QUADRATIC RESIDUE PATTERNS MODULO A PRIME

KEITH CONRAD

1. Introduction

Let p be an odd prime. Among the nonzero numbers in \mathbf{F}_p , half are squares and half are nonsquares. The former are called quadratic residues and the latter are called quadratic nonresidues. We do not consider 0 to be a quadratic residue or nonresidue, even though it is of course a square.

If a is a quadratic residue in \mathbf{F}_p^{\times} , is a+1 more or less likely to be a quadratic residue? If a is a quadratic nonresidue in \mathbf{F}_p^{\times} , is a+1 more or less likely to be a quadratic nonresidue? Let's look at some data.

Example 1.1. Taking p = 19, the 9 quadratic residues are 1, 4, 5, 6, 7, 9, 11, 16, 17, and the 9 quadratic nonresidues are 2, 3, 8, 10, 12, 13, 14, 15, 18. In the table below we indicate when a and a + 1 are quadratic residues (QR) for $a \in \mathbf{F}_{19}^{\times}$.

There are 17 pairs (a, a + 1) where a and a + 1 are nonzero in \mathbf{F}_{19} (all a aside from 0 and 18). The table above tells us that 4 pairs have a and a + 1 as quadratic residues (a = 4, 5, 6, 16), 5 pairs have a as a quadratic residue and a + 1 as a quadratic nonresidue (a = 1, 7, 9, 11, 17), 4 pairs have a as a quadratic nonresidue and a + 1 as a quadratic residue (a = 3, 8, 10, 15), and 4 pairs have a and a + 1 as quadratic nonresidues (a = 2, 12, 13, 14, 18) noting 18 doesn't count since 18 + 1 = 0). The four options for a and a + 1 to be quadratic residues or nonresidues are approximately equally likely (around 25% each).

Example 1.2. When p = 101, there are 99 pairs (a, a + 1) where a and a + 1 are nonzero in \mathbf{F}_{101} (all $a \neq 0, 100$). Among these pairs, a and a + 1 are quadratic residues 24 times, a is a quadratic residue and a + 1 is a quadratic nonresidue 25 times, a is a quadratic nonresidue and a + 1 is a quadratic residue 25 times, and a and a + 1 are quadratic nonresidues 25 times. These counts are equal or nearly equal.

There are 98 triples (a, a+1, a+2) where a, a+1, and a+2 are nonzero in $\mathbf{F}_{101}^{\times}$: all a aside from 0, 99, and 100. Using + to denote a quadratic residue and - to denote a quadratic nonresidue, the following table says the frequency of the quadratic residue patterns among the triples (a, a+1, a+2) in $\mathbf{F}_{101}^{\times}$ is nearly uniform.

$$\begin{array}{c|ccccc} (a,a+1,a+2) & (+,+,+) & (+,+,-) & (+,-,+) & (-,+,+) \\ \hline \text{Count} & 12 & 12 & 12 & 12 \\ \hline (a,a+1,a+2) & (+,-,-) & (-,+,-) & (-,-,+) & (-,-,-) \\ \hline \text{Count} & 13 & 12 & 13 & 12 \\ \hline \end{array}$$

Example 1.3. The tables below count how many pairs (a, a+1) and triples (a, a+1, a+2) in $\mathbf{F}_{1009}^{\times}$ have different quadratic residue patterns. The counts look nearly uniform in each

$$\begin{array}{c|ccccc} (a, a+1) & (+,+) & (+,-) & (-,+) & (-,-) \\ \hline \text{Count} & 251 & 252 & 252 & 252 \\ \end{array}$$

$$\begin{array}{c|ccccc} (a,a+1,a+2) & (+,+,+) & (+,+,-) & (+,-,+) & (-,+,+) \\ \hline \text{Count} & 128 & 122 & 122 & 122 \\ \hline (a,a+1,a+2) & (+,-,-) & (-,+,-) & (-,-,+) & (-,-,-) \\ \hline \text{Count} & 130 & 130 & 130 & 122 \\ \hline \end{array}$$

These examples suggest that the possible quadratic residue patterns of a fixed length in \mathbf{F}_p^{\times} are approximately equally likely. For a set of r consecutive numbers in \mathbf{F}_p^{\times} , allowing for 2^r choices of their quadratic residue or nonresidue status, we will show the frequency of each quadratic residue pattern is nearly $p/2^r$, which is what we'd expect if we were discussing r independent random variables on \mathbf{F}_p that each have two outcomes.

2. The main theorem

For $r \geq 1$ and an odd prime p > r, we want to count how many r-tuples of consecutive numbers $a, a+1, \ldots, a+r-1$ in \mathbf{F}_p^{\times} have predetermined quadratic residue or nonresidue behavior. (We need p > r so that \mathbf{F}_p^{\times} contains at least r elements.) We will use the Legendre symbol. For a choice of r signs $\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$, set

$$N_{p}(\varepsilon_{1}, \dots, \varepsilon_{r}) = \left| \left\{ a \in \mathbf{F}_{p}^{\times} : \left(\frac{a}{p} \right) = \varepsilon_{1}, \left(\frac{a+1}{p} \right) = \varepsilon_{2}, \dots, \left(\frac{a+r-1}{p} \right) = \varepsilon_{r} \right\} \right|$$

$$= \left| \left\{ a \in \mathbf{F}_{p}^{\times} : \left(\frac{a+i-1}{p} \right) = \varepsilon_{i} \text{ for } i = 1, \dots, r \right\} \right|.$$

In the tables in Examples 1.2 and 1.3, the + corresponds to Legendre symbol 1 and the - corresponds to Legendre symbol -1. For instance, Example 1.2 tells us that $N_{101}(1,1,1) = 12$ and $N_{101}(1,-1,-1) = 13$. Here is the main result.

Theorem 2.1. For r signs $\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$ and an odd prime p > r, $N_p(\varepsilon_1, \ldots, \varepsilon_r) = p/2^r + O_r(\sqrt{p})$. More precisely,

$$\left| N_p(\varepsilon_1, \dots, \varepsilon_r) - \frac{p}{2^r} \right| < (r-1)\sqrt{p} + \frac{r}{2}.$$

Proof. We will write down a formula for $N_p(\varepsilon_1, \ldots, \varepsilon_r)$ in terms of a sum of Legendre symbol products, extract the main term $p/2^r$, and bound what is left.

We begin with a counting formula. For $b \in \mathbf{F}_p^{\times}$ and $\varepsilon = \pm 1$,

$$1 + \varepsilon \left(\frac{b}{p}\right) = \begin{cases} 2, & \text{if } \left(\frac{b}{p}\right) = \varepsilon, \\ 0, & \text{if } \left(\frac{b}{p}\right) \neq \varepsilon, \end{cases}$$

SO

(2.1)
$$\frac{1}{2}\left(1+\varepsilon\left(\frac{b}{p}\right)\right) = \begin{cases} 1, & \text{if } (\frac{b}{p}) = \varepsilon, \\ 0, & \text{if } (\frac{b}{p}) \neq \varepsilon. \end{cases}$$

Therefore if $b_1, \ldots, b_r \in \mathbf{F}_p^{\times}$ and $\varepsilon_1, \ldots, \varepsilon_r \in \mathbf{F}_p^{\times}$,

$$\prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{b_i}{p} \right) \right) = \begin{cases} 1, & \text{if } \left(\frac{b_i}{p} \right) = \varepsilon_i \text{ for all } i \in \{1, \dots, r\}, \\ 0, & \text{if } \left(\frac{b_i}{p} \right) \neq \varepsilon_i \text{ for some } i \in \{1, \dots, r\}, \end{cases}$$

SO

$$N_{p}(\varepsilon_{1}, \dots, \varepsilon_{r}) = \left| \left\{ a \in \mathbf{F}_{p}^{\times} : \left(\frac{a+i-1}{p} \right) = \varepsilon_{i} \text{ for } i = 1, \dots, r \right\} \right|$$

$$= \sum_{\substack{a \in \mathbf{F}_{p} \\ a, a+1, \dots, a+r-1 \neq 0}} \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_{i} \left(\frac{a+i-1}{p} \right) \right).$$

What can we say about missing terms in the outer sum, where a+j-1=0 in \mathbf{F}_p for some $j \in \{1, \ldots, r\}$? Then $\frac{1}{2} \left(1 + \varepsilon_j \left(\frac{a+j-1}{p}\right)\right) = \frac{1}{2}$ while $\frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a+i-1}{p}\right)\right)$ is 0 or 1 for $i \neq j$, so

$$\left| \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_i \left(\frac{a+i-1}{p} \right) \right) \right| \le \frac{1}{2}.$$

There are r such terms (corresponding to $a = 0, a = -1, \ldots, a = -(r-1)$ in \mathbf{F}_p), so

$$N_{p}(\varepsilon_{1}, \dots, \varepsilon_{r}) = \sum_{a \in \mathbf{F}_{p}} \prod_{i=1}^{r} \frac{1}{2} \left(1 + \varepsilon_{i} \left(\frac{a+i-1}{p} \right) \right) + \frac{e_{r}}{2}, \text{ where } |e_{r}| \leq r,$$

$$= \frac{1}{2^{r}} \sum_{a \in \mathbf{F}_{p}} \prod_{i=1}^{r} \left(1 + \varepsilon_{i} \left(\frac{a+i-1}{p} \right) \right) + \frac{e_{r}}{2}.$$

Let's expand the product inside the sum: for each $a \in \mathbf{F}_p$,

$$\prod_{i=1}^{r} \left(1 + \varepsilon_i \left(\frac{a+i-1}{p} \right) \right) = 1 + \sum_{\substack{S \subset \{1,\dots,r\}\\S \neq \emptyset}} \left(\prod_{i \in S} \varepsilon_i \left(\frac{a+i-1}{p} \right) \right)$$

$$= 1 + \sum_{\substack{S \subset \{1,\dots,r\}\\S \neq \emptyset}} \left(\prod_{i \in S} \varepsilon_i \right) \left(\frac{f_S(a)}{p} \right),$$

where $f_S(x) = \prod_{i \in S} (x+i-1)$. The polynomial $f_S(x) \in \mathbf{F}_p[x]$ is separable with degree |S|. Feeding the above expression for the product into the formula for $N_p(\varepsilon_1, \ldots, \varepsilon_r)$ and swapping the order of summation,

$$N_{p}(\varepsilon_{1},...,\varepsilon_{r}) = \frac{1}{2^{r}} \sum_{a \in \mathbf{F}_{p}} \left(1 + \sum_{\substack{S \subset \{1,...,r\} \\ S \neq \emptyset}} \left(\prod_{i \in S} \varepsilon_{i} \right) \left(\frac{f_{S}(a)}{p} \right) \right) + \frac{e_{r}}{2}$$
$$= \frac{p}{2^{r}} + \frac{1}{2^{r}} \sum_{\substack{S \subset \{1,...,r\} \\ S \neq \emptyset}} \left(\prod_{i \in S} \varepsilon_{i} \right) \sum_{a \in \mathbf{F}_{p}} \left(\frac{f_{S}(a)}{p} \right) + \frac{e_{r}}{2}.$$

We have found the desired term $p/2^r$ in the formula for $N_p(\varepsilon_1, \ldots, \varepsilon_r)$ and want to show the rest of the formula is small.¹

¹This technique of relating $N_p(\varepsilon_1,\ldots,\varepsilon_r)$ to $p/2^r$ goes back at least to Jacobsthal in 1906 when r=2 [6, p. 27]. For a more recent account of it, see replies to the MathOverflow post "Consecutive non-quadratic residues" at https://mathoverflow.net/questions/161271/consecutive-non-quadratic-residues.

The product $\prod_{i \in S} \varepsilon_i$ is ± 1 , so by the triangle inequality

$$\left| N_p(\varepsilon_1, \dots, \varepsilon_r) - \frac{p}{2^r} \right| \le \frac{1}{2^r} \sum_{\substack{S \subset \{1, \dots, r\} \\ S \neq \emptyset}} \left| \sum_{a \in \mathbf{F}_p} \left(\frac{f_S(a)}{p} \right) \right| + \frac{r}{2}.$$

The inner sum over \mathbf{F}_p on the right side can be estimated with Weil's bound, which says in a special case that for nonconstant $f(x) \in \mathbf{F}_p[x]$ having no repeated roots (that is, are separable),

(2.3)
$$\left| \sum_{a \in \mathbf{F}_p} \left(\frac{f(a)}{p} \right) \right| \le (\deg f - 1) \sqrt{p}.$$

(This inequality is an equality if deg f = 1, and generally is a strict inequality if deg $f \ge 2$.) Applying (2.3) to the polynomials $f_S(x)$, which each have no repeated roots, we get

$$\left| \sum_{a \in \mathbf{F}_p} \left(\frac{f_S(a)}{p} \right) \right| \le (\deg f_S - 1) \sqrt{p} = (|S| - 1) \sqrt{p} \le (r - 1) \sqrt{p}.$$

This upper bound is independent of S, so feeding it into (2.2) gives us

$$\left| N_p(\varepsilon_1, \dots, \varepsilon_r) - \frac{p}{2^r} \right| \le \frac{1}{2^r} \sum_{\substack{S \subset \{1, \dots, r\} \\ S \neq \emptyset}} ((r-1)\sqrt{p}) + \frac{r}{2}$$

$$= \frac{1}{2^r} (2^r - 1)(r-1)\sqrt{p} + \frac{r}{2}$$

$$< (r-1)\sqrt{p} + \frac{r}{2}.$$

For each r, the count $N_p(\varepsilon_1,\ldots,\varepsilon_r)=p/2^r+O_r(\sqrt{p})$ tends to ∞ as $p\to\infty$, so in particular $N_p(\varepsilon_1,\ldots,\varepsilon_r)\geq 1$ for all large p. We can determine the largest prime modulo which there are not r consecutive quadratic residues mod p by setting $N_p(1,1,\ldots,1)=0$ in Theorem 2.1 to get an upper bound on the possible p.

Example 2.2. We will show for all odd primes p that $N_p(1,-1) \ge 1$. By Theorem 2.1,

$$\left| N_p(1,-1) - \frac{p}{4} \right| < \sqrt{p} + 1.$$

If $N_p(1,-1)=0$ then we have $p<4(\sqrt{p}+1)$. The only positive solution to $t=4(\sqrt{t}+1)$ is around 23.313, so $p<4(\sqrt{p}+1)$ for $p\leq 23$ and not for $p\geq 29$. Thus $N_p(1,-1)\geq 1$ when $p\geq 29$. For the primes $p=3,5,\ldots,23$ we can do a direct search: for $p\leq 19$, the sign pattern $(\frac{a}{p})=1$ and $(\frac{a+1}{p})=-1$ holds for a=1 or a=2, and for p=23 we get that pattern for a=4.

For similar reasons, $N_p(\varepsilon_1, \varepsilon_2) \ge 1$ when $p \ge 7$ no matter what the signs ε_1 and ε_2 are: it holds for $p \ge 29$ as above and a direct search for $p = 7, 11, \ldots, 23$ shows each consecutive quadratic residue pattern (1, 1), (-1, 1), and (-1, -1) occurs at least once. These three patterns don't occur for p = 3 and (1, 1) also doesn't occur for p = 5.

That $N_p(1,1) \ge 1$ for $p \ge 7$ can be proved using an argument by contradiction instead of a formula for $N_p(1,1)$. We'll show (1,2), (4,5), or (9,10) is a pair of consecutive squares mod p. Since $(\frac{1}{p}) = 1$ and $(\frac{4}{p}) = 1$, if 2 and 5 are not squares mod p then $(\frac{2}{p}) = -1$ and

 $(\frac{5}{p})=-1$ since p>5. Therefore $(\frac{9}{p})=1$ and $(\frac{10}{p})=(\frac{2}{p})(\frac{5}{p})=(-1)(-1)=1$. This kind of reasoning can't be used to prove $N_p(1,-1)$, $N_p(-1,1)$, or $N_p(-1,-1)$ is positive for $p\geq 7$ since each initial interval of integers $\{1,2,\ldots,n\}$ is entirely quadratic residues mod p for some prime p. For example, $(\frac{a}{p})=1$ for $a\leq 20$ when p is the prime number 193993801.

Example 2.3. What is the largest prime p for which there are not 3 consecutive quadratic residues mod p? This is asking for the largest p such that $N_p(1,1,1)=0$. The bound in Theorem 2.1 implies $p/8 < 2\sqrt{p} + 3/2$, so $p < 16\sqrt{p} + 12$. That implies p < 279.4, so $p \le 277$. Checking all primes up to 277, the last one without 3 consecutive quadratic residues is p = 17.

That there are three consecutive quadratic residues modulo p for $p \ge 19$ is due to Jacobsthal [6, p. 30].

The proof of Theorem 2.1 can be used to count quadratic residue patterns with gaps that are not necessarily consecutive: if p > r and c_1, \ldots, c_r are distinct in \mathbf{F}_p , the set

$$\left\{ a \in \mathbf{F}_p^{\times} : \left(\frac{a+c_i}{p} \right) = \varepsilon_i \text{ for } i = 1, \dots, r \right\}$$

for each choice of signs $\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$ has a size N_p , say, that satisfies the same estimate as in Theorem 2.1:

$$\left| N_p - \frac{p}{2^r} \right| < (r - 1)\sqrt{p} + \frac{r}{2}.$$

The only change needed in the proof of Theorem 2.1 is to replace the polynomial $f_S(x) = \prod_{i \in S} (x+i-1)$ with $\prod_{i \in S} (x+c_i)$.

The Weil bound (2.3) extends to all finite fields, not just those of odd prime order p, with the Legendre symbol on \mathbf{F}_p replaced by a nontrivial multiplicative character on \mathbf{F}_q and \sqrt{p} in the Weil bound replaced by \sqrt{q} . In particular, for an odd prime power q, if χ is the quadratic character on \mathbf{F}_q^{\times} then for distinct c_1, \ldots, c_r in \mathbf{F}_q and signs $\varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$, the number

$$N_q := \left| \left\{ a \in \mathbf{F}_q^{\times} : \chi(a + c_i) = \varepsilon_i \text{ for } i = 1, \dots, r \right\} \right|$$

satisfies²

$$\left| N_q - \frac{q}{2^r} \right| < (r - 1)\sqrt{q} + \frac{r}{2}.$$

3. Some history

The first work on counting quadratic residue patterns of two or more consecutive terms in \mathbf{F}_p^{\times} was by Aladov [1] in 1896. He counted each quadratic residue pattern of length 2, and some (but not all) quadratic residue patterns of length 3. The counts of length 2 were computed explicitly as in the table below, depending on $p \mod 4$. The formulas are consistent with the determination of when $N_p(\varepsilon_1, \varepsilon_2) > 0$ in Example 2.3.

We can write these formulas for $N_p(\varepsilon_1, \varepsilon_2)$ as p/4 + O(1). In 1898, von Sterneck [8] counted patterns of length 3 and 4 with restrictions (each pattern was counted along with its opposite, e.g., (+,+,-) and (-,-,+) together, not separately). In 1906, Jacobsthal [6, Chap. III] in his dissertation found exact formulas for the number of quadratic residue

²We need q > r in order to have r nonzero numbers $a + c_i$ in \mathbf{F}_q at all.

patterns of length 2 and 3 in \mathbf{F}_p^{\times} . The length 3 counts imply $N_p(\varepsilon_1, \varepsilon_2, \varepsilon_3) = p/8 + O(\sqrt{p})$ in all cases (and it is p/8 + O(1) for $p \equiv 3 \mod 4$).

Davenport considered this counting problem for $r \geq 4$ throughout the 1930s. In [2] he showed $|N_p(\varepsilon_1,\ldots,\varepsilon_r)-p/2^r|=O_r(p^{3/4})$ for r=4 and 5 by ad hoc methods that did not extend easily to $r\geq 6$. In [3] he used other tricks for $6\leq r\leq 9$ that led to bounds $O_r(p^{7/8})$ for r=6 and 7, and $O_r(p^{19/20})$ for r=8 and 9, and he could reduce the bound when r=4 from $O_r(p^{3/4})$ to $O_r(p^{2/3})$. Reducing the exponent on p in the O-bound is closely related to bounding the real parts of the zeros of the zeta-function of curves $y^2=f(x)$ over \mathbf{F}_p . Davenport continued to refine his techniques throughout the 1930s, and in [4, Theorem 5] he got a bound of the form $O_r(p^{1-\theta_r})$ for general r with an explicit formula for θ_r that tends to 0 as $r\to\infty$. A definitive bound $O_r(\sqrt{p})$ for all r, coming from the bound in (2.3), was given by Weil [9] (see also [5, Theorem 3.1]) as a consequence of his proof of the Riemann hypothesis for curves over finite fields.

An account of Davenport's work and its influence on Hasse and Mordell is in [7, Sect. 3].

APPENDIX A. EXTENDING THEOREM 2.1 BEYOND THE LEGENDRE SYMBOL

The Weil bound (2.3) for the Legendre symbol on \mathbf{F}_p has a generalization to other multiplicative characters on finite fields: if χ is a nontrivial multiplicative character on \mathbf{F}_q with order $n \geq 2$ and $f(x) \in \mathbf{F}_q[x]$ is monic and not an n-th power, then

(A.1)
$$\left| \sum_{a \in \mathbf{F}_q} \chi(f(a)) \right| \le (r-1)\sqrt{q}.$$

where f(x) has r distinct roots (the roots need not be simple) in a splitting field over \mathbf{F}_q . This is [5, Theorem 3.1]³.

Using (A.1) we will prove the following generalization of Theorem 2.1.

Theorem A.1. Let χ_1, \ldots, χ_r be nontrivial multiplicative characters on \mathbf{F}_q , where χ_i has order $n_i \geq 2$. For r < q, pick distinct c_1, \ldots, c_r in \mathbf{F}_q and an n_i -th root of unity ε_i in \mathbf{C} for $i = 1, \ldots, r$. Set

$$N_q = |\{a \in \mathbf{F}_q : \chi_i(a + c_i) = \varepsilon_i \text{ for } i = 1, \dots, r\}|.$$

Then

$$\left| N_q - \frac{q}{n_1 \dots n_r} \right| < (r - 1)\sqrt{q} + \frac{r}{2}.$$

When q = p and all χ_i are quadratic $(n_i = 2 \text{ for all } i)$, Theorem A.1 becomes Theorem 2.1.

We take r < q in Theorem A.1 because if $r \ge q$ then for each $a \in \mathbf{F}_q$ the numbers $a + c_1, \ldots, a + c_r$ fill up \mathbf{F}_q so one of these is 0, and thus $N_q = 0$, which is uninteresting.

³In [5] it is assumed for (A.1) that f(x) is not an n-th power but it is not explicitly stated that f(x) is not monic too. For non-monic f we get counterexamples to (A.1): if $f(x) = cg(x)^n$ with $c \in \mathbf{F}_q^{\times}$ not an n-th power, then $\sum_{a \in \mathbf{F}_q} \chi(f(a)) = \sum_{a \in \mathbf{F}_q} \chi(cg(a)^n) = \chi(c)(q - \{a \in \mathbf{F}_q : g(a) \neq 0\})$, so $|\sum_{a \in \mathbf{F}_q} \chi(f(a))| = q - |\{a \in \mathbf{F}_q : g(a) \neq 0\}| \geq q - r$, which contradicts (A.1) if r is small, such as r = 1 ($f(x) = cx^n$) for any q or r = 2 ($f(x) = cx^n(x - 1)^n$) for q > 4.

Proof. For $b \in \mathbf{F}_q^{\times}$, a nontrivial multiplicative character χ on \mathbf{F}_q^{\times} of order n, and an n-th root of unity ε in \mathbf{C} , the finite geometric series of n terms with ratio $\chi(b)/\varepsilon$ equals

$$1 + \frac{\chi(b)}{\varepsilon} + \left(\frac{\chi(b)}{\varepsilon}\right)^2 + \ldots + \left(\frac{\chi(b)}{\varepsilon}\right)^{n-1} = \begin{cases} n, & \text{if } \chi(b) = \varepsilon, \\ 0, & \text{if } \chi(b) \neq \varepsilon, \end{cases}$$

SO

$$\frac{1}{n}\left(1+\frac{\chi(b)}{\varepsilon}+\left(\frac{\chi(b)}{\varepsilon}\right)^2+\ldots+\left(\frac{\chi(b)}{\varepsilon}\right)^{n-1}\right)=\begin{cases}1, & \text{if } \chi(b)=\varepsilon,\\0, & \text{if } \chi(b)\neq\varepsilon,\end{cases}$$

which generalizes (2.1). Therefore

$$N_q = \sum_{\substack{a \in \mathbf{F}_q \\ \text{all } a+c_i \neq 0}} \prod_{i=1}^r \frac{1}{n_i} \left(1 + \frac{\chi_i(a+c_i)}{\varepsilon_i} + \left(\frac{\chi_i(a+c_i)}{\varepsilon_i} \right)^2 + \dots + \left(\frac{\chi_i(a+c_i)}{\varepsilon_i} \right)^{n_i-1} \right).$$

This sum over \mathbf{F}_q is missing terms at those a for which $a+c_j=0$ for some j. For such an a, the product over $1 \le i \le r$ associated to it in the above formula would be 0 or $1/n_j$, so we can write N_q as a sum over all of \mathbf{F}_q by including an additional error term:

$$N_{q} = \sum_{a \in \mathbf{F}_{q}} \prod_{i=1}^{r} \frac{1}{n_{i}} \left(1 + \frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} + \left(\frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} \right)^{2} + \dots + \left(\frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} \right)^{n_{i}-1} \right) + e$$

$$= \frac{1}{n_{1} \cdots n_{r}} \sum_{a \in \mathbf{F}_{q}} \prod_{i=1}^{r} \left(1 + \frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} + \left(\frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} \right)^{2} + \dots + \left(\frac{\chi_{i}(a+c_{i})}{\varepsilon_{i}} \right)^{n_{i}-1} \right) + e,$$

where $|e| \leq 1/n_1 + \cdots + 1/n_r \leq r/2$ (since $n_i \geq 2$). Multiplying out all the sums,

$$N_{q} = \frac{1}{n_{1} \cdots n_{r}} \sum_{a \in \mathbf{F}_{q}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\ \text{for all } i}} \frac{\chi_{1}(a+c_{1})^{t_{1}} \cdots \chi_{r}(a+c_{r})^{t_{r}}}{\varepsilon_{1}^{t_{1}} \cdots \varepsilon_{r}^{t_{r}}} + e$$

$$= \frac{1}{n_{1} \cdots n_{r}} \sum_{\substack{0 \leq t_{i} \leq n_{i}-1 \\ t_{r} \text{ on all } i}} \frac{1}{\varepsilon_{1}^{t_{1}} \cdots \varepsilon_{r}^{t_{r}}} \sum_{a \in \mathbf{F}_{q}} \chi_{1}(a+c_{1})^{t_{1}} \cdots \chi_{r}(a+c_{r})^{t_{r}} + e.$$

The inner term when all t_i are 0 is $\sum_{a \in \mathbf{F}_q} 1 = q$, so

$$\left| N_q - \frac{q}{n_1 \cdots n_r} \right| \le \frac{1}{n_1 \cdots n_r} \sum_{\substack{0 \le t_i \le n_i - 1 \\ \text{some } t_i \ne 0}} \left| \sum_{a \in \mathbf{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} \right| + \frac{r}{2}.$$

We will use (A.1) to show each inner sum over \mathbf{F}_q on the right side has magnitude at most $(r-1)\sqrt{q}$, which would give us what we want:

$$\left| N_{q} - \frac{q}{n_{1} \cdots n_{r}} \right| \leq \frac{1}{n_{1} \cdots n_{r}} \sum_{\substack{0 \leq t_{i} \leq n_{i} - 1 \\ \text{some } t_{i} \neq 0}} ((r - 1)\sqrt{q}) + \frac{r}{2}$$

$$= \frac{1}{n_{1} \cdots n_{r}} (n_{1} \cdots n_{r} - 1)(r - 1)\sqrt{q} + \frac{r}{2}$$

$$< (r - 1)\sqrt{q} + \frac{r}{2}.$$

It remains to show

$$\left| \sum_{a \in \mathbf{F}_q} \chi_1(a+c_1)^{t_1} \cdots \chi_r(a+c_r)^{t_r} \right| \le (r-1)\sqrt{q}$$

when $0 \le t_i \le n_i - 1$ with some t_i not 0. Since \mathbf{F}_q^{\times} is cyclic, its character group is cyclic: let χ be a generator of the character group of \mathbf{F}_q^{\times} and write $\chi_i = \chi^{m_i}$ for $m_i \in \mathbf{Z}^+$. Then

$$\sum_{a \in \mathbf{F}_q} \chi_1(a + c_1)^{t_1} \cdots \chi_r(a + c_r)^{t_r} = \sum_{a \in \mathbf{F}_q} \chi(a + c_1)^{t_1 m_1} \cdots \chi(a + c_r)^{t_r m_r}
= \sum_{a \in \mathbf{F}_q} \chi((a + c_1)^{t_1 m_1} \cdots (a + c_r)^{t_r m_r})
= \sum_{a \in \mathbf{F}_q} \chi(f(a)),$$

where $f(x) = (x + c_1)^{t_1 m_1} \cdots (x + c_r)^{t_r m_r}$. This polynomial is monic with r distinct roots. In order to apply (A.1) to bound $|\sum_{a \in \mathbf{F}_q} \chi(f(a))|$, all that remains to be checked is that f(x) is not a (q-1)-th power in $\mathbf{F}_q[x]$ (since χ has order q-1). That is equivalent, since f is monic, to the root multiplicities $t_1 m_1, \ldots, t_r m_r$ not all being multiples of q-1.

Having $(q-1) \mid t_i m_i$ is the same as having $(q-1)/(q-1, m_i) \mid t_i$ since $(q-1)/(q-1, m_i)$ and $m_i/(q-1, m_i)$ are relatively prime. The order of χ is q-1 and the order of χ_i is n_i , so from $\chi_i = \chi^{m_i}$ we get $n_i = (q-1)/(q-1, m_i)$. Therefore $(q-1) \mid t_i m_i$ is equivalent to $n_i \mid t_i$. Recalling that $0 \le t_i \le n_i - 1$. we can have $n_i \mid t_i$ only if $t_i = 0$. Since some t_i is not 0 this completes the proof that f(x) is not an n-th power.

References

- [1] N. S. Aladov, "Sur la distribution des résidus quadratiques et non-quadratiques d'un nombre premier P dans la suite 1, 2, ..., P 1," (Russian) Mat. Sb. 18 (1896), 61-75. URL http://mi.mathnet.ru/eng/msb/v18/i1/p61.
- [2] H. Davenport, "On the Distribution of Quadratic Residues (mod p)," J. London Math. Society 6 (1931), 49–54.
- [3] H. Davenport, "On the Distribution of Quadratic Residues (mod p) (Second paper)," J. London Math. Society 8 (1933), 46–52.
- [4] H. Davenport, "On Character Sums in Finite Fields," Acta Math. 71 (1939), 99–121.
- [5] E. Kowalski, Exponential sums over finite fields, I: elementary methods. URL https://people.math.ethz.ch/~kowalski/exp-sums.pdf.
- [6] E. Jacobsthal, Anwendungen einer Formel aus der Theorie der quadratischen Reste, Dissertation, Univ. Berlin, 1906. URL https://gdz.sub.uni-goettingen.de/id/PPN317964577.
- [7] P. Roquette, "The Riemann hypothesis in characteristic p, its origin and development. Part 2. The first steps by Davenport and Hasse." Mitt. Math. Ges. Hamburg 22 (2004), 1-68. URL https://www.mathi.uni-heidelberg.de/~roquette/rv2.pdf.
- [8] R. von Sterneck, "On the distribution of quadratic residues and nonresidues of a prime number," (Russian) Mat. Sb. 20 (1898), 269–284. URL http://mi.mathnet.ru/eng/msb/v20/i2/p269.
- [9] A. Weil, "On some exponential sums," Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207.