
QUADRATIC RECIPROCITY IN ODD CHARACTERISTIC

KEITH CONRAD

1. Introduction

Let π be irreducible in F[T ], where F is a finite field with odd characteristic. For instance,
F could be Fp = Z/(p) for a prime p 6= 2. The basic question we ask is: how can we decide
if, for f ∈ F[T ] with f 6≡ 0 mod π, the congruence

f ≡ x2 mod π

is solvable? In alternate notation, we write: when is f ≡ � mod π?

Example 1.1. In F5[T ], is T 2 + 3T + 3 ≡ � mod T 3 + T + 1?

The answer to questions like this can be found with the quadratic reciprocity law in F[T ].
It has a strong resemblance to the quadratic reciprocity law in Z. We restrict to F with odd
characteristic because when F has characteristic 2 every element of F[T ]/(π) is a square,
so our basic question is silly in characteritic 2. (There is a good analogue of quadratic
reciprocity in characteristic 2, but we don’t discuss it here.)

In Section 2, we define the Legendre symbol in F[T ], establish some of its properties, and
state the quadratic reciprocity law. The proof of the law is in Section 3. Some applications
are given in Section 4 and a little history behind the reciprocity law is in Section 5.

Throughout our discussion, F will denote a finite field with odd characteristic and size q.
For a nonzero polynomial f ∈ F[T ], we set

Nf = |F[T ]/(f)| = qdeg f ,

which is the analogue of the absolute value on Z (|Z/(n)| = |n| for n 6= 0). When we make
analogies between F[T ]/(π) and Z/(p), it will be understood that p is an odd prime.

2. The Legendre symbol

Let π be irreducible in F[T ]. The number of nonzero elements in the field F[T ]/(π) is
Nπ − 1 = qdeg π − 1, and squaring is 2-to-1 on these elements, so the number of nonzero
squares in F[T ]/(π) is (Nπ − 1)/2. This is analogous to (p − 1)/2 being the number of
nonzero squares in Z/(p).

Any f 6≡ 0 mod π satisfies fNπ−1 ≡ 1 mod π. Therefore f (Nπ−1)/2 satisfies x2 ≡ 1 mod π,
so f (Nπ−1)/2 ≡ ±1 mod π.

Theorem 2.1. For f 6≡ 0 mod π, f (Nπ−1)/2 ≡ 1 mod π if and only if f mod π is a square.

Proof. This is just like the fact that, for a 6≡ 0 mod p, a(p−1)/2 ≡ 1 mod p if and only if
a ≡ � mod p. We will give details here, but omit proofs of later results that resemble proofs
from the integer case.

If f ≡ g2 mod π, then f (Nπ−1)/2 ≡ gNπ−1 ≡ 1 mod π. So any nonzero square in the field
F[T ]/(π) is a root of X(Nπ−1)/2 − 1. This polynomial has at most (Nπ − 1)/2 roots in a

1



2 KEITH CONRAD

field, and there are (Nπ− 1)/2 nonzero squares in F[T ]/(π), so the roots of the polynomial
are exactly the nonzero squares. �

Definition 2.2. For irreducible π in F[T ] and any f 6≡ 0 mod π, set(
f

π

)
=

{
1, if f ≡ � mod π,

−1, if f 6≡ � mod π.

When f ≡ 0 mod π, set ( fπ ) = 0. We call ( fπ ) a Legendre symbol.

Theorem 2.3. The Legendre symbol satisfies the following properties:

(1) if f1 ≡ f2 mod π, then

(
f1
π

)
=

(
f2
π

)
,

(2) f (Nπ−1)/2 ≡
(
f

π

)
mod π for all f in F[T ],

(3)

(
fg

π

)
=

(
f

π

)( g
π

)
,

(4)

(
f2

π

)
= 1 if f 6≡ 0 mod π.

Proof. The proofs are identical to the classical case in Z, and are left to the reader. The proof
of the second property, which is analogous to Euler’s congruence, uses Theorem 2.1. �

Example 2.4. In F3[T ], the polynomial π(T ) = T 3 − T + 1 is irreducible. We compute
(Tπ ) using Euler’s congruence: (

T

π

)
≡ T (27−1)/2 mod π

≡ T 13 mod π

≡ −1 mod π,

so (Tπ ) = −1.

In the Legendre symbol ( fπ ), the modulus π may without loss of generality be taken to
be monic. When f 6= 0, factor it into a constant times a product of monic irreducibles (not
necessarily distinct):

f = cπ1π2 · · ·πr.
Then (

f

π

)
=
( c
π

)(π1
π

)(π2
π

)
· · ·
(πr
π

)
.

Thus, the general calculation of ( fπ ) is reduced to the case of ( cπ ) for c ∈ F× and (π1π2 ) for
distinct monic irreducibles π1 and π2.

Theorem 2.5. For distinct monic irreducible π1 and π2 in F[T ],

(2.1)

(
π2
π1

)
= (−1)

Nπ1−1
2
·Nπ2−1

2

(
π1
π2

)
.

For c ∈ F× and irreducible π in F[T ],

(2.2)
( c
π

)
= c(Nπ−1)/2.
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Equation (2.1) is the main law of quadratic reciprocity and (2.2) is the supplementary

law. The supplementary law closely resembles the formula (−1p ) = (−1)(p−1)/2. In F[T ]

there is no parallel to the supplementary law for (2p). Theorem 2.5 is proved in Section 3.

Example 2.6. Let’s see an example in F3[T ]. The polynomials T 2 + 1 and T 3 − T + 1 are
both irreducible, with respective norms 9 and 27. Then(

T 2 + 1

T 3 − T + 1

)
= (−1)

9−1
2
· 27−1

2

(
T 3 − T + 1

T 2 + 1

)
=

(
T + 1

T 2 + 1

)
= (−1)

3−1
2
· 9−1

2

(
T 2 + 1

T + 1

)
=

(
2

T + 1

)
= 2(3−1)/2

= 2

= −1.

The calculations are carried out in characteristic 3, which is why 2 = −1.

For computational purposes, it is worthwhile to simplify the exponents appearing in (2.1)
and (2.2). The exponent of −1 only matters modulo 2, and

Nπ − 1

2
=

qdeg π − 1

2

=

(
q − 1

2

)
(1 + q + · · ·+ qdeg π−1)

≡
(
q − 1

2

)
deg π mod 2

since q ≡ 1 mod 2. (Here and below, ( q−12 ) is not a Legendre symbol: its denominator is 2!)
Therefore the exponent of −1 in the main law can be rewritten as(

q − 1

2

)
deg π1 ·

(
q − 1

2

)
deg π2 ≡

(
q − 1

2

)
(deg π1)(deg π2) mod 2

since a2 ≡ a mod 2 for any integer a. For c ∈ F×, we can rewrite the right side of (2.2) as

c(Nπ−1)/2 = c
q−1
2
·(1+q+···+qdeg π−1). Since c(q−1)/2 = ±1, the term 1 + q + · · · + qdeg π−1 only

matters modulo 2, so we can replace each power of q with 1. Thus, quadratic reciprocity is
equivalent to the formulas

(2.3)

(
π2
π1

)
= (−1)(deg π1)(deg π2)(q−1)/2

(
π1
π2

)
,
( c
π

)
= c(deg π)(q−1)/2.

When F = Fp for a prime p 6= 2, then inside F we have c(q−1)/2 = c(p−1)/2 = ( cp), using

the usual Legendre symbol. Thus, the supplementary law in Fp[T ] takes on the form

(2.4)
( c
π

)
=

(
c

p

)deg π

.
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The expression of the main law in (2.3), rather than in (2.1), is the form in which we
will prove it. We wrote the main law originally as in (2.1) rather than as in (2.3) to make
clearer the resemblance to the classical case of the integers: the main law in (2.3) merely
looks similar to the integer case, while (2.1) looks exactly like the integer case.

From (2.3), we draw an immediate corollary.

Corollary 2.7. Let q be the size of F. Using the notation of Theorem 2.5, (π2π1 ) = (π1π2 ) if

q ≡ 1 mod 4 or if π1 or π2 has even degree. If deg π is even then ( cπ ) = 1.

For example, the main law in F5[T ] is (π2π1 ) = (π1π2 ), with no extra power of −1 floating
around.

3. Proof of the reciprocity law

We start with a proof of the supplementary law for ( cπ ). By Euler’s congruence,

(3.1)
( c
π

)
≡ c(Nπ−1)/2 mod π.

Both sides are in F, so their congruence modulo π must be equality in F and the supple-
mentary law drops out.

To prove the main law (2.1), we will use the following four background facts about finite
fields, where q = |F|.

(1) If f(T ) ∈ F[T ], then f(T )q = f(T q), and more generally f(T )q
k

= f(T q
k
) for k ≥ 0.

(2) For any nonconstant f(T ) ∈ F[T ], there is a field F ⊃ F such that f(T ) has a full
set of roots in F :

f(T ) = c(T − r1)(T − r2) · · · (T − rd).

For example, let f(T ) = T 2 + 1 in F3[T ]. Let F = F3[y]/(y2 + 1). In F [T ],
f(T ) = (T + y)(T − y).

(3) When π is irreducible of degree m in F[T ], with root r in some field F ⊃ F, then

all the roots are r, rq, · · · , rqm−1
. Therefore in F [T ],

π(T ) = c(T − r)(T − rq) · · · (T − rqm−1
).

For example, let f(T ) = T 2 + 1 in F3[T ]. Let F = F3[y]/(y2 + 1). In F [T ],
f(T ) = (T − y)(T − y3) since y3 = −y.

(4) When f(T ) ≡ g(T ) mod π(T ) and r is a root of π(T ) in some field F ⊃ F, then
f(r) = g(r).

For example, in F3[T ], T 4 + T 3 + 1 ≡ T 3 + T 2 mod T 2 + 1. When r2 + 1 = 0,
r4 + r3 + 1 = 2− r and r3 + r2 = 2− r.

Now we are ready to prove the main law of quadratic reciprocity.
Let π1 and π2 be distinct monic irreducibles in F[T ], with respective degrees m and n.

There is a field F ⊃ F containing a full set of roots for both π1 and π2. Let α ∈ F be a
root of π1 and β be a root of π2. Then

(3.2) π1(T ) = (T − α)(T − αq) · · · (T − αqm−1
)

and

(3.3) π2(T ) = (T − β)(T − βq) · · · (T − βqn−1
).
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From the congruence (π1π2 ) ≡ π1(T )(Nπ2−1)/2 mod π2(T ), set T = β to get

(3.4)

(
π1
π2

)
= π1(β)(Nπ2−1)/2

in F . (The left side is a constant ±1, so it does not change when we substitute β for T .)
Similarly,

(3.5)

(
π2
π1

)
= π2(α)(Nπ1−1)/2

in F . Now we use the factorizations of π1(T ) and π2(T ) over F . From (3.2) and (3.4),(
π1
π2

)
= π1(β)(q

n−1)/2

= π1(β)(1+q+···+q
n−1)(q−1)/2

= (π1(β)π1(β)q · · ·π1(β)q
n−1

)(q−1)/2

= (π1(β)π1(β
q) · · ·π1(βq

n−1
))(q−1)/2

= ((β − α)(β − αq) · · · (β − αqm−1
)

(βq − α)(βq − αq) · · · (βq − αqm−1
)

...

(βq
n−1 − α)(βq

n−1 − αq) · · · (βqn−1 − αqm−1
))(q−1)/2

and from (3.3) and (3.5),(
π2
π1

)
= ((α− β)(α− βq) · · · (α− βqn−1

)

(αq − β)(αq − βq) · · · (αq − βqn−1
)

...

(αq
m−1 − β)(αq

m−1 − βq) · · · (αqm−1 − βqn−1
))(q−1)/2.

The terms in these formulas for (π1π2 ) and (π2π1 ) agree up to systematic minus signs. There
are a total of mn minus signs to get the two formulas to match, so

(3.6)

(
π2
π1

)
= (−1)mn(q−1)/2

(
π1
π2

)
.

The exponent of −1 in (3.6) matches the exponent in (2.3), which concludes the proof of
quadratic reciprocity.

All the usual consequences of quadratic reciprocity in Z carry over to F[T ]. We give some
concrete calculations in Fp[T ] as illustrations, using (2.3) and (2.4).
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Example 3.1. We return to Example 1.1: is T 2 + 3T + 3 ≡ � mod T 3 + T + 1 in F5[T ]?
In F5[T ], (π1π2 ) = (π2π1 ). Both T 2 + 3T + 3 and T 3 + T + 1 are monic irreducibles, so(

T 2 + 3T + 3

T 3 + T + 1

)
=

(
T 3 + T + 1

T 2 + 3T + 3

)
=

(
2T

T 2 + 3T + 3

)
=

(
2

T 2 + 3T + 3

)(
T

T 2 + 3T + 3

)
=

(
2

5

)2(T 2 + 3T + 3

T

)
=

(
3

T

)
=

(
3

5

)
= −1,

so T 2 + 3T + 3 6≡ � mod T 3 + T + 1.

Example 3.2. Is 2T 2 + 1 ≡ � mod T 3 + T + 1 in F5[T ]? The modulus T 3 + T + 1 is
irreducible. By quadratic reciprocity,(

2T 2 + 1

T 3 + T + 1

)
=

(
2(T 2 + 3)

T 3 + T + 1

)
=

(
2

T 3 + T + 1

)(
T 2 + 3

T 3 + T + 1

)
=

(
2

5

)3(T 3 + T + 1

T 2 + 3

)
= −

(
3T + 1

T 2 + 3

)
= −

(
3

T 2 + 3

)(
T + 2

T 2 + 3

)
= −

(
3

5

)2(T 2 + 3

T + 2

)
= −

(
2

T + 2

)
= −

(
2

5

)
= 1,

so 2T 2 +1 mod T 3 +T +1 is a perfect square. By brute force, a square root is 3T 2 +3T +2.

A Jacobi symbol on F[T ] can be defined in the usual way. For f and g in F[T ], with
deg g > 0, factor g = cπ1π2 · · ·πs with c ∈ F× and monic irreducible πi (not necessarily
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distinct). Set (
f

g

)
=

(
f

π1

)(
f

π2

)
· · ·
(
f

πs

)
.

Here is the main law and the supplementary law of Jacobi reciprocity:

(3.7)

(
f

g

)
= (−1)

Nf−1
2
·Ng−1

2

(
g

f

)
for monic relatively prime nonconstant f and g, and

(3.8)

(
c

g

)
= c(Ng−1)/2

for c ∈ F× and nonconstant g. The proofs are left to the reader.
Versions of (3.7) and (3.8) that are better for computations are

(3.9)

(
f

g

)
= (−1)(deg f)(deg g)(q−1)/2

(
g

f

)
,

(
c

g

)
= c(deg g)(q−1)/2.

In particular, when q ≡ 1 mod 4, (3.7) simplifies to (fg ) = ( gf ). When F = Fp, so nonzero

constants can be viewed as integers modulo p, the supplementary law (3.8) can be rewritten
as

(3.10)

(
c

g

)
=

(
c

p

)deg g

.

4. Applications

We give applications of the Jacobi reciprocity law in F[T ], both computational and
theoretical, which correspond to some basic applications of Jacobi reciprocity in Z.

Example 4.1. In F3[T ], is the quadratic congruence x2 +Tx+T + 1 ≡ 0 mod T 3 +T 2− 1
solvable?

The modulus T 3 + T 2 − 1 is irreducible. Denote it by π. Solvability of the congruence
for x is equivalent to the discriminant being a square. The discriminant is T 2 − 4(T + 1) =
T 2 − T − 1. We compute (

T 2 − T − 1

T 3 + T 2 − 1

)
=

(
T 3 + T 2 − 1

T 2 − T − 1

)
=

(
1

T 2 − T − 1

)
= 1,

so the congruence has solutions. An explicit search finds them: T 2 + 2T + 2 and 2T 2 + 1.

For fixed nonzero a ∈ Z, the condition (ap ) = 1 can be converted by the quadratic

reciprocity law into congruence conditions on odd primes p that don’t divide a. Reciprocity
in F[T ] leads to similar results for polynomials.

Example 4.2. In F3[T ], we will describe the condition (T
3−T
π ) = 1 in terms of congruences

on monic irreducible π not dividing T 3 − T and a parity constraint on deg π. In fact, since
we are going to use Jacobi reciprocity, there is nothing special about a prime denominator.
For any monic nonconstant g in F3[T ] that is relatively prime to T 3 − T , we analyze the

condition (T
3−T
g ) = 1.
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By (3.9) and (3.10) in F3[T ],(
T 3 − T
g

)
= (−1)deg g

(
g

T 3 − T

)
= (−1)deg g

( g
T

)( g

T − 1

)(
g

T + 1

)
= (−1)deg g

(
g(0)

3

)(
g(1)

3

)(
g(2)

3

)
= (−1)deg g

(
g(0)g(1)g(2)

3

)
.

Letting g run through the 8 units of F3[T ]/(T 3−T ), we get the value 1 under the following
conditions:

(4.1) deg g is even and g ≡ 1, T 2 + 1, T 2 + T + 2, T 2 + 2T + 2 mod T 3 − T
and

(4.2) deg g is odd and g ≡ 2, 2T 2 + 2, 2T 2 + 2T + 1, 2T 2 + T + 1 mod T 3 − T.

Thus, for monic g in F3[T ] that is relatively prime to T 3 − T , we have (T
3−T
g ) = 1 if and

only if g satisfies either (4.1) or (4.2).

When a is a fixed squarefree integer, the Jacobi symbol ( an) as a function of n > 1 has
period |a| if a ≡ 1 mod 4 and period 4|a| if a ≡ 2, 3 mod 4. Here is a polynomial analogue.

Theorem 4.3. When f is a fixed squarefree nonconstant polynomial in F[T ] or a nonsquare

constant in F×, the Jacobi symbol (fg ) as a function of nonconstant monic g relatively prime

to f satisfies

(4.3) g1 ≡ g2 mod f, deg g1 ≡ deg g2 mod 2 =⇒
(
f

g1

)
=

(
f

g2

)
,

and we can’t replace the modulus f by a smaller degree polynomial.

Proof. When f = c is a constant nonsquare in F, (fg ) = c(deg g)(q−1)/2 = (−1)deg g by the

supplementary law, so the result is clear. Now take f to be a squarefree nonconstant
polynomial. Then (4.3) follows from the main law of Jacobi reciprocity.

To show f is the smallest modulus of periodicity, we show for any monic irreducible factor
of f , say π, that f/π is not a modulus of periodicity. (The minimal modulus of periodicity
divides f .) If f/π were a modulus of periodicity, then whenever g is monic with even degree

and g ≡ 1 mod f/π, we would have (fg ) = 1. (Use g1 = g and g2 = 1 + f2 in (4.3).) We are

going to find g such that (fg ) = −1 while g is monic of even degree and g ≡ 1 mod f/π.

Let h mod π be a nonsquare in F[T ]/(π). Let g be a monic polynomial satisfying the
conditions

g ≡ h mod π, g ≡ 1 mod f/π, deg g ≡ 0 mod 2.

(We solve the first two congruences using the Chinese remainder theorem and then make
the solution monic with even degree by adding a suitable multiple of f to the solution.)
Then (

f

g

)
=

(
g

f

)
=
( g
π

)( g

f/π

)
=

(
h

π

)(
1

f/π

)
= −1.

�
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When a is not a square in Z, there are infinitely many primes p such that (ap ) = −1. We

will prove this by Jacobi reciprocity and then adapt that proof to F[T ].

Theorem 4.4. Let a be an integer that is not a perfect square. Then there are infinitely
many primes p such that (ap ) = −1.

Proof. Let a = bc2, where b is a squarefree. Then b 6= 1. We have (ap ) = ( bp) for all p not

dividing a, so it suffices to prove the theorem with b in place of a. That is, we can assume
a is squarefree and a 6= 1. To show (ap ) = −1 for infinitely many p, we consider four cases:

a = −1, a = 2, a = −2, and a has an odd prime factor.
First we treat the cases a = −1, a = 2 and a = −2. For odd prime p,(

−1

p

)
= 1 ⇐⇒ p ≡ 1 mod 4,(

2

p

)
= 1 ⇐⇒ p ≡ 1, 7 mod 8,(

−2

p

)
= 1 ⇐⇒ p ≡ 1, 3 mod 8,

so to show the equations (−1p ) = −1, (2p) = −1, and (−2p ) = −1 each hold for infinitely

many p, it suffices to show there are infinitely many primes p ≡ 3 mod 4 (so (−1p ) = −1)

and there are infinitely many primes p ≡ 5 mod 8 (so (2p) = −1 and (−2p ) = −1).

p ≡ 3 mod 4: One such prime is 3. If p1, . . . , pr are primes ≡ 3 mod 4, let

N = 4p1p2 · · · pr − 1 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Since N ≡ −1 ≡ 3 mod 4, the prime
divisors of N are not all 1 mod 4 (otherwise N ≡ 1 mod 4). Therefore N has a prime divisor
p that is ≡ 3 mod 4. This prime is different from p1, . . . , pr, so there are infinitely many
primes ≡ 3 mod 4.
p ≡ 5 mod 8: One such prime is 5. If p1, . . . , pr are primes ≡ 5 mod 8, let

N = (2p1p2 · · · pr)2 + 1 > 1.

Then N is not divisible by 2 or by any of p1, . . . , pr. Let p be any prime factor of N . From
N ≡ 0 mod p we get −1 ≡ (2p1p2 · · · pr)2 mod p, so −1 ≡ � mod p. Therefore, since p 6= 2,
we have p ≡ 1 mod 4, which is the same as p ≡ 1 or 5 mod 8. If every prime factor of
N is 1 mod 8, then N ≡ 1 mod 8, but in fact N ≡ 5 mod 8 since p2i ≡ 1 mod 8 for all i.
Therefore some prime factor of N is not 1 mod 8, so that prime is 5 mod 8. This prime is
different from p1, . . . , pr, so there are infinitely many primes ≡ 5 mod 8.

Now we want to show (ap ) = −1 for infinitely many p when a is squarefree with an odd

prime factor. Assume we have primes p1, . . . , pr such that ( api ) = −1 for i = 1, . . . , r. We

want to find a new prime with this property.
Write a = (−1)e02e1a′, where a′ is a positive odd number. For any odd m > 0,( a

m

)
=

(
−1

m

)e0 ( 2

m

)e1 (a′
m

)
=

(
−1

m

)e0 ( 2

m

)e1
(−1)(m−1)/2·(a

′−1)/2
(m
a′

)
.

If also m ≡ 1 mod 8, then ( am) = (ma′ ).
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Pick an odd prime factor ` of a′ and write a′ = `a′′, so ` and a′′ are relatively prime.
Then (ma′ ) = (m` )(ma′′ ). The constraint (m` ) = −1 is a set of mod ` congruence conditions on
m. By the Chinese remainder theorem, we can find an m ∈ Z satisfying

m ≡ 1 mod 8p1 · · · pr,
(m
`

)
= −1, m ≡ 1 mod a′′.

(When r = 0, interpret the empty product p1 · · · pr as 1.) Adding a high multiple of
8p1 · · · pr`a′′ = 8p1 · · · pra′ to m doesn’t change the congruence conditions on it but can
make m positive. So there is an m that fits all the congruence conditions and is positive.
For such an m, ( a

m

)
=
(m
a′

)
=
(m
`

)(m
a′′

)
=
(m
`

)( 1

a′′

)
= −1.

Therefore (ap ) = −1 for some prime factor p of m. Since m is divisible by p but m ≡ 1 mod pi
by construction, p is not one of p1, . . . , pr. Thus p is a new prime such that (ap ) = −1, so

we are done. �

Theorem 4.5. If f ∈ F[T ] is not a square, then ( fπ ) = −1 for infinitely many monic
irreducible π.

Proof. Suppose first that f = c is constant. Then c is a nonsquare in F×, so c(q−1)/2 = −1.
Thus ( cπ ) = (−1)deg π. There are infinitely many monic irreducibles with odd degree (there
is at least one of each degree, for instance), so we’re done.

Now suppose f is nonconstant. Write f = cf1 where c ∈ F× and f1 is monic. For any g
that is monic, relatively prime to f , and of even degree,

(4.4)

(
f

g

)
=

(
c

g

)(
f1
g

)
=

(
g

f1

)
.

Let π be a monic irreducible factor of f1 and write f1 = πf̃ , so π and f̃ are relatively prime.
Let h mod π be a nonsquare, so (hπ ) = −1.

Assume by induction that we have monic irreducibles π1, . . . , πr such that ( fπi ) = −1. As
in the proof of Theorem 4.3, we can pick a polynomial g that is monic, of even degree, and
additionally satisfies

g ≡ h mod π, g ≡ 1 mod π1 · · ·πrf̃ .
Then ( gf1 ) = ( gπ )( g

f̃
) = (hπ )( 1

f̃
) = −1, so (fg ) = −1 by (4.4). Since (fg ) is multiplicative

in g, there is a monic irreducible πr+1 dividing g such that ( f
πr+1

) = −1. Since g is

divisible by πr+1 and is relatively prime to π1 · · ·πr, πr+1 is not equal to any of π1, . . . , πr.
So by induction we have shown there are infinitely many monic irreducible πi such that
( fπi ) = −1. �

5. History

The first statement of the quadratic reciprocity law in F[T ] (with F of odd characteristic)
was given by Dedekind [2] in 1857. Dedekind omitted a proof since he felt one of Gauss’
proofs carried over essentially unchanged. A proof was published in 1902 by Kühne [4] using
a polynomial analogue of Gauss’ lemma for the Legendre symbol. In 1924, E. Artin [1]
proved the law using the theory of quadratic fields over F(T ). In 1928, F. K. Schmidt [8]
proved the law using resultants (which is essentially the proof we gave here). A proof using
theta functions was given by Merrill and Walling [6] in 1996.
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For further information on number theory in F[T ], see [7] and [9]. A detailed treatment
of reciprocity laws is in [5].
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