_{a \in \mathbb{F}_p} \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right). \]

What can we say about missing terms in the outer sum, where \(a + j - 1 = 0 \) in \(\mathbb{F}_p \) for some \(j \in \{1, \ldots, r\} \)? Then \(\frac{1}{2} \left(1 + \varepsilon_j \left(\frac{a + j - 1}{p} \right) \right) = \frac{1}{2} \) while \(\frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right) \) is 0 or 1 for \(i \neq j \), so

\[\left| \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right) \right| \leq \frac{1}{2}. \]

There are \(r \) such terms (corresponding to \(a = 0, a = -1, \ldots, a = -(r - 1) \) in \(\mathbb{F}_p \)), so

\[N_p(\varepsilon_1, \ldots, \varepsilon_r) = \sum_{a \in \mathbb{F}_p} \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right) + \frac{e_r}{2}, \quad \text{where } |e_r| \leq r, \]

\[= \frac{1}{2^r} \sum_{a \in \mathbb{F}_p} \prod_{i=1}^{r} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right) + \frac{e_r}{2}. \]

Let’s expand the product inside the sum: for each \(a \in \mathbb{F}_p \),

\[\prod_{i=1}^{r} \left(1 + \varepsilon_i \left(\frac{a + i - 1}{p} \right) \right) = 1 + \sum_{S \subseteq \{1, \ldots, r\}} \left(\prod_{i \in S} \varepsilon_i \right) \left(\frac{f_S(a)}{p} \right), \]

where \(f_S(x) = \prod_{i \in S} (x + i - 1) \). The polynomial \(f_S(x) \in \mathbb{F}_p[x] \) is separable with degree \(|S| \). Feeding the above expression for the product into the formula for \(N_p(\varepsilon_1, \ldots, \varepsilon_r) \) and swapping the order of summation,

\[N_p(\varepsilon_1, \ldots, \varepsilon_r) = \frac{1}{2^r} \sum_{a \in \mathbb{F}_p} \left(1 + \sum_{S \subseteq \{1, \ldots, r\}} \left(\prod_{i \in S} \varepsilon_i \right) \left(\frac{f_S(a)}{p} \right) \right) + \frac{e_r}{2}, \]

\[= \frac{p}{2^r} + \frac{1}{2^r} \sum_{S \subseteq \{1, \ldots, r\}} \left(\prod_{i \in S} \varepsilon_i \right) \sum_{a \in \mathbb{F}_p} \left(\frac{f_S(a)}{p} \right) + \frac{e_r}{2}. \]

We have found the desired term \(p/2^r \) in the formula for \(N_p(\varepsilon_1, \ldots, \varepsilon_r) \) and want to show the rest of the formula is small.\(^1\)

\(^1\)This technique of relating \(N_p(\varepsilon_1, \ldots, \varepsilon_r) \) to \(p/2^r \) goes back at least to Jacobsthal in 1906 when \(r = 2 \) [6, p. 27]. For a more recent account of it, see replies to the MathOverflow post “Consecutive non-quadratic residues” at [https://mathoverflow.net/questions/161271/consecutive-non-quadratic-residues].
The product $\prod_{i \in S} \epsilon_i$ is ± 1, so by the triangle inequality

$$\left| N_p(\epsilon_1, \ldots, \epsilon_r) - \frac{p}{2^r} \right| \leq \frac{1}{2^r} \sum_{S \subseteq \{1, \ldots, r\}} \left| \sum_{a \in \mathbb{F}_p} \left(\frac{f_S(a)}{p} \right) \right| + \frac{r}{2}. \tag{2.2}$$

The inner sum over \mathbb{F}_p on the right side can be estimated with Weil’s bound, which says in a special case that for nonconstant $f(x) \in \mathbb{F}_p[x]$ having no repeated roots (that is, are separable),

$$\left| \sum_{a \in \mathbb{F}_p} \left(\frac{f(a)}{p} \right) \right| \leq (\deg f - 1)\sqrt{p}. \tag{2.3}$$

(This inequality is an equality if $\deg f = 1$, and generally is a strict inequality if $\deg f \geq 2$.) Applying (2.3) to the polynomials $f_S(x)$, which each have no repeated roots, we get

$$\left| \sum_{a \in \mathbb{F}_p} \left(\frac{f_S(a)}{p} \right) \right| \leq (\deg f_S - 1)\sqrt{p} = (|S| - 1)\sqrt{p} \leq (r - 1)\sqrt{p}.$$

This upper bound is independent of S, so feeding it into (2.2) gives us

$$\left| N_p(\epsilon_1, \ldots, \epsilon_r) - \frac{p}{2^r} \right| \leq \frac{1}{2^r} \sum_{S \subseteq \{1, \ldots, r\} \setminus \emptyset} ((r - 1)\sqrt{p}) + \frac{r}{2} = \frac{1}{2^r} (2^r - 1)(r - 1)\sqrt{p} + \frac{r}{2} < (r - 1)\sqrt{p} + \frac{r}{2}.$$

For each r, the count $N_p(\epsilon_1, \ldots, \epsilon_r) = p/2^r + O_r(\sqrt{p})$ tends to ∞ as $p \to \infty$, so in particular $N_p(\epsilon_1, \ldots, \epsilon_r) \geq 1$ for all large p. We can determine the largest prime modulo which there are not r consecutive quadratic residues mod p by setting $N_p(1,1,\ldots,1) = 0$ in Theorem 2.1 to get an upper bound on the possible p.

Example 2.2. What is the largest prime p for which there are not 3 consecutive quadratic residues mod p? This is asking when $N_p(1,1,1) = 0$. The bound in Theorem 2.1 implies $p/8 < 2\sqrt{p} + 3/2$, so $p < 16\sqrt{p} + 12$. That implies $p < 279.4$, so $p \leq 277$. Checking all primes up to 277, the last one without 3 consecutive quadratic residues is $p = 17$.

That there are three consecutive quadratic residues modulo p for $p \geq 19$ is due to Jacobsthal [6, p. 30].

The proof of Theorem 2.1 can be used to count quadratic residue patterns with gaps that are not necessarily consecutive: if $p > r$ and c_1, \ldots, c_r are distinct in \mathbb{F}_p, the set

$$\left\{ a \in \mathbb{F}_p^\times : \left(\frac{a + c_i}{p} \right) = \epsilon_i \text{ for } i = 1, \ldots, r \right\}$$

for each choice of signs $\epsilon_1, \ldots, \epsilon_r \in \{\pm 1\}$ has a size N_p, say, that satisfies the same estimate as in Theorem 2.1:

$$\left| N_p - \frac{p}{2^r} \right| < (r - 1)\sqrt{p} + \frac{r}{2}.$$
The only change needed in the proof of Theorem 2.1 is to replace the polynomial \(f_S(x) = \prod_{i \in S}(x + i - 1) \) with \(\prod_{i \in S}(x + c_i) \).

The Weil bound (2.3) extends to all finite fields, not just those of odd prime order \(p \), with the Legendre symbol on \(\mathbb{F}_p \) replaced by a nontrivial multiplicative character on \(\mathbb{F}_q \) and \(\sqrt{p} \) in the Weil bound replaced by \(\sqrt{q} \). In particular, for an odd prime power \(q \), if \(\chi \) is the quadratic character on \(\mathbb{F}_q^\times \) then for distinct \(c_1, \ldots, c_r \) in \(\mathbb{F}_q \) and any signs \(\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\} \),

\[
N_q := \left| \left\{ a \in \mathbb{F}_q^\times : \chi(a + c_i) = \varepsilon_i \text{ for } i = 1, \ldots, r \right\} \right|
\]

satisfies

\[
\left| N_q - \frac{q}{2r} \right| < (r - 1)\sqrt{q} + \frac{r}{2}.
\]

3. Some history

The first work on counting quadratic residue patterns of two or more consecutive terms in \(\mathbb{F}_p^\times \) was by Aladov [1] in 1896. He counted each quadratic residue pattern of length 2 and, for \(p \equiv 3 \mod 4 \), the number of length 2 imply \(N(p)(\varepsilon_2) = p/4 + O(1) \). In 1898, Sterneck [8] counted patterns of length 3 and 4 with restrictions (each pattern was counted together with its opposite, e.g., \((+, +, -)\) and \((- - +, +)\) together, not separate). In 1906, Jacobsthal [6, Chap. III] in his dissertation found exact formulas for the number of quadratic residue patterns of length 2 and 3 in \(\mathbb{F}_p^\times \). The length 3 counts imply \(N_p(\varepsilon_1, \varepsilon_2, \varepsilon_3) = p/8 + O(\sqrt{p}) \).

Davenport considered this counting problem for \(r \geq 4 \) throughout the 1930s. In [2] he bounded the error \(|N_p(\varepsilon_1, \ldots, \varepsilon_r) - p/2^r| \) as \(O_r(p^{3/4}) \) for \(r = 4 \) and 5 by ad hoc methods that did not extend easily to \(r \geq 6 \). In [3] he used other tricks for \(6 \leq r \leq 9 \) that led to error bounds \(O_r(p^7/8) \) for \(r = 6 \) and 7, and \(O_r(p^{19/20}) \) for \(r = 8 \) and 9, and he could reduce the error bound when \(r = 4 \) from \(O_r(p^{3/4}) \) to \(O_r(p^{2/3}) \). Reducing the exponent on \(p \) in the error bound is closely related to bounding the real parts of the zeros of the zeta-function of curves \(y^2 = f(x) \) over \(\mathbb{F}_p \). Davenport continued to refine his techniques throughout the 1930s, and in [4, Theorem 5] he got an error bound of the form \(O_r(p^{1-\theta_r}) \) for general \(r \) with an explicit formula for \(\theta_r \) that tends to 0 as \(r \to \infty \). A definitive error bound \(O_r(\sqrt{p}) \) for all \(r \), coming from the bound in (2.3), was given by Weil [9] (see also [5, Theorem 3.1]) after he proved the Riemann hypothesis for curves over finite fields.

An account of the work by Davenport, along with how it influenced Hasse and Mordell, is in [7, Sect. 3].

Appendix A. Extending Theorem 2.1 beyond the Legendre symbol

The Weil bound (2.3) for the Legendre symbol on \(\mathbb{F}_p \) has a generalization to other multiplicative characters on finite fields: if \(\chi \) is a nontrivial multiplicative character on \(\mathbb{F}_q \) with order \(n \geq 2 \) and \(f(x) \in \mathbb{F}_q[x] \) is monic and not an \(n \)-th power, then

\[
(A.1) \quad \left| \sum_{a \in \mathbb{F}_q} \chi(f(a)) \right| \leq (r - 1)\sqrt{q},
\]

where \(f(x) \) has \(r \) distinct roots (the roots need not be simple) in a splitting field over \(\mathbb{F}_q \).

\(^2 \)In [5] it is assumed for (A.1) that \(f(x) \) is not an \(n \)-th power but it is not explicitly stated that \(f(x) \) is not monic too. For non-monic \(f \) we get counterexamples to (A.1): if \(f(x) = cg(x)^n \) with \(c \in \mathbb{F}_q^\times \) not an
Using (A.1) we will prove the following generalization of Theorem 2.1.

Theorem A.1. Let χ_1, \ldots, χ_r be nontrivial multiplicative characters on \mathbf{F}_q, where χ_i has order $n_i \geq 2$. For $r < q$, pick distinct c_1, \ldots, c_r in \mathbf{F}_q and an n_i-th root of unity ε_i in \mathbf{C} for $i = 1, \ldots, r$. Set

$$N_q = \{|a \in \mathbf{F}_q : \chi_i(a + c_i) = \varepsilon_i \text{ for } i = 1, \ldots, r\}|.$$

Then

$$|N_q - \frac{q}{n_1 \ldots n_r}| < (r - 1)\sqrt{q} + \frac{r}{2}.$$

When $q = p$ and all χ_i are quadratic ($n_i = 2$ for all i), Theorem A.1 becomes Theorem 2.1.

We take $r < q$ in Theorem A.1 because if $r \geq q$ then for each $a \in \mathbf{F}_q$ the numbers $a + c_1, \ldots, a + c_r$ fill up \mathbf{F}_q so one of these is 0, and thus $N_q = 0$, which is uninteresting.

Proof. For $b \in \mathbf{F}_q^\times$, a nontrivial multiplicative character χ on \mathbf{F}_q^\times of order n, and an n-th root of unity ε in \mathbf{C}, the finite geometric series of n terms with ratio ε equals

$$1 + \frac{\chi(b)}{\varepsilon} + \left(\frac{\chi(b)}{\varepsilon}\right)^2 + \cdots + \left(\frac{\chi(b)}{\varepsilon}\right)^{n-1} = \begin{cases} n, & \text{if } \chi(b) = \varepsilon, \\ 0, & \text{if } \chi(b) \neq \varepsilon, \end{cases}$$

so

$$\frac{1}{n} \left(1 + \frac{\chi(b)}{\varepsilon} + \left(\frac{\chi(b)}{\varepsilon}\right)^2 + \cdots + \left(\frac{\chi(b)}{\varepsilon}\right)^{n-1}\right) = \begin{cases} 1, & \text{if } \chi(b) = \varepsilon, \\ 0, & \text{if } \chi(b) \neq \varepsilon, \end{cases}$$

which generalizes (2.1). Therefore

$$N_q = \sum_{a \in \mathbf{F}_q} \prod_{i=1}^r \frac{1}{n_i} \left(1 + \frac{\chi_i(a + c_i)}{\varepsilon_i} + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^2 + \cdots + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^{n_i-1}\right).$$

This sum over \mathbf{F}_q is missing terms at those a for which $a + c_j = 0$ for some j. For such an a, the product over $1 \leq i \leq r$ associated to it in the above formula would be 0 or $1/n_j$, so we can write N_q as a sum over all of \mathbf{F}_q by including an additional error term:

$$N_q = \sum_{a \in \mathbf{F}_q} \prod_{i=1}^r \frac{1}{n_i} \left(1 + \frac{\chi_i(a + c_i)}{\varepsilon_i} + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^2 + \cdots + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^{n_i-1}\right) + e$$

$$= \frac{1}{n_1 \cdots n_r} \sum_{a \in \mathbf{F}_q} \prod_{i=1}^r \left(1 + \frac{\chi_i(a + c_i)}{\varepsilon_i} + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^2 + \cdots + \left(\frac{\chi_i(a + c_i)}{\varepsilon_i}\right)^{n_i-1}\right) + e,$$

where $|e| \leq 1/n_1 + \cdots + 1/n_r \leq r/2$ (since $n_i \geq 2$). Multiplying out all the sums,

$$N_q = \frac{1}{n_1 \cdots n_r} \sum_{a \in \mathbf{F}_q} \sum_{0 \leq t_i \leq n_i - 1} \frac{\chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r}}{\varepsilon_1^{t_1} \cdots \varepsilon_r^{t_r}} + e$$

$$= \frac{1}{n_1 \cdots n_r} \sum_{0 \leq t_i \leq n_i - 1} \frac{1}{\varepsilon_1^{t_1} \cdots \varepsilon_r^{t_r}} \sum_{a \in \mathbf{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} + e.$$
The inner term when all \(t_i \) are 0 is \(\sum_{a \in \mathbb{F}_q} 1 = q \), so
\[
\left| N_q - \frac{q}{n_1 \cdots n_r} \right| \leq \frac{1}{n_1 \cdots n_r} \sum_{0 \leq t_i \leq n_i - 1} \sum_{r \in \mathbb{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} + \frac{r}{2}.
\]

We will use (A.1) to show each inner sum over \(\mathbb{F}_q \) on the right side has magnitude at most \((r - 1)\sqrt{q}\), which would give us what we want:
\[
\left| N_q - \frac{q}{n_1 \cdots n_r} \right| \leq \frac{1}{n_1 \cdots n_r} \sum_{0 \leq t_i \leq n_i - 1} \sum_{r \in \mathbb{F}_q} ((r - 1)\sqrt{q}) + \frac{r}{2}
\]
\[
= \frac{1}{n_1 \cdots n_r} (n_1 \cdots n_r - 1)(r - 1)\sqrt{q} + \frac{r}{2}
\]
\[
< (r - 1)\sqrt{q} + \frac{r}{2}.
\]

It remains to show
\[
\left| \sum_{a \in \mathbb{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} \right| \leq (r - 1)\sqrt{q}
\]
when \(0 \leq t_i \leq n_i - 1 \) with some \(t_i \) not 0. Since \(\mathbb{F}_q^\times \) is cyclic, its character group is cyclic: let \(\chi \) be a generator of the character group of \(\mathbb{F}_q^\times \) and write \(\chi_i = \chi^{m_i} \) for \(m_i \in \mathbb{Z}^+ \). Then
\[
\sum_{a \in \mathbb{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} = \sum_{a \in \mathbb{F}_q} \chi(a + c_1)^{t_1 m_1} \cdots \chi(a + c_r)^{t_r m_r}
\]
\[
= \sum_{a \in \mathbb{F}_q} \chi((a + c_1)^{t_1 m_1} \cdots (a + c_r)^{t_r m_r})
\]
\[
= \sum_{a \in \mathbb{F}_q} \chi(f(a)),
\]
where \(f(x) = (x + c_1)^{t_1 m_1} \cdots (x + c_r)^{t_r m_r} \). This polynomial is monic with \(r \) distinct roots. In order to apply (A.1) to bound \(|\sum_{a \in \mathbb{F}_q} \chi(f(a))| \), all that remains to be checked is that \(f(x) \) is not a \((q - 1)\)-th power in \(\mathbb{F}_q[x] \) (since \(\chi \) has order \(q - 1 \)). That is equivalent, since \(f \) is monic, to the root multiplicities \(t_1 m_1, \ldots, t_r m_r \) not all being multiples of \(q - 1 \).

Having \((q - 1) | t_i m_i \) is the same as having \((q - 1)/(q - 1, m_i) | t_i \) since \((q - 1)/(q - 1, m_i) \) and \(m_i/(q - 1, m_i) \) are relatively prime. The order of \(\chi \) is \(q - 1 \) and the order of \(\chi_i \) is \(n_i \), so from \(\chi_i = \chi^{m_i} \) we get \(n_i = (q - 1)/(q - 1, m_i) \). Therefore \((q - 1) | t_i m_i \) is equivalent to \(n_i | t_i \). Recalling that \(0 \leq t_i \leq n_i - 1 \), we can have \(n_i | t_i \) only if \(t_i = 0 \). Since some \(t_i \) is not 0 this completes the proof that \(f(x) \) is not an \(n \)-th power.

\[\square \]

References

