
ARITHMETIC PROGRESSIONS OF THREE SQUARES

KEITH CONRAD

1. Introduction

Here are the first 10 perfect squares (ignoring 0):

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

In this list is the arithmetic progression 1, 25, 49 (common difference 24). Searching further,
another arithmetic progression of squares is 289, 625, 961 (common difference 336). Yet
another is 529, 1369, 2209 (common difference 840). How can all examples be found?

In Section 2 we will use plane geometry to describe the 3-term arithmetic progressions of
(nonzero) perfect squares in terms of rational points on the circle x2+y2 = 2. Since a2, b2, c2

is an arithmetic progression if and only if (a/d)2, (b/d)2, (c/d)2 is an arithmetic progression,
where d 6= 0, there is not much difference between integral and rational arithmetic pro-
gressions of three squares, and in Section 3 we will describe 3-term arithmetic progressions
of rational squares with a fixed common difference in terms of rational points on elliptic
curves (Corollary 3.7). In the appendix, the link between elliptic curves and arithmetic
progressions with a fixed common difference is revisited using projective geometry.

2. Progressions of squares and x2 + y2 = 2

For integers a, b, and c, to say a2, b2, c2 is an arithmetic progression means b2−a2 = c2−b2,
or equivalently a2 + c2 = 2b2. Ignoring b = 0, b is nonzero and we divide by it to get(a

b

)2
+
(c
b

)2
= 2,

so (a/b, c/b) is a rational point on the circle x2 + y2 = 2. Conversely, if x and y are rational
and satisfy x2 + y2 = 2, write x and y with a common denominator as x = a/b and y = c/b
where a, b, c ∈ Z with b 6= 0. Then a2 + c2 = 2b2, so c2 − b2 = b2 − a2, which means
a2, b2, c2 is an arithmetic progression of squares in Z. For example, (17/25, 31/25) satisfies
x2 + y2 = 2, so 172, 252, 312 is an arithmetic progression (common difference 336). Finding
all 3-term arithmetic progressions of perfect squares is thus essentially1 equivalent to finding
all rational points on the circle x2+y2 = 2. An obvious rational point on this circle is (1, 1).
Using lines through this point we will describe all other rational points on the circle.

Theorem 2.1. The points on x2 + y2 = 2 other than (1,−1) are described by the formulas

x =
m2 − 2m− 1

m2 + 1
, y =

−m2 − 2m+ 1

m2 + 1
,

where m ∈ R. If (x, y) and m correspond to each other, then x and y are rational if and
only if m is rational.

1Arithmetic progressions a2, b2, c2 and (ka)2, (kb)2, (kc)2 lead to the same point on x2 + y2 = 2. There is a
bijection between rational points and progressions a2, b2, c2 that have b > 0 (to fix signs) and are reduced:
gcd(a, b, c) = 1.
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Proof. Drawing a line through the point (1, 1) and computing the second point where this
line crosses the circle x2+y2 = 2 will let us parametrize the points on the circle according to
the slopes of the lines through (1, 1), except for (1,−1), which is on a vertical line through
(1, 1). We will see that rational points correspond to rational slopes.

x

y

(1, 1)

(1,−1)

(r, s)

Let (r, s) be a point on x2 + y2 = 2 other than (1,±1), as in the figure above. Draw
the line through (1, 1) and (r, s). It is not vertical, so we can write the equation of the
line as y = mx + b. Since the line goes through (1, 1), b = 1 −m. To find the coordinates
of (r, s) in terms of m, note this point is on both the line and the circle. Let’s substitute
mx+ b = mx+ (1−m) for y in the equation of the circle:

2 = x2 + (mx+ 1−m)2 = (m2 + 1)x2 + 2m(1−m)x+ (1−m)2,

and after subtracting 2 and dividing by m2 + 1 this is the same as

(2.1) x2 +
2m(1−m)

m2 + 1
x+

m2 − 2m− 1

m2 + 1
= 0.

The two points on the line and circle are (1, 1) and (r, s), so the roots of (2.1) must be x = 1
and x = r. That is, the left side of (2.1) is (x− 1)(x− r), which has constant term r, so

r =
m2 − 2m− 1

m2 + 1
.

Since (r, s) lies on the line y = mx+ (1−m),

s = mr + (1−m) =
−m2 − 2m+ 1

m2 + 1
.

We thus obtain correspondences from slopes to points (other than (1,±1)) and conversely:

(2.2) m 7→
(
m2 − 2m− 1

m2 + 1
,
−m2 − 2m+ 1

m2 + 1

)
, (x, y) 7→ y − 1

x− 1
.

There are two lines through (1, 1) that we neglected: the vertical line and also its tangent
line to the circle, which is y = −x+ 2. The tangent line has slope m = −1, and in (2.2) the
number m = −1 goes over to (2/2, 2/2) = (1, 1). So we can extend the correspondence to
associate m = −1 to the point (1, 1) itself. The two functions in (2.2) are mutually inverse
mappings from all m 6= −1 to all points on x2 + y2 = 2 besides (1,±1), and if m←→ (x, y)
then x and y are rational if and only if m is rational. So the formula

(2.3)

(
m2 − 2m− 1

m2 + 1
,
−m2 − 2m+ 1

m2 + 1

)
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describes all rational solutions (x, y) to x2+y2 = 2 other than (1,−1) as m runs through all
rational numbers. (We get (1,−1) by setting m =∞, corresponding to a vertical slope.) �

Table 1 lists some examples of rational points on x2 + y2 = 2 found using lines through
(1, 1) with rational slope and a corresponding 3-term arithmetic progression of squares by
writing x = a/b and y = c/b.

m (x, y) (a2, b2, c2)
1 (−1,−1) (1, 1, 1)

1/2 (−7/5,−1/5) (1, 25, 49)
−1/3 (−1/5, 7/5) (1, 25, 49)
−5/3 (23/17, 7/17) (49, 289, 529)

3/4 (−31/25,−17/25) (289, 625, 961)
Table 1.

3. Common Differences and Elliptic Curves

We now look at 3-term arithmetic progressions of rational squares having a fixed common
difference (not equal to 0). For instance, 24 is the the common difference of 1, 25, 49, and
it is also the common difference of(

1151

70

)2

,

(
1201

70

)2

,

(
1249

70

)2

.

In fact, 24 is the common difference of an arithmetic progression of 3 rational squares not
just twice, but infinitely often. We will see why using elliptic curves.

Theorem 3.1. For rational n 6= 0, the triples of rational numbers (a, b, c) whose squares
are an arithmetic progression with common difference n are in bijection with the rational
solutions (m, k) of nk2 = m3 −m where k 6= 0.

Proof. Let (a, b, c) be a triple of rational numbers such that a2, b2, c2 is an arithmetic pro-
gression with common difference n, so b2−a2 = n and c2− b2 = n. The point (a/b, c/b) lies
on x2 + y2 = 2 and is not (1,±1) since a/b 6= 1, so Theorem 2.1 gives a parametric formula
for a/b. Letting m be the slope of the line through (1, 1) and (a/b, c/b), so

(3.1) m =
c/b− 1

a/b− 1
=
c− b
a− b

,

we have a/b = (m2 − 2m− 1)/(m2 + 1) by Theorem 2.1. Therefore

n = b2 − a2

= b2
(

1−
(a
b

)2)
= b2

(
1−

(
m2 − 2m− 1

m2 + 1

)2
)

= b2
4(m3 −m)

(m2 + 1)2

=

(
2b

m2 + 1

)2

(m3 −m),
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so nk2 = m3 −m, where

(3.2) k =
m2 + 1

2b
6= 0.

Substituting (3.1) into (3.2),

(3.3) k =
((c− b)/(a− b))2 + 1

2b
=

2b− a− c
(a− b)2

,

where we simplify using the relations a2 = b2 − n and c2 = b2 + n.
Conversely, if nk2 = m3 −m for some rational numbers k and m, where k 6= 0, set

(3.4) b =
m2 + 1

2k
, a =

b(m2 − 2m− 1)

m2 + 1
, c =

b(−m2 − 2m+ 1)

m2 + 1
.

(These formulas are inspired by (3.2) and the parametrization of points on x2 + y2 = 2 in
Theorem 2.1.) Substituting the formula for b into those for a and c in (3.4), we get

a =
m2 − 2m− 1

2k
, c =

−m2 − 2m+ 1

2k
.

The rational squares a2, b2, c2 are an arithmetic progression with common difference n.
The correspondence we found between (a, b, c) and (m, k) is given by

(3.5) (a, b, c) 7→
(
c− b
a− b

,
2b− a− c
(a− b)2

)
,

using (3.1) and (3.3), and

(3.6) (m, k) 7→
(
m2 − 2m− 1

2k
,
m2 + 1

2k
,
−m2 − 2m+ 1

2k

)
.

Check (3.5) and (3.6) are inverses of each other. �

Example 3.2. The arithmetic progression 1, 25, 49, with difference n = 24, arises as squares
of 8 possible triples, including (a, b, c) = (1, 5, 7) and (a, b, c) = (−1, 5,−7). Substituting
these triples (not the squares (1, 25, 49)) into (3.5) produces the pairs (m, k) = (−1/2, 1/8)
and (m, k) = (2, 1/2), which both satisfy 24k2 = m3 −m.

In (3.6) take m = 10, so m3 −m = 990 = 9 · 110. This is nk2 for k = 3 and n = 110.
Using (3.6) with (m, k) = (10, 3), we obtain a = 79/6, b = 101/6, and c = −119/6.
The squares (79/6)2, (101/6)2, and (119/6)2 are an arithmetic progression with common
difference n = 110.

Corollary 3.3. For rational n 6= 0, the triples of rational numbers (a, b, c) whose squares
are an arithmetic progression with common difference n are in bijection with the rational
solutions (x, y) of the equation

y2 = x3 − n2x
where y 6= 0, by

(a, b, c) 7→
(
n(c− b)
a− b

,
n2(2b− a− c)

(a− b)2

)
and

(x, y) 7→
(
x2 − 2nx− n2

2y
,
x2 + n2

2y
,
−x2 − 2nx+ n2

2y

)
.
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Proof. Theorem 3.1 identifies the triples (a, b, c) such that a2, b2, c2 has common difference
n, with the pairs (m, k) satisfying nk2 = m3 − m where k 6= 0. We can pass between
nk2 = m3 −m and y2 = x3 − n2x by

(m, k) 7→ (nm, n2k), (x, y) 7→
(x
n
,
y

n2

)
.

Composing these with (3.5) and (3.6) expresses (a, b, c) in terms of (x, y) and conversely. �

Example 3.4. A solution to y2 = x3−49x is (x, y) = (−63/16, 735/64). Using Corollary 3.3
with n = 7 gives a = 113/120, b = 337/120, and c = 463/120. The progression (113/120)2,
(337/120)2, and (463/120)2 has common difference 7. What happens using the same (x, y)
with n = −7?

In Section 2 we used x2 + y2 = 2 and here we use y2 = x3 − n2x. Don’t confuse their
roles. The first one is related to all 3-term arithmetic progressions of rational squares,
without concern over their common difference, while the second is related to the more
refined question of whether or not there is such a progression with common difference n.

Remark 3.5. For historical reasons, an arithmetic progression of three rational squares
is called a congruum and a positive integer n that occurs as the common difference of a
congruum is called a congruent number.2 For example, 24 is a congruent number since it is
the common difference of the congruum 1, 25, 49. Dividing through by 4, we see that 6 is
also a congruent number since it is the common difference of the congruum 1/4, 25/4, 49/4.
By Example 3.4, 7 is a congruent number. The number 1 is not a congruent number: there is
no arithmetic progression of three rational squares with common difference 1. Equivalently,
by Corollary 3.3, the equation y2 = x3 − x has no rational solutions with y 6= 0. This was
conjectured by Fibonacci in the 1200s and first proved by Fermat in the 1600s. Among
the integers from 1 to 10, the only congruent numbers are 5, 6, and 7. (For 5, use the
arithmetic progression (31/12)2, (41/12)2, (49/12)2.) That 1, 2, and 3 are not congruent
numbers means there is no congruum with common difference equal to a perfect square,
twice a perfect square, or three times a perfect square.

Next we will use standard theorems about elliptic curves to say something about the
nature of the rational points on y2 = x3 − n2x.

Theorem 3.6. For rational n 6= 0, the only nonidentity rational points on y2 = x3 − n2x
of finite order are (0, 0), (n, 0), and (−n, 0).

Proof. Our argument is taken from [1, p. 660]. Write n = dk2, where d is a squarefree
integer. There is a bijection from y2 = x3 − n2x to y2 = x3 − d2x by (x, y) 7→ (x/k2, y/k3),
which preserves rationality of points and sends (0, 0), (n, 0), and (−n, 0) to (0, 0), (d, 0),
and (−d, 0). Therefore, to show any rational point (x, y) with finite order has y = 0, there
is no harm in replacing n with d, which means we may assume n is a squarefree integer.

A rational point P = (x, y) with y = 0 has order 2 from the definition of the group law
on elliptic curves, and these points are (0, 0), (n, 0), and (−n, 0). If y 6= 0 we will show P
has infinite order by contradiction. Assume y 6= 0 and P is a rational point of finite order.
Then the Nagell–Lutz theorem implies the coordinates of P are in Z. Set P + P = (x′, y′).

2This term is not directly related to “congruence” in the sense of modular arithmetic, and while the term
“congruent number” is well-known within number theory, the term “congruum” is essentially obsolete.
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Since P + P has finite order, its coordinates are also integers by Nagell–Lutz. The first
coordinate of P + P turns out to be

x′ =

(
x2 + n2

2y

)2

.

Using the condition y2 = x3 − n2x, we have

x′ − n =

(
x2 − 2nx− n2

2y

)2

, x′ + n =

(
x2 + 2nx− n2

2y

)2

.

So x′−n, x′, x′ +n is an arithmetic progression of rational squares with common difference
n. Write x′ − n = a2, x′ = b2, and x′ + n = c2. Since a, b, and c are rational and square to
integers, they are themselves integers. Then c2 − a2 = 2n is an even difference of squares.
An even difference of squares is a multiple of 4 (since the only squares mod 4 are 0 and 1),
so 2n ≡ 0 mod 4. Thus n is even. Since n = c2 − b2 and a difference of integer squares is
0, 1, or 3 mod 4, we must have n ≡ 0 mod 4. This contradicts n being squarefree. �

For another proof of Theorem 3.6, using Dirichlet’s theorem on primes in arithmetic
progression, see [2, pp. 44–45].

Corollary 3.7. If the rational number n 6= 0 is the common difference of a 3-term arith-
metic progression of rational squares, then it is such a common difference for infinitely
many progressions.

Proof. By Corollary 3.3 a 3-term arithmetic progression of rational squares with common
difference n leads to a rational point on the elliptic curve y2 = x3 − n2x where y 6= 0,
and such a point has infinite order by Theorem 3.6. Therefore repeatedly adding the point
to itself on the elliptic curve gives us infinitely many rational points on the curve, which
each lead back to a new 3-term arithmetic progressions of rational squares with common
difference n. �

Example 3.8. The 3-term arithmetic progression (1, 25, 49) with common difference n = 24
is (a2, b2, c2) for (a, b, c) = (1, 5, 7), and this corresponds to the point P = (−12, 72) on
y2 = x3− 242x by the first correspondence in Corollary 3.3. The first few multiples of P on
this elliptic curve are

2P = (25,−35), 3P =

(
−6348

1369
,−2568456

50653

)
, 4P =

(
1442401

4900
,
1726556399

343000

)
.

Applying to these the second correspondence in Corollary 3.3 we get three triples (a, b, c)
besides (1, 5, 7) where a2, b2, c2 is an arithmetic progression with common difference 24:(

1151

70
,
−1201

70
,
1249

70

)
,

(
4319999

1319901
,
−7776485

1319901
,
−10113607

1319901

)
,(

1727438169601

241717895860
,
2094350404801

241717895860
,
−2405943600001

241717895860

)
.

Remark 3.9. If (a, b, c) is a triple of nonzero rational numbers whose squares are in arith-
metic progression with common difference n 6= 0, then seven other triples whose squares
have common difference n are

(−a, b, c), (a,−b, c), (a, b,−c), (−a,−b, c),
(−a, b,−c), (a,−b,−c), (−a,−b,−c).
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Passing from these triples to points on y2 = x3 − n2x, the sign changes in the coordinates
have an interpretation in the group law on the elliptic curve. Say (a, b, c) ←→ (x, y) in
Corollary 3.3. Each sign change on a, b, and c is an operation of order 2. It should
correspond to an operation of order 2 on the points of y2 = x3−n2x. Using the group law,
some operations of order 2 are P 7→ P +Q where Q is a point of order 2, and P 7→ −P +Q
where Q is any point.

The inverse of (x, y) is (x,−y), which corresponds by Corollary 3.3 to (−a,−b,−c). The
points of order 2 on y2 = x3−n2x are (0, 0), (n, 0), and (−n, 0). The sum of (x, y) and (0, 0)
is (−n2/x, n2y/x2), which corresponds by Corollary 3.3 to (−a, b,−c). More generally, the
sum of (x, y) and each of (0, 0), (n, 0), and (−n, 0), as well as the sum of (x,−y) and each
of (0, 0), (n, 0), and (−n, 0), gives us 6 points. See Table 2. The corresponding triples from
Corollary 3.3 are collected in Table 3 and are exactly what we are looking for.

First Point Second Point Sum

(x, y) (0, 0) (−n2/x, n2y/x2)
(x,−y) (0, 0) (−n2/x,−n2y/x2)
(x, y) (n, 0) (n(x+ n)/(x− n),−2n2y/(x− n)2)

(x,−y) (n, 0) (n(x+ n)/(x− n), 2n2y/(x− n)2)
(x, y) (−n, 0) (−n(x− n)/(x+ n),−2n2y/(x+ n)2)

(x,−y) (−n, 0) (−n(x− n)/(x+ n), 2n2y/(x+ n)2)

Table 2. Addition on y2 = x3 − n2x

Group Law Sign Change
(x, y) (a, b, c)

(x, y) + (0, 0) (−a, b,−c)
(x, y) + (n, 0) (a,−b,−c)

(x, y) + (−n, 0) (−a,−b, c)
(x,−y) (−a,−b,−c)

(x,−y) + (0, 0) (a,−b, c)
(x,−y) + (n, 0) (−a, b, c)
(x, y) + (−n, 0) (−a,−b, c)

Table 3.

Appendix A. Working in Projective Space

Using projective geometry we will describe a different approach to Corollary 3.3 that
bypasses Theorem 3.1, and ultimately Theorem 2.1.

Theorem A.1. For rational n 6= 0, there is a bijection between the sets

{(r, s, t) : s2 − r2 = n, t2 − s2 = n}, {(x, y) : y2 = x3 − n2x, y 6= 0},
such that (r, s, t) is rational if and only if (x, y) is rational. The correspondences are

(r, s, t) 7→
(
n(r − t)
r − 2s+ t

,
2n2

r − 2s+ t

)
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and

(x, y) 7→
(
−x2 + 2nx+ n2

2y
,
−x2 − n2

2y
,
−x2 − 2nx+ n2

2y

)
The correspondence here is not the same as in Corollary 3.3. We’ll reconcile the discrep-

ancy (it’s off by an automorphism of the elliptic curve y2 = x3 − n2x) after the proof.

Proof. We are interested in the conditions

s2 − r2 = n, t2 − s2 = n.

Homogenize these as conditions on a point [r, s, t, u] ∈ P3(R):

(A.1) s2 − r2 = nu2, t2 − s2 = nu2.

The solutions to (A.1) with u = 0 are the 4 points [1,±1,±1, 0]. These solutions don’t
correspond to what we’re really interested in (which are the solutions [r, s, t, 1]), but we will
make use of them in a geometric construction in projective space.

Each equation in (A.1) defines a surface in P3(R), so we anticipate that the common
solution set to both equations is a curve in P3(R), just as two surfaces in R3 usually
intersect in a curve (not another surface). With this in mind, let C denote the solution set
to (A.1) in P3(R). We will make a well-chosen projection from C into a plane and find an
equation of the image of C, which will turn out to be y2 = x3 − n2x.

Let P = [1, 1, 1, 0] and Π = {[r, s, 0, u]}, so Π is a plane in P3(R) not containing P .
Define f : C → Π to be projection from P :

f(Q) = PQ ∩Π,

where PQ when Q = P means the tangent line to C at P . The line through [1, 1, 1, 0] and
[r, s, t, u] 6= [1, 1, 1, 0] is the set of points

[λ+ µr, λ+ µs, λ+ µt, µu],

which meets Π where λ = −µt. Thus f([r, s, t, u]) = [r− t, s− t, 0, u]. To find f([1, 1, 1, 0]),
we need the tangent line to C at [1, 1, 1, 0]. The tangent plane to the surface s2 − r2 = nu2

at [1, 1, 1, 0] in P3(R) is r = s, and the tangent plane to t2−s2 = nu2 at [1, 1, 1, 0] in P3(R)
is s = t. The tangent line to C at P is the intersection of these two tangent planes, which
is the line of points [r, r, r, u]. This meets Π in [0, 0, 0, 1], so

f([r, s, t, u]) =

{
[r − t, s− t, 0, u], if [r, s, t, u] ∈ C − [1, 1, 1, 0],

[0, 0, 0, 1], if [r, s, t, u] = [1, 1, 1, 0].

This formula suggests introduction of new variables for [r, s, t, u] ∈ C − P :

v = r − t, w = s− t.
Then r = t+ v and s = t+ w, so (A.1) becomes

(t+ w)2 − (t+ v)2 = nu2, t2 − (t+ w)2 = nu2,

which is

(A.2) w2 − v2 + 2t(w − v) = nu2, −2tw − w2 = nu2.

We can eliminate t using (A.2) provided w − v 6= 0 or w 6= 0. Could w − v = 0 and
w = 0? If so, then s = t + w = t and r = t + v = t, and (A.2) implies u = 0, so
[r, s, t, u] = [1, 1, 1, 0] = P , a contradiction. Hence we can solve for t using one equation
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in (A.2) and substitute into the other equation in (A.2) to eliminate t. The result, after
clearing denominators, is

(A.3) 2nu2w + v2w = w2v + nu2v.

This is satisfied by [v, w, u] coming from points on C − P . These are the first, second, and
fourth coordinates of f on C − P . Since f(P ) = [0, 0, 0, 1], we are led to take [v, w, u] =
[0, 0, 1] at P = [1, 1, 1, 0], which also satisfies (A.3). Sending [r, s, t, u] on the curve C to
[v, w, u] on the curve (A.3) in P2(R) is a bijection.

In Table 4 we list each point on C with u = 0, its image in [v, w, u] coordinates, the
projective tangent line to (A.3) at the point, and where the tangent line meets (A.3). Only
for the first point in Table 4 does the tangent line meet the curve (A.3) just at the point
itself. So, to put (A.3) in Weierstrass form, we want to move [v, w, u] = [0, 0, 1] to [0, 1, 0]
and move its tangent line to the line at infinity.

[r, s, t, u] [v, w, u] Tangent line Meets (A.3)
[1, 1, 1, 0] [0, 0, 1] v = 2w [0, 0, 1]

[1,−1, 1, 0] [0, 1, 0] v = 0 [0, 1, 0], [0, 0, 1]
[1, 1,−1, 0] [1, 1, 0] v = w [1, 1, 0], [0, 0, 1]

[1,−1,−1, 0] [1, 0, 0] w = 0 [1, 0, 0], [0, 0, 1]
Table 4.

Set

v′ = v, w′ = u, u′ = v − 2w.

This is an invertible linear change of variables (v = v′, w = (v′ − u′)/2, u = w′) and it has
the desired effect at [0, 0, 1] and its tangent line: [v, w, u] = [0, 0, 1] has [v′, w′, u′] = [0, 1, 0]
and the line v = 2w becomes the line u′ = 0. Using [v′, w′, u′] coordinates, (A.3) becomes

4nu′w′2 = v′3 − u′2v′.
Multiply by n3:

(A.4) u′(2n2w′)2 = (nv′)3 − n2u′2(nv′).
Now set

x = nv′ = nv = n(r − t), y = 2n2w′ = 2n2u, z = u′ = v − 2w = r − 2s+ t.

In these coordinates, (A.4) becomes a Weierstrass equation:

y2z = x3 − n2xz2.
Table 5 lists the [x, y, z] coordinates of the 4 points on C with u = 0. They are the 4

rational points of finite order on y2 = x3−n2x, or equivalently the rational points that play
no role in the correspondence of Corollary 3.3.

The overall change of variables [r, s, t, u] 7→ [x, y, z] is

[r, s, t, u] 7→ [n(r − t), 2n2u, r − 2s+ t].

When u 6= 0 and we scale u to 1, this becomes

(A.5) [r, s, t, 1] 7→ [n(r − t), 2n2, r − 2s+ t] =

[
n(r − t)
r − 2s+ t

,
2n2

r − 2s+ t
, 1

]
.
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[r, s, t, u] [x, y, z]
[1, 1, 1, 0] [0, 1, 0]

[1,−1, 1, 0] [0, 0, 1]
[1, 1,−1, 0] [−n, 0, 1]

[1,−1,−1, 0] [n, 0, 1]
Table 5.

(To see that r−2s+t 6= 0, assume otherwise: r+t = 2s. Combining this with the arithmetic
progression condition r2 + t2 = 2s2, we get r = s after a little algebra, so nu2 = s2− r2 = 0,
hence u = 0, a contradiction.) The inverse of (A.5), for y 6= 0, is

[x, y, 1] 7→
[
−x2 + 2nx+ n2

2y
,
−x2 − n2

2y
,
−x2 − 2nx+ n2

2y
, 1

]
�

Example A.2. When n = 6, Table 6 lists the 8 rational triples that square to the arithmetic
progression 1/4, 25/4, 49/4 and the corresponding rational points on y2 = x3 − 36x.

(r, s, t) (x, y)
(1/2, 5/2, 7/2) (18,−72)

(−1/2, 5/2, 7/2) (12,−36)
(1/2,−5/2, 7/2) (−2, 8)
(1/2, 5/2,−7/2) (−3,−9)

(−1/2,−5/2, 7/2) (−3, 9)
(1/2,−5/2,−7/2) (12, 36)
(−1/2, 5/2,−7/2) (−2,−8)

(−1/2,−5/2,−7/2) (18, 72)
Table 6.

For a triple (a, b, c) satisfying b2− a2 = n and c2− b2 = n, the corresponding point (x, y)
on y2 = x3 − n2x using Corollary 3.3 is

(A.6)

(
n(c− b)
a− b

,
n2(2b− a− c)

(a− b)2

)
,

while Theorem A.1 sends (a, b, c) to

(A.7)

(
n(a− c)
a− 2b+ c

,
2n2

a− 2b+ c

)
.

These different correspondences are related to each other by an automorphism of y2 =
x3 − n2x. Specifically, if we run through the operations in Table 2, the function

(x, y) 7→
(
−n(x− n)

x+ n
,
−2n2y

(x+ n)2

)
= (x, y) + (−n, 0)

takes (A.6) to (A.7) and conversely, and it is an involution (order 2).
Let’s see how a change in the plane of projection in the proof of Theorem A.1 changes the

calculations. Project from P = [1, 1, 1, 0] to the plane {[0, s, t, u]} instead of to the plane
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{[r, s, 0, u]}. Projection from P to {[0, s, t, u]} is given by f([r, s, t, u]) = [0, s − r, t − r, u],
and the change of variables v = s− r and w = t− r leads to the plane curve

(A.8) 2nu2v + v2w = w2v + nu2w

rather than (A.3). (How is the equation different?) The [v, w, u] coordinates of P , once
again, are [0, 0, 1], and the tangent line to (A.8) at [0, 0, 1] is w = 2v (not v = 2w). This
tangent line meets the curve at no other point. We move [0, 0, 1] to [0, 1, 0] and its tangent
line to the line at infinity using

v′ = v, w′ = u, u′ = w − 2v.

Use the inverse of this change of variables to turn (A.8) into

nu′w′2 = −2v′3 − 3v′2u′ − v′u′2

= −v′(2v′ + u′)(v′ + u′)

= (−v′)(−2v′ − u′)(−v′ − u′)
Now multiply by 4n3 and set x = n(−2v′−u′), y = 2n2w′, and z = u′, so y2z = (x+nz)x(x−
nz) = x3 − n2xz2. Tracing out the overall change of variables gives the correspondence

(r, s, t) 7→
(
n(r − t)
r − 2s+ t

,
2n2

r − 2s+ t

)
,

which is exactly the same as the one in Theorem A.1.
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