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1. Introduction

Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law
in F[T ] lets us decide whether or not a quadratic congruence f ≡ x2 mod π is solvable,
where the modulus π is irreducible in F[T ] and f 6≡ 0 mod π. This is similar to the
quadratic reciprocity law in Z. We want to develop an analogous reciprocity law when F
has characteristic 2.

At first it does not seem that there is an analogue: when F has characteristic 2, every
element of the finite field F[T ]/π is a square, so the congruence f ≡ x2 mod π is always
solvable (and uniquely, at that). This is uninteresting. The correct quadratic congruence
to try to solve in characteristic 2 is

f ≡ x2 + x mod π.

One reason that x2 + x in characteristic 2 is the right analogue of x2 outside of charac-
teristic 2 is that both are related to normalized quadratic polynomials with distinct roots.
Outside of characteristic 2, any quadratic polynomial h(x) = x2 +ax+ b can have its linear
term removed by completing the square:

x2 + ax+ b =
(
x+

a

2

)2
+ b− a2

4
,

which, after rewriting x+a/2 as x, looks like x2−d for d = (a2− 4b)/4. Note a2− 4b is the
discriminant of h(x), so the polynomial has distinct roots (possibly lying in a larger field)
exactly when d 6= 0.

In characteristic 2, a quadratic polynomial with distinct roots must have a linear term,
since a double root r (possibly in a larger field) yields a polynomial

(x− r)2 = x2 − r2,
where the linear term does not occur. Given a quadratic h(x) = x2 + ax + b with a linear
term, so a 6= 0, we can’t complete the square but we can simplify the shape of the polynomial
as

h(x)

a2
=
(x
a

)2
+
x

a
+

b

a2
.

Rewriting x/a as x, this polynomial has the form x2 +x+ c. This passage from x2 + ax+ b
to x2 + x+ c is the characteristic 2 analogue of completing the square.

While squaring is multiplicative ((xy)2 = x2y2), the function ℘(x) = x2 +x in character-
istic 2 is additive:

℘(x+ y) = (x+ y)2 + x+ y = x2 + y2 + x+ y = ℘(x) + ℘(y).

Also,

℘(x)2 = (x2 + x)2 = x4 + x2 = ℘(x2),
1
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so ℘ commutes with squaring. For fields F , squaring on F× (multiplicative group) outside
of characteristic 2 is analogous to applying ℘ on F (additive group) in characteristic 2. For
instance, if r is a root of x2 = a and a 6= 0 then the two roots are ±r, while in characteristic
2 if r is a root of x2 + x = a (any a) then the roots are r and r + 1. The role of {±1}
(solutions to x2 = 1) outside of characteristic 2 is played by {0, 1} (solutions to x2 +x = 0)
in characteristic 2. Table 1 summarizes the analogies.

charF 6= 2 charF = 2
F× F
x2 ℘(x)

x2 − d, d 6= 0 ℘(x) + c
x2 = y2 ⇔ x = ±y ℘(x) = ℘(y)⇔ x = y or y + 1

±1 0, 1
Table 1. Analogies in characteristic 2

Here is an outline of the remaining sections. In Section 2, we define a quadratic residue
symbol on F[T ] when F has characteristic 2, verify a few of its properties, and state the
quadratic reciprocity law on F[T ]. Section 3 defines the trace on finite fields and shows its
relevance to the characteristic 2 quadratic residue symbol. The quadratic reciprocity law is
proved in Section 4 and applications are given in Section 5. A second proof of the quadratic
reciprocity law is given in Section 6 using residues of differential forms. Finally, in Section 7
we generalize quadratic reciprocity in characteristic 2 to p-power reciprocity on F[T ] when
F is a finite field with characteristic p.

The notation F is always meant to be a finite field, which except in Sections 3 and 7 has
characteristic 2.

2. The characteristic 2 quadratic residue symbol

Definition 2.1. For monic irreducible π in F[T ] and any f ∈ F[T ], set

[f, π) =

{
0, if f ≡ x2 + x mod π for some x ∈ F[T ],

1, if f 6≡ x2 + x mod π for any x ∈ F[T ].

The values 0 and 1 for [f, π) are understood to live in characteristic 2.

Example 2.2. In Table 2 we list x2 + x as x runs over F2[T ]/(T 3 + T + 1). For instance,
[T + 1, T 3 + T + 1) = 1 since T + 1 does not occur in the right column.

The classical Legendre symbol ( ·p) for p 6= 2 has its “multiplicative” values ±1 defined on

integers not divisible by p, while we set (ap ) = 0 in the singular case a ≡ 0 mod p in order

that the Legendre symbol is multiplicative in a for all a. By contrast, the symbol [·, π) has
its two “additive” values 0 and 1 defined on all of F[T ] without the need for a third value
to cover any kind of singular case. (This is related to the fact that x2 + x + c never has
multiple roots in characteristic 2 while x2 − d in characteristic not 2 has multiple roots if
d = 0.)

We write the characteristic 2 symbol as [f, π), with a square bracket next to f , because
this symbol will behave additively in f rather than multiplicatively. The notation will serve
as a reminder that the symbol is not multiplicative in f .

To get used to the notation, we prove two quick results.
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x x2 + x mod T 3 + T + 1
0 0
1 0
T T 2 + T

T + 1 T 2 + T
T 2 T

T 2 + 1 T
T 2 + T T 2

T 2 + T + 1 T 2

Table 2. Computing [f, T 3 + T + 1) in F2[T ]

Theorem 2.3. For f ∈ F[T ], the number of solutions to x2 +x ≡ f mod π is 1 + (−1)[f,π).

The sum 1 + (−1)[f,π) is understood to live in characteristic 0. It is either 0 or 2.

Proof. When there is a solution, adding 1 to it gives another solution, so there are two
solutions. In this case, 1 + (−1)[f,π) = 2. When there is no solution, [f, π) = 1 and

1 + (−1)[f,π) = 0. �

Theorem 2.3 is analogous to the formula 1 + (ap ) for the number of solutions to x2 ≡
a mod p when p 6= 2, which holds for all integers a (including a ≡ 0 mod p).

Theorem 2.4. For f and g in F[T ] with f 6≡ 0 mod π, the congruence x2+fx+g ≡ 0 mod π
is solvable if and only if [g/f2, π) = 0, where g/f2 is interpreted as an element of F[T ]/π.

Proof. Solvability of x2+c1x+c2 = 0 in a field of characteristic 2 is equivalent to solvability of
x2+x+c2/c

2
1 = 0 in that field by the characteristic 2 analogue of completing the square. �

Theorem 2.4 is analogous to the solvability of x2 + ax+ b ≡ 0 mod p being equivalent to

(a
2−4b
p ) = 1 when a2 − 4b 6≡ 0 mod p.

Now we will start working out properties of the symbol [f, π) that will help us prove a
reciprocity law for this symbol.

Lemma 2.5. For irreducible π in F[T ], half the elements of F[T ]/π are ℘-values:

|{g2 + g mod π}| = qdeg π

2
,

where q = |F|.

Lemma 2.5 is analogous to the fact that (Z/p)× contains (p− 1)/2 squares when p 6= 2.
Since F[T ]/π has size qdeg π, which is even (q is a power of 2), qdeg π is analogous to the size
of (Z/p)×, which is p− 1.

Proof. For g and h in F[T ],

g2 + g ≡ h2 + h mod π ⇐⇒ (g − h)2 ≡ g − h mod π

⇐⇒ g − h ≡ 0 or 1 mod π

⇐⇒ g ≡ h or h+ 1 mod π.

Therefore the function g mod π 7→ g2 + g mod π is 2-to-1, so the number of values is half
the size of F[T ]/π. �
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Lemma 2.5 is illustrated by Table 2, where 4 out of 8 values occur on the right side, and
each value appearing occurs twice.

Theorem 2.6. The symbol [f, π) has the following properties:

(1) if f1 ≡ f2 mod π then [f1, π) = [f2, π),

(2) [f, π) ≡ f + f2 + f4 + f8 + · · ·+ f q
deg π/2 mod π, where q = |F|,

(3) [f1 + f2, π) = [f1, π) + [f2, π),
(4) [f2 + f, π) = 0, or equivalently [f2, π) = [f, π).

The first property is the analogue of (ap ) only depending on a modulo p. The second

property is an additive analogue of Euler’s congruence (ap ) ≡ a(p−1)/2 mod p. The third

property is analogous to multiplicativity of the Legendre symbol and the fourth property

is analogous to (a
2

p ) = 1 for a 6≡ 0 mod p.

Proof. The first property is immediate from the definition of [f, π).

To show the second property, let g = f + f2 + · · ·+ f q
deg π/2. Since f q

deg π ≡ f mod π,

g2 = f2 + f4 + · · ·+ f q
deg π ≡ g mod π.

Therefore g ≡ 0 or 1 mod π. Writing g in terms of f again,

(2.1) f + f2 + f4 + · · ·+ f q
deg π/2 ≡ 0 or 1 mod π.

(This is analogous to a(p−1)/2 ≡ ±1 mod p when a 6≡ 0 mod p.) Let Sπ(x) = x+ x2 + x4 +

· · · + xq
deg π/2, so (2.1) says the values of Sπ(x) on F[T ]/π are only 0 and 1. We want to

show Sπ(f) ≡ 0 mod π exactly when f is a ℘-value modulo π.
The polynomials Sπ(x) and ℘(x) commute in characteristic 2:

Sπ(℘(x)) = ℘(x) + ℘(x)2 + · · ·+ ℘(x)q
deg π/2

= ℘(x) + ℘(x2) + · · ·+ ℘(xq
deg π/2)

= ℘(x+ x2 + · · ·+ xq
deg π/2)

= ℘(Sπ(x)).

Therefore, for h ∈ F[T ] we have

Sπ(℘(h)) = ℘(Sπ(h)) ≡ 0 mod π

since Sπ(h) ≡ 0 or 1 mod π and ℘ vanishes at 0 and 1. This shows all ℘-values on F[T ]/π
are roots of Sπ(x). The polynomial Sπ(x) has degree qdeg π/2, so it has at most qdeg π/2 roots
in a field. Since there are qdeg π/2 ℘-values on F[T ]/π by Lemma 2.5, the roots of Sπ(x) in
F[T ]/π are exactly the ℘-values. Therefore Sπ(f) ≡ 0 mod π if and only if [f, π) = 0. This
settles the first property of the symbol.

To show [f, π) is additive in f , we use additivity of Sπ(x):

[f1 + f2, π) ≡ Sπ(f1 + f2) mod π

≡ Sπ(f1) + Sπ(f2) mod π

≡ [f1, π) + [f2, π) mod π.

Since [f1 + f2, π) and [f1, π) + [f2, π) are both in {0, 1}, their congruence modulo π implies
their equality.

The final property of the symbol is immediate from its definition, and we can rewrite it
as [f2, π) = [f, π) by additivity. �
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Example 2.7. We compute [T 3 + T, T 3 + T 2 + 1) in F2[T ]. Here q = 2 and deg π = 3.
Reducing the first component modulo the second, the symbol equals [T 2+T+1, T 3+T 2+1),
which is the same as [1, T 3 +T 2 + 1) since T 2 +T has no effect in the left component (like a
square factor in the numerator of a Legendre symbol). By the second property in Theorem
2.6 (“Euler’s congruence”),

[1, T 3 + T 2 + 1) ≡ 1 + 12 + 14 mod T 3 + T 2 + 1,

so the symbol equals 1.

Since the Legendre symbol (ap ) is multiplicative in a, its evaluation is reduced to the

cases when a is −1, 2, or an odd prime q 6= p. These cases are settled by the main law of
quadratic reciprocity for ( qp) (first proved by Gauss) and the two supplementary laws for

(−1p ) and (2p). There is another formulation of the quadratic reciprocity law, in terms of

periodicity in the denominator: for any nonzero integer a and positive primes p and q,

p ≡ q mod 4a =⇒
(
a

p

)
=

(
a

q

)
, p ≡ −q mod 4a =⇒

(
a

p

)
= (sgn a)

(
a

q

)
,

where sgn a is the sign of a. We will call this periodicity Euler’s reciprocity law, since it is
in this form that Euler found the law. It is equivalent to the usual form of the quadratic
reciprocity law (the main law and the two supplementary laws).

Euler’s way of stating quadratic reciprocity for Z does not involve reciprocation, but it
is the better way of thinking about quadratic reciprocity to understand the characteristic 2
situation. The reason is that the characteristic 2 quadratic residue symbol [f, π) is additive
in f , not multiplicative in f , so we can’t reduce its calculation to the case of prime f and a
reciprocation of terms. It turns out, however, that [f, π) is essentially periodic in π. Taking
Euler’s point of view, this periodicity is reasonably called a reciprocity law.

To formulate the way in which [f, π) is periodic in π, we use the following way of turning
polynomials in F[T ] into polynomials in F[1/T ].

Definition 2.8. For nonzero h = cdT
d + cd−1T

d−1 + · · · + c1T + c0 in F[T ] of degree d,
define

h∗ =
h

T d
= cd +

cd−1
T

+ · · ·+ c0
T d
.

Example 2.9. If h = T 5 + T + 1, then h∗ = 1 + 1/T 4 + 1/T 5, not 1 + 1/T + 1/T 5.

Example 2.10. If h = Tn, then h∗ = 1.

Viewing h∗ as a polynomial in F[1/T ], its degree in 1/T is at most the degree of h in T .
There is equality if and only if h(0) 6= 0. For example, if h is any irreducible in F[T ] other
than a scalar multiple of T , then h and h∗ have the same degree as polynomials (in T and
1/T ). Since cd 6= 0, h∗ has nonzero constant term. Thus, as a polynomial in 1/T , any h∗ is
relatively prime to 1/T in F[1/T ].

Here is a preliminary version of the main law of quadratic reciprocity in F[T ].

Theorem 2.11. Let f ∈ F[T ] be nonconstant with degree m ≥ 1 and assume f(0) =
0. Then the symbol [f, π) depends on a congruence condition on π∗. More precisely, for
irreducible π1 and π2 in F[T ],

π∗1 ≡ π∗2 mod 1/Tm+1 =⇒ [f, π1) = [f, π2).
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The irreducibles π1 and π2 in Theorem 2.11 need not be monic.
The reciprocity law in Theorem 2.11 is not quite flexible enough to be used in a systematic

calculation of [f, π). For instance, it doesn’t help us treat the case where f(0) 6= 0. To
handle that, we will need a supplementary law. Moreover, it is better to define a Jacobi-like
symbol [f, g) where g is not necessarily irreducible. This will be carried out in Section 4.

3. Traces

The polynomial Sπ(x) = x + x2 + x4 + x8 + · · · + xq
deg π/2 showed up in the proof of

Theorem 2.6. It was computed on elements of the field F[T ]/π and its values were in the
subfield F2 = {0, 1}. There are similar polynomials defined relative to any extension of
finite fields. We will define them in general, although our eventual application will only be
to characteristic 2.

Definition 3.1. Let F′ ⊃ F be an extension of finite fields, with r = |F| and rd = |F′|.
The trace polynomial from F′ to F is

TrF′/F(x) = x+ xr + xr
2

+ · · ·+ xr
d−1

.

The terms in the trace polynomial are successive iterations of the r-th power map, where
r is the size of the smaller field F, and the total number of terms in the polynomial is d,
where d = [F′ : F]. (The trace can be defined for arbitrary finite extensions of fields, not
necessarily finite fields, but it is not a polynomial function anymore.)

Example 3.2. If c ∈ F then cr
i

= c for all i, so TrF′/F(c) = dc.

Example 3.3. In the proof of Theorem 2.6, Sπ(x) = Tr(F[T ]/π)/F2
(x).

Theorem 3.4. Viewing TrF′/F(x) as a function F′ → F′, it is F-linear and its image is F.

Proof. Since the r-th power map is F-linear on F′, the trace polynomial is an F-linear
function on F′.

For c ∈ F′, cr
d

= c. Therefore TrF′/F(c) satisfies xr = x. The solutions to this equation
in F′ are the elements of F, so TrF′/F(c) ∈ F.

To show TrF′/F takes on every value in F, it suffices by F-linearity to show TrF′/F is not

identically zero. Since it is a polynomial function of degree rd−1, while |F′| > rd−1, it can’t
vanish on all of F′. �

Theorem 3.5. Let F′/F be an extension of finite fields of degree d and let α be a field
generator: F′ = F(α). Then, for c ∈ F and any n ≥ 1, TrF′/F(cαn) is c times the sum of
the n-th powers of the roots of the monic minimal polyomial of α in F[T ]. In particular,
writing this minimal polynomial as T d + cd−1T

d−1 + · · ·+ c0, we have TrF′/F(α) = −cd−1.

Proof. Since α is a field generator for F′ over F, the different roots of its minimal polynomial

in F[T ] are α, αr, αr
2
, . . . , αr

d−1
, and the trace of cαn is the sum of the powers (cαn)r

i
=

c(αr
i
)n for 0 ≤ i ≤ d− 1. Factoring the monic minimal polynomial as

(T − α)(T − αr) · · · (T − αrd−1
),

the sum of the αr
i
’s is the negative of the coefficient of T d−1. �

Theorem 3.6. Let F′′ ⊃ F′ ⊃ F be extensions of finite fields. Then we have the polynomial
identity

TrF′′/F(x) = TrF′/F(TrF′′/F′(x)).
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This property is called transitivity of the trace.

Proof. Let r = |F|, m = [F′ : F], and n = [F′′ : F′]. Then TrF′′/F(x) is the sum of terms

xr
i

for 0 ≤ i ≤ mn− 1. That TrF′/F(TrF′′/F′(x)) is the same sum is left to the reader. �

Corollary 3.7. Let π be irreducible in F[T ], where F has characteristic p. For c ∈ F,
Tr(F[T ]/π)/Fp(c) = TrF/Fp(c) deg π mod p.

Proof. Apply transitivity to the field extensions F[T ]/π ⊃ F ⊃ Fp, noting c ∈ F:

Tr(F[T ]/π)/Fp(c) = TrF/Fp(Tr(F[T ]/π)/F(c))

= TrF/Fp([F[T ]/π : F]c)

= TrF/Fp((deg π)c)

= TrF/Fp(c) deg π mod p.

�

The trace is connected to the quadratic residue symbol in characteristic 2 because Sπ(x)
is a trace. The second property in Theorem 2.6, which involves Sπ(f), is equivalent to

(3.1) [f, π) = Tr(F[T ]/π)/F2
(f mod π).

Using (3.1) and properties of the trace, we now evaluate [f, π) when deg f ≤ 1.

Theorem 3.8. For c ∈ F, [c, π) = TrF/F2
(c) deg π mod 2.

Proof. Use (3.1) and Corollary 3.7. �

Example 3.9. Taking F = F2, [1, π) = deg π mod 2. For instance, [1, T 3 + T + 1) = 3 ≡
1 mod 2. This is consistent with Table 2, where 1 does not occur in the second column.

Theorem 3.10. Write the irreducible π in F[T ] as adT
d+ad−1T

d−1+ · · ·+a0, with ad 6= 0.
Then, for c ∈ F, [cT, π) = TrF/F2

(cad−1/ad).

Proof. Both sides vanish when c = 0, so we may take c ∈ F×.
In the field F[T ]/π, cT is a field generator over F and a minimal polynomial for cT mod π

over F is π(X/c) = (ad/c
d)Xd+(ad−1/c

d−1)Xd−1+ · · ·+a0. Make this monic by division by
ad/c

d, giving Xd + (cad−1/ad)X
d−1 + · · · . Then, by transitivity of the trace and Theorem

3.5, from (3.1) we get

[cT, π) = Tr(F[T ]/π)/F2
(cT )

= TrF/F2
(Tr(F[T ]/π)/F(cT ))

= TrF/F2
(−cad−1/ad).

Since we are in characteristic 2, −1 = 1. �

Example 3.11. In F2[T ], [T, T 3 + T + 1) = 0 since the coefficient of T 2 in T 3 + T + 1 is
0. This is consistent with Table 2, since T ≡ ℘(T 2) mod T 3 + T + 1.

Theorem 3.10 suggests the evaluation of [f, π) is going to be more closely related to the
top terms in π than to the bottom terms. So we don’t expect [f, π), for fixed f and varying
π, to be determined by a congruence condition on π in F[T ]. To turn the top terms of π
into bottom terms of a polynomial, we will work with π∗ in F[1/T ] (Definition 2.8).
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Example 3.12. Fix a polynomial of degree at most one, c0 + c1T ∈ F[T ]. For irreducible
π,

[c0 + c1T, π) = [c0, π) + [c1T, π).

By Theorems 3.8 and 3.10, [c0 + c1T, π) is determined by deg π mod 2 and π∗ mod 1/T 2.

4. The quadratic reciprocity law for F[T ]

The best way to formulate the quadratic reciprocity law in characteristic 2 is not just
in the form of Theorem 2.11 for [f, π), but with a symbol allowing a composite second
coordinate. We extend the second coordinate of our quadratic symbol [·, ·) multiplicatively
(well, “logarithmically”) to all nonzero elements of F[T ]: when g = π1 · · ·πn with irreducible
πi (not necessarily monic or distinct), define

[f, g) := [f, π1) + · · ·+ [f, πn).

This is well-defined in g.
As examples [f, T 3 + 1) = [f, T + 1) + [f, T 2 + T + 1) and [f, Tn) = 0 if n is even. For

instance, [f, 1) = 0.
The following properties of [f, g) are immediate consequences of its definition or of prop-

erties of [f, π):

• if f1 ≡ f2 mod g, then [f1, g) = [f2, g),
• [f1 + f2, g) = [f1, g) + [f2, g),
• [f, g1g2) = [f, g1) + [f, g2),
• [℘(f), g) = 0.

Example 4.1. Write g = adT
d + ad−1T

d−1 + · · · . Then

[c, g) = TrF/F2
(c)(deg g) mod 2, [cT, g) = TrF/F2

(
cad−1
ad

)
since Theorems 3.8 and 3.10 give these formulas when g is irreducible and both sides of the
formulas are logarithmic in g.

To calculate [cT 2, g), write c = b2 for some b ∈ F. Then cT 2 = ℘(bT ) + bT , so [cT 2, g) =
[bT, g).

Here is the statement of quadratic reciprocity, which includes Theorem 2.11 and Example
4.1 as special cases. It is due to Hasse [2].

Theorem 4.2. For fixed f in F[T ], the symbol [f, g) depends on deg g mod 2 and a con-
gruence condition on g∗. More precisely, we have the following.
a) For c ∈ F and nonzero g ∈ F[T ], [c, g) = TrF/F2

(c) deg g mod 2.
b) Suppose f has degree m ≥ 1 and f(0) = 0. For nonzero g1 and g2 in F[T ],

g∗1 ≡ g∗2 mod 1/Tm+1 =⇒ [f, g1) = [f, g2).

In particular, g∗ ≡ 1 mod 1/Tm+1 =⇒ [f, g) = 0.

When F = F2, TrF/F2
is the identity function and part a assumes the simpler form:

[c, g) = cdeg g mod 2 with c = 0 or 1.
Before giving a proof of Theorem 4.2, we illustrate it by making calculations of three

symbols [f, π) on F2[T ]. Pay attention to the way reductions in F2[1/T ] are used.
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Example 4.3. Over F2[T ], we compute [T 3, T 5 + T 3 + 1). (The polynomial T 5 + T 3 + 1 is
irreducible in F2[T ].) Since T 3 has degree 3, Theorem 4.2b tells us to work modulo 1/T 4:

(T 5 + T 3 + 1)∗ ≡ 1 + 1/T 2 mod 1/T 4

≡ (T 2 + 1)∗ mod 1/T 4.

Thus
[T 3, T 5 + T 3 + 1) = [T 3, T 2 + 1) = [T 3, (T + 1)2) = 0.

This means the congruence x2 +x ≡ T 3 mod T 5 +T 3 +1 has a solution in F2[T ]. Searching
by brute force, a solution is T 3 + T 2 + T .

Example 4.4. Over F2[T ], we compute [T 5, π), where π = T 7 + T 3 + T 2 + T + 1. The
reciprocity law tells us to look at π∗ mod 1/T 6:

π∗ ≡ 1 + 1/T 4 + 1/T 5 mod 1/T 6

≡ (T 5 + T + 1)∗ mod 1/T 6.

Thus

[T 5, π) = [T 5, T 5 + T + 1) = [T + 1, T 5 + T + 1) = [T, T 5 + T + 1) + [1, T 5 + T + 1).

From Example 4.1 [1, T 5 + T + 1) = 1 and [T, T 5 + T + 1) = 0 since the coefficient of T 4 in
T 5+T+1 is 0. Therefore [T 5, π) = 1+0 = 1. That means the congruence x2+x ≡ T 5 mod π
has no solution in F2[T ].

It is worth noting that T 5+T+1 is reducible in F2[T ]. It equals (T 2+T+1)(T 3+T 2+1),
so it was useful to have formulas for [1, g) and [T, g) when g is reducible in order to avoid
having to factor the modulus and make the calculation longer.

Since [T 5, π) = 1 and [1, π) = 1 too, [T 5 + 1, π) = 0. Therefore x2 + x ≡ T 5 + 1 mod π
must have solutions, and in fact a solution is T 6 + T 5 + T 3.

Now we prove Theorem 4.2.

Proof. Part a follows immediately from Theorem 3.8, the case of irreducible g, since both
sides turn products into sums through the second coordinate.

For part b, by additivity we only have to treat the case of a monomial f = cTm, where
m ≥ 1. We are going to show, for nonzero g ∈ F[T ], that the symbol [cTm, g) is completely
determined by knowledge of g∗ mod 1/Tm+1.

Suppose first that π is irreducible with distinct roots α1, . . . , αd in a splitting field over
F. (Note d = deg π.) Then

[cTm, π) = Tr(F[T ]/π)/F2
(cTm)

= TrF/F2
(Tr(F[T ]/π)/F(cTm))

= TrF/F2
(c(αm1 + · · ·+ αmd )).

For any nonzero g, summing this formula over the irreducible factors of g gives

(4.1) [cTm, g) = TrF/F2
(c(αm1 + · · ·+ αmd )),

where d = deg g and α1, . . . , αd denote the roots of g counted with multiplicity. Therefore
[cTm, g) is determined by the m-th power sum of the roots of g, counted with multiplicity.
(If g ∈ F×, then this power sum is 0 and [cTm, g) = 0 as well.)

From Newton’s formulas for power sums in terms of elementary symmetric functions,
the m-th power sum pm of the roots is an integral polynomial in the first m elementary
symmetric functions s1, . . . , sm. (For instance, p1 = s1, p2 = s21−2s2, and p3 = s31−3s1s2 +
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3s3.) The first m elementary symmetric functions of the roots of g are determined by the
top m + 1 coefficients of g. All these coefficients can be read off from g∗ mod 1/Tm+1, so
g∗ mod 1/Tm+1 determines [cTm, g). �

Example 4.5. We work out an explicit formula for [cT 3, g) when g = adT
d+ad−1T

d−1+· · ·
and d ≥ 3:

[cT 3, g) = TrF/F2
(cp3)

= TrF/F2
(c(s31 − 3s1s2 + 3s3))

= TrF/F2

(
c

a3d

(
a3d−1 + ad−1ad−2 + ad−3

))
.

For instance, when F = F2, [T 3, T 5 + T + 1) = 0 since d = 5 and ad−1 = ad−3 = 0. This
answer agrees with the calculation in Example 4.3.

Corollary 4.6. Let f(T ) ∈ F[T ] have degree m. For nonzero g1 and g2 in F[T ],

g∗1 ≡ g∗2 mod 1/Tm+1 =⇒ [f, g1) = TrF/F2
(f(0))(deg g1 − deg g2) + [f, g2).

Proof. Write f = f(0) + (f − f(0)) and apply Theorem 4.2a to c = f(0) and Theorem 4.2b
to f − f(0). �

5. Applications

We give characteristic 2 analogues of the following applications of quadratic reciprocity
on Z:

• decide if a particular quadratic equation modulo p has solutions,
• turn the condition ( an) = 1, for a particular choice of a, into an explicit congruence

condition on n when n > 0,
• find the minimal period of (ap ) as a function of p,

• show that, if a is not a square, then (ap ) = −1 for infinitely many p.

Example 5.1. Does the congruence x2 + (T + 1)x+T 5 ≡ 0 mod T 6 +T + 1 have solutions
in F2[T ]?

The modulus is irreducible. Denote it by π. Following the method of proof of Theorem
2.4, we have to decide if x2 + x + T 5/(T + 1)2 ≡ 0 mod π is solvable. The constant term
here is ≡ T 4 + T 3 + T 2 + T + 1, so we must compute [T 4 + T 3 + T 2 + T + 1, π). Since
π∗ ≡ 1 mod 1/T 5, [T i, π) = 0 for 1 ≤ i ≤ 4, so [T 4 + T 3 + T 2 + T + 1, π) = [1, π), which
vanishes since deg π is even. Thus, the original quadratic equation does have solutions. By
a brute force search, the solutions are T 4 + T 2 and T 4 + T 2 + T + 1.

Example 5.2. On F2[T ], describe the condition [T 3 + T, g) = 0 in terms of congruences
on g∗ mod 1/T 4.

In Table 3, we list the units in F2[1/T ]/(1/T 4), a polynomial g in F2[T ] whose ∗-value is
each unit, and the corresponding value of the symbol. From quadratic reciprocity and Table
3, [T 3+T, g) = 0 if and only if g∗ ≡ 1, 1+1/T, 1+1/T 2, or 1+1/T+1/T 2+1/T 3 mod 1/T 4.

When a is a squarefree integer, the minimal period of (ap ) as a function of p is |a| if

a ≡ 1 mod 4 and 4|a| if a 6≡ 2, 3 mod 4. (When a has a square factor, of course the minimal
period of (ap ) is smaller, e.g., (18p ) has period 8.) The characteristic 2 analogue of this

question is whether or not m + 1 = deg f + 1 is the minimal exponent in Theorem 4.2b
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g∗ g [T 3 + T, g)
1 1 0

1 + 1/T T + 1 0
1 + 1/T 2 T 2 + 1 0

1 + 1/T + 1/T 2 T 2 + T + 1 1
1 + 1/T 3 T 3 + 1 1

1 + 1/T + 1/T 3 T 3 + T 2 + 1 1
1 + 1/T 2 + 1/T 3 T 3 + T + 1 1

1 + 1/T + 1/T 2 + 1/T 3 T 3 + T 2 + T + 1 0

Table 3. Computing [T 3 + T, g) in F2[T ]

when f(0) = 0. To answer this, we will use the following characteristic 2 analogue of writing
an integer as a perfect square times either 1 or a squarefree integer.

Lemma 5.3. For any f ∈ F[T ], we can write f = h2 + h + k where h and k are in F[T ],
h(0) = 0, and k is constant or deg k is odd.

Proof. If f is constant or has odd degree, use h = 0 and k = f . Now suppose f has positive
even degree, with leading term cT 2n. Since F is finite with characteristic 2, c is a perfect
square in F×, say c = b2. Let g = bTn, so f − (g2 + g) has degree less than 2n and the
same constant term as f . If the difference is constant or has odd degree we are done. If
the difference has positive even degree, then by induction f − (g2 + g) = h2 + h + k with
h(0) = 0 and k is constant or has odd degree. Then

f = (g + h)2 − (g + h) + k.

�

In the notation of Lemma 5.3, [f, g) = [k, g), so the study of the symbol [f, ·) can always
suppose f is constant or has odd degree. For example, T 6 + T = ℘(T 3) + T 3 + T , so

[T 6 + T, g) = [T 3 + T, g)

for all g. The h and k in Lemma 5.3 are uniquely determined by f , but we don’t need this
and omit the proof.

Theorem 5.4. Let f ∈ F[T ] have degree m ≥ 1 and f(0) = 0. If deg f is even, then [f, g)
is determined by g∗ mod 1/T d+1 for some d < m. If deg f is odd, then [f, g) is determined
by g∗ mod 1/Tm+1 and m+ 1 is the smallest exponent possible.

Proof. Assume m > 0 is even. Write f = h2+h+k as in Lemma 5.3. Then k(0) = f(0) = 0
and [f, ·) = [k, ·). If k = 0 then [f, ·) is identically 0 and we are done. Otherwise k is
nonconstant and Theorem 4.2b says [f, g) = [k, g) is determined by g∗ mod 1/T d+1 where
d = deg k < deg f .

Now assume m is odd. By Theorem 4.2b, [f, g) is determined by g∗ mod 1/Tm+1. To see
m+ 1 is minimal, we will find g ∈ F[T ] such that g∗ ≡ 1 mod 1/Tm and [f, g) = 1.

Write f = amT
m + · · · + a1T . We will use g = b + Tm, with b ∈ F to be determined.

Note g∗ ≡ 1 mod 1/Tm. We will show

(5.1) [f, b+ Tm) = TrF/F2
(amb).
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Since amb runs over F as b runs over F, and TrF/F2
: F → F2 is onto, [f, b + Tm) = 1 for

some (nonzero) b and we’d be done.
To verify (5.1), we will check [aTm, b+Tm) = TrF/F2

(ab) for a ∈ F while [aTn, b+Tm) = 0
for a ∈ F and 1 ≤ n < m. Since m is odd, b + Tm has distinct roots in a splitting field
over F. Write the roots as α1, . . . , αm. Let ζ be a root of unity of order m, so we can take
αi = α1ζ

i−1 for i = 1, 2, . . . ,m. Then, for a ∈ F and 1 ≤ n ≤ m, (4.1) gives us

[aTn, b+ Tm) = TrF/F2
(a(αn1 + · · ·+ αnm))

= TrF/F2
(aαn1 (1 + ζn + · · ·+ ζ(m−1)n)).

If 1 ≤ n < m, then
∑m−1

i=0 ζin = 0 so [aTn, b+ Tm) = 0. If n = m, then
∑m−1

i=0 ζin = m and
[aTm, b+Tm) = TrF/F2

(aαm1 m) = TrF/F2
(abm). Since m is an odd integer, it can be taken

out of the trace and then equals 1 in characteristic 2. �

For any non-square a ∈ Z, (ap ) = −1 for infinitely many primes p. That is, a non-square

in Z will be detected as a non-square modulo many primes p. This is proved using Jacobi
reciprocity in [3, Theorem 3, p. 57]. Now we give an analogue in characteristic 2 with a
similar argument.

Theorem 5.5. Let f ∈ F[T ]. If f 6= h2 + h for any h ∈ F[T ], then [f, π) = 1 for infinitely
many monic irreducible π.

Proof. By our hypotheses and Lemma 5.3, f = h2 + h + k for some h and some k that is
constant or of odd degree. Since [f, π) = [k, π) for all π, we may suppose f is constant or
of odd degree.

Case 1: f = c is constant. Then for irreducible π, [c, π) = TrF/F2
(c) deg π mod 2. If

TrF/F2
(c) = 0, then [c, T ) = 0, so c ≡ a2 + a mod T for some a ∈ F. Then c = a2 + a in F,

which contradicts our hypothesis on f , so TrF/F2
(c) = 1. Therefore [c, π) ≡ deg π mod 2,

and this is 1 infinitely often by letting π run through monic irreducibles with odd degree.
Case 2: f has odd degree, say m. Let the leading term of f(T ) be aTm. Write

[f, g) = [f(0), g) + [f − f(0), g)

= TrF/F2
(f(0))(deg g) + [f − f(0), g).

For g = b+ Tm (where m = deg f), we have by (5.1)

[f − f(0), b+ Tm) = TrF/F2
(ab).

Therefore

[f, b+ Tm) = TrF/F2
(f(0))m+ Tr(ab) = TrF/F2

(f(0)) + Tr(ab).

If f(0) has trace 0, pick b so that ab has trace 1. If f(0) has trace 1, use b = 0. In either
case we have found a g such that [f, g) = 1, so [f, π) = 1 for one of the monic irreducible
factors π of g.

Now assume we have monic irreducible π1, . . . , πr such that [f, πi) = 1 for all i. For
b ∈ F, suppose we can find a g ∈ F[T ] such that

(5.2) deg g is odd , g∗ ≡ 1 + b/Tm mod 1/Tm+1, (g, πi) = 1 for all i.

(We will explain how to find g later.) Since g∗ ≡ 1 mod 1/Tm, [cT i, g) = 0 for 1 ≤ i ≤ m−1,
so

[f, g) = [f(0), g) + [aTm, g) = TrF/F2
(f(0))(deg g) + [aTm, g).
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Since g has odd degree and g∗ ≡ (Tm + b)∗ mod 1/Tm+1,

[f, g) = TrF/F2
(f(0)) + [aTm, Tm + b) = TrF/F2

(f(0)) + TrF/F2
(ab).

Depending on whether the trace of f(0) is 0 or 1, b can be chosen so [f, g) = 1. Then
[f, π) = 1 for some monic irreducible π dividing g. As g is relatively prime to the πi’s, this
π is not equal to any of the πi’s by (5.2). Write π as πr+1 and repeat the argument again,
so we get [f, π) = 1 for infinitely many monic irreducible π.

It remains to construct g satisfying (5.2). The idea is to turn all conditions on g in (5.2)
into conditions on g∗ and then apply results from the polynomial ring F[1/T ].

The correspondence from polynomials g ∈ F[T ] with g(0) 6= 0 to their images g∗ ∈ F[1/T ]
is a bijection between polynomials with nonzero constant terms in F[T ] and F[1/T ]. This
correspondence preserves degrees (that is, the degree of g in T and the degree of g∗ in 1/T
are equal) and is multiplicative ((g1g2)

∗ = g∗1g
∗
2). In particular, irreducible polynomials

with nonzero constant terms in F[T ] and F[1/T ] correspond to each other under g 7→ g∗.
Letting M = π1π2 · · ·πr, if g(0) 6= 0 then (g,M) = 1 in F[T ] if and only if (g∗,M∗) = 1 in
F[1/T ].

Thus, replace (5.2) with

deg g∗ is odd , g∗ ≡ 1 + b/Tm mod 1/Tm+1, (g∗,M∗) = 1 for all i.

Since M∗ has nonzero constant term in F[1/T ], it is relatively prime to 1/T . We therefore
can solve

G ≡ 1 + b/Tm mod 1/Tm+1, G ≡ 1 mod M∗

for some G ∈ F[1/T ] by the Chinese remainder theorem in F[1/T ]. By adding a suitable
multiple of (1/Tm+1)M∗ to G, we can arrange that G has odd degree in 1/T . Since G = g∗

for a polynomial g ∈ F[T ] with nonzero constant term, this g satisfies (5.2). �

6. A proof of Theorem 4.2b by residues

Theorem 4.2 is essentially the Artin reciprocity law for quadratic extensions of a rational
function field in characteristic 2. The proof of the general Artin reciprocity law in charac-
teristic p for abelian extensions of degree divisible by p uses residues of differential forms.
Here is a proof of Theorem 4.2b from this point of view, assuming the reader is familiar
with residues (in particular, the residue theorem on rational function fields).

Extend the operations g 7→ [f, g) and g 7→ g∗ multiplicatively from nonzero g in F[T ] to
all g in F(T )×. (But still we have f ∈ F[T ].) We still have [f, g) ∈ {0, 1}, but now view g∗

in F[[1/T ]]×. For instance, (1/(1 + T ))∗ = 1/(1 + 1/T ) = 1− 1/T + 1/T 2 − · · · .
For f ∈ F[T ] and irreducible π ∈ F[T ],

[f, π) = Tr(F[T ]/π)/F2
(f mod π)

= TrF/F2
(Tr(F[T ]/π)/F(f mod π))

= TrF/F2

(
Resπ

(
f

dπ

π

))
.

Since fdπ/π has no poles away from π and ∞, the residue theorem gives

[f, π) = −TrF/F2

(
Res∞

(
f

dπ

π

))
= TrF/F2

(
Res∞

(
f

dπ

π

))
.



14 KEITH CONRAD

Therefore, for any f ∈ F[T ] and g ∈ F(T )×,

(6.1) [f, g) = TrF/F2

(
Res∞

(
f

dg

g

))
.

We will prove Theorem 4.2b by showing, for f ∈ F[T ] and g ∈ F(T )×, that

(6.2) f(0) = 0, g∗ ≡ 1 mod 1/Tm+1 =⇒ [f, g) = 0.

By additivity in f , we can focus on f = cTm with m ≥ 1. Let’s coordinatize everything
at ∞. Set w = 1/T . Since g∗ = g/T deg g, dg/g = dg∗/g∗ + (deg g)dT/T . Then

cTm
dg

g
=

c

wm

(
dg∗

g∗
− deg g

dw

w

)
.

For m ≥ 1, it follows that

Res∞

(
cTm

dg

g

)
= Resw=0

(
c

wm
dg∗

g∗

)
.

We want to show this residue is 0.
Write g∗ = 1 + wm+1k(w), where k(w) ∈ F[[w]]. Then

dg∗

wm
= wdk + (m+ 1)kdw,

so
c

wm
dg∗

g∗
=
c(wk′(w) + (m+ 1)k)dw

g∗
.

Since g∗ has nonzero constant term in F[[w]], the right side has no pole at w = 0, so its
residue at w = 0 is 0. This concludes the residue-based proof of Theorem 4.2.

By the way, the reader can check that (6.1) leads to a second proof of (5.1).

7. A p-power reciprocity law in characteristic p

Let F = Fq be a finite field with characteristic p, and Fps be a subfield of F. For
irreducible π in F[T ] and f ∈ F[T ], consider the equation

(7.1) xp
s − x ≡ f mod π.

The polynomial ℘(x) = xp
s − x is additive in x and commutes with the p-th power map:

℘(x)p = ℘(xp).
Define

[f, π)ps = Tr(F[T ]/π)/Fps (f mod π) ∈ Fps .

We will go through the properties of this symbol and the reciprocity law it satisfies, without
details of proofs.

The symbol [f, π)ps is additive in f , and (7.1) has a solution in F[T ] if and only if
[f, π)ps = 0. The reciprocity law for this symbol was first treated by Hasse [2, pp. 49–50],
with s = 1, and it is where Hasse derivatives were first introduced. See the survey paper
[4] (especially Section 7.1) for an historical discussion of this work.

Extend the symbol [·, ·)ps multiplicatively in the second coordinate to all nonzero poly-
nomials. For c ∈ F and g of degree d,

[c, g)ps = TrF/Fps (c) deg g, [cT, g)ps = −TrF/Fps (cad−1/ad),

where g = adT
d+ad−1T

d−1+ · · · . Since we are not necessarily in characteristic 2, the minus
sign in the second formula is essential.
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Set m = deg f . When f(0) = 0, the basic reciprocity law is: [f, g)ps only depends on
g∗ mod 1/Tm+1. In case f(0) 6= 0, we write this as

g∗1 ≡ g∗2 mod 1/Tm+1 =⇒ [f, g1)ps = TrF/Fps (f(0))(deg g1 − deg g2) + [f, g2)ps .

The proof is identical to the case p = 2 and s = 1 in Corollary 4.6. A proof using residues
as in Section 6 requires the formula

(7.2) [f, g)ps = −TrF/Fps

(
Res∞

(
f

dg

g

))
.

Note the minus sign.
We conclude this discussion by noting an alternate computational formula for [f, g)ps

when g is monic. First consider ps = q. With d = deg g, write

(7.3) f(T )g′(T ) ≡ b0 + b1T + · · ·+ bd−1T
d−1 mod g,

where bj ∈ F. Then the formula is

(7.4) [f, g)q = bd−1.

Example 7.1. Over F2[T ], we compute [T 3, T 5 + T 3 + 1) = [T 3, T 5 + T 3 + 1)2. Since

T 3(T 5 + T 3 + 1)′ ≡ T 2 mod T 5 + T 3 + 1,

the coefficient of T 4 on the right side is 0, so the symbol is 0. This agrees with Example
4.3.

Example 7.2. We compute [T 5, π)2, where π = T 7 + T 3 + T 2 + T + 1. Since

T 5π′(T ) ≡ T 6 + T 4 mod π,

where the coefficient of T 6 on the right side is 1, [T 5, π) = 1. This agrees with Example 4.4.

To extend (7.4) to [f, g)ps , write F ∼= Fpr [x]/R(x), with R ∈ Fpr [x] irreducible of degree
n = [F : Fpr ]. Viewing bd−1 from (7.3) inside Fps [x]/R(x), write

bd−1R
′(x) ≡ a0 + a1x+ · · ·+ an−1x

n−1 mod R(x).

Then

(7.5) [f, g)ps = an−1.

Formula (7.5) (and its special case (7.4)) is an easy consequence of (7.2). When g = π is
monic irreducible, (7.4) and (7.5) were proved by Carlitz [1, Theorems 11.4, 11.5] using his
characteristic p exponential function.
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