TWO APPLICATIONS OF UNIQUE FACTORIZATION

KEITH CONRAD

1. Introduction

We will use unique factorization to determine all the integral solutions to certain equations.

Theorem 1.1. The integral solutions to $y^2 + y = x^3$ are (x, y) = (0, 0) and (0, -1).

Since $y^2 + y = y(y+1)$, this says in words that the only integer which is a product of two consecutive integers and is a cube is 0.

Theorem 1.2 (Fermat). The integral solutions to $y^2 = x^3 - 2$ are (x, y) = (3, 5) and (3, -5).

The proof of Theorem 1.1, which is really a warm-up for Theorem 1.2, will use unique factorization in **Z**. Although Theorem 1.2 is only about integers, its proof will go beyond **Z** and use unique factorization in the ring $\mathbf{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} : a, b \in \mathbf{Z}\}.$

2. Proofs

Before we prove Theorems 1.1 and 1.2 we need a result about relatively prime numbers whose product is a power. (We say elements in a ring with unique factorization are *relatively prime* when they have no irreducible factor in common: their only common factors are units.)

Theorem 2.1. Let R be a ring with unique factorization. If $a, b, c \in R$ are nonzero, $ab = c^n$, and a and b are relatively prime then there are units u and v in R, as well as elements a' and b' in R, such that $a = ua'^n$ and $b = vb'^n$.

Proof. Decompose a, b, and c into irreducibles and collect together irreducible factors that are equal up to unit multiple. This lets us write

$$a = up_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}, \quad b = vp_1'^{f_1}p_2'^{f_2}\cdots p_s'^{f_s}, \quad c = wq_1^{g_1}q_2^{g_2}\cdots q_t^{g_t},$$

where p_i, p'_j , and q_k are all irreducibles and u, v, and w are units. Since a and b are relatively prime, no p_i and p'_j are unit multiples. We have

$$ab = uvp_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}p_1'^{f_1}p_2'^{f_2}\cdots p_s'^{f_s}$$

and

$$c^n = w^n q_1^{ng_1} q_2^{ng_2} \cdots q_t^{ng_t}.$$

Comparing the irreducible factorizations of ab and c^n shows from unique factorization that each p_i in a and p'_j in b has multiplicity divisible by n: each e_i and f_j is a multiple of n. (Here is where we use relative primality of a and b.) Since all the e_i 's are divisible by n, a is a times an ath power. Similarly, a is atimes an ath power.

Example 2.2. Taking n = 2, in **Z** we have $(-4)(-9) = 6^2$ and -4 and -9 are each squares up to unit multiple. Notice neither -4 nor -9 is a square, so the equality up to unit multiple in the conclusion of Theorem 2.1 can't be weakened in general.

Remark 2.3. There are counterexamples to the conclusion of Theorem 2.1 if we drop the hypothesis that R has unique factorization. For example, in the ring $\mathbf{Z}[\sqrt{-26}]$ consider the equation

$$(2.1) (1+\sqrt{-26})(1-\sqrt{-26}) = 3^3.$$

It can be shown that the only common factors of $1+\sqrt{-26}$ and $1-\sqrt{-26}$ are ± 1 , so $1+\sqrt{-26}$ and $1-\sqrt{-26}$ are relatively prime. The only units in $\mathbf{Z}[\sqrt{-26}]$ are ± 1 and the equation $1+\sqrt{-26}=\pm(m+n\sqrt{-26})^3$ has no integral solution (m,n): if there were an integral solution, then taking squared absolute values of both sides in \mathbf{C} tells us $27=(m^2+26n^2)^3$, so $m^2+26n^2=3$, which is impossible in \mathbf{Z} . Thus Theorem 2.1 does not apply to $\mathbf{Z}[\sqrt{-26}]$. In fact, (2.1) is an example of nonunique irreducible factorization in $\mathbf{Z}[\sqrt{-26}]$: it can be shown that $1+\sqrt{-26}$, $1-\sqrt{-26}$, and 3 are all irreducible in $\mathbf{Z}[\sqrt{-26}]$, and a product of two irreducibles being equal to a product of three irreducibles violates part of the meaning of unique factorization.

Now we are ready to prove the theorems from Section 1. First we prove Theorem 1.1.

Proof. Suppose x and y are integers which satisfy $y^2 + y = x^3$. Write this as

$$y(y+1) = x^3.$$

Assuming neither y nor y+1 is 0, these integers are relatively prime (consecutive integers have no common factors except ± 1) and we can apply Theorem 2.1: their product is a cube so each one is a cube up to sign:

$$y = \pm a^3$$
, $y + 1 = \pm b^3$.

Since -1 is a cube, if there is a sign appearing then it can be absorbed into the cube and then rename a and b. Thus we have

$$y = a^3, \quad y + 1 = b^3.$$

The integers y and y + 1 are consecutive, so a^3 and b^3 are consecutive cubes. The cubes spread apart pretty quickly:

$$\dots$$
, -64 , -27 , -8 , -1 , 0 , 1 , 8 , 27 , 64 , \dots

We see immediately that the only consecutive cubes are -1 and 0 and also 0 and 1. Since $y = a^3$ is the smaller of the two cubes, y = -1 or y = 0. We get $x^3 = y^2 + y = 0$ in both cases. So (x, y) is (0, -1) or (0, 0).

These are the solutions we expected, although strictly speaking our argument assumed y and y+1 are not 0 in order to apply Theorem 2.1. So what we have really shown in this case is that there is no solution with y not 0 or -1. For those two y-values we have the two obvious solutions, so they are the only ones.

Now we prove Theorem 1.2.

Proof. Assume x and y are integers satisfying $y^2 = x^3 - 2$. First we determine the parity of x and y. If x is even then $8 \mid x^3$, so $y^2 \equiv -2 \equiv 6 \mod 8$. However, a direct check of all

integers modulo 8 shows the only squares modulo 8 are 0, 1, and 4. Thus x has to be odd, so y is also odd. All we will need to know is that x is odd.

We now rewrite the equation $y^2 = x^3 - 2$ as

(2.2)
$$x^3 = y^2 + 2 = (y + \sqrt{-2})(y - \sqrt{-2}).$$

We have factored $y^2 + 2$ in $\mathbf{Z}[\sqrt{-2}]$ and will copy the idea in the proof of Theorem 1.1. One new aspect is going to be our use of the norm function $N(a+b\sqrt{-2}) = a^2 + 2b^2$ on $\mathbf{Z}[\sqrt{-2}]$, which is multiplicative and takes nonnegative values in \mathbf{Z} . In particular, if $\alpha \mid \beta$ in $\mathbf{Z}[\sqrt{-2}]$ then $N(\alpha) \mid N(\beta)$ in \mathbf{Z} .

Our first task is to show that the factors $y + \sqrt{-2}$ and $y - \sqrt{-2}$ in (2.2) are relatively prime in $\mathbb{Z}[\sqrt{-2}]$. Pick an arbitrary common divisor d of $y + \sqrt{-2}$ and $y - \sqrt{-2}$. We will write down some divisibility relations involving d in $\mathbb{Z}[\sqrt{-2}]$, and then take norms down to \mathbb{Z} to show $d = \pm 1$.

A divisor of two numbers divides their difference, so d divides $(y+\sqrt{-2})-(y-\sqrt{-2})=2\sqrt{-2}$, which doesn't involve y. So $d\mid 2\sqrt{-2}$ in $\mathbf{Z}[\sqrt{-2}]$, and taking norms turns this into $N(d)\mid 8$ in \mathbf{Z} . At the same time, N(d) divides $N(y+\sqrt{-2})=y^2+2=x^3$, which is odd, so N(d) is odd. The only odd positive divisor of 8 is 1, so N(d)=1. Writing $d=a+b\sqrt{-2}$ we have $a^2+2b^2=1$, so $(a,b)=(\pm 1,0)$, so $d=\pm 1$. Therefore $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are relatively prime.

Our next task is to use unique factorization in $\mathbf{Z}[\sqrt{-2}]$. Equation (2.2) expresses a cube in $\mathbf{Z}[\sqrt{-2}]$ on the left side as a product of relatively prime factors $y + \sqrt{-2}$ and $y - \sqrt{-2}$ on the right side. Therefore by unique factorization in $\mathbf{Z}[\sqrt{-2}]$ and Theorem 2.1, $y + \sqrt{-2}$ is a unit times a cube in $\mathbf{Z}[\sqrt{-2}]$. The only units in $\mathbf{Z}[\sqrt{-2}]$ are ± 1 since the only integral solutions to $a^2 + 2b^2 = 1$ are $(a, b) = (\pm 1, 0)$. (This is a contrast with $\mathbf{Z}[\sqrt{2}]$, which has infinitely many units, such as the integral powers of $1 + \sqrt{2}$.) Since ± 1 are both cubes, a unit in $\mathbf{Z}[\sqrt{-2}]$ times a cube is a cube, so $y + \sqrt{-2}$ is a cube: for some m and n in \mathbf{Z} ,

$$y + \sqrt{-2} = (m + n\sqrt{-2})^3 = (m^3 - 6mn^2) + (3m^2n - 2n^3)\sqrt{-2}$$

Equating real and imaginary parts,

$$y = m(m^2 - 6n^2), \quad 1 = n(3m^2 - 2n^2).$$

From the second equation $n=\pm 1$. If n=1 then $1=3m^2-2$, so $m^2=1$. Thus $m=\pm 1$, which makes $y=\pm (1-6)=\pm 5$ and $x^3=25+2=27$ so x=3. We have recovered the solutions $(3,\pm 5)$. If n=-1 then $1=-(3m^2-2)$, so $3m^2=1$. This has no integral solutions, so we are done. The only integer solutions to $y^2=x^3-2$ are $(3,\pm 5)$.

While $y^2 = x^3 - 2$ has finitely many integral solutions, it has infinitely many rational solutions. The next simplest rational solutions of $y^2 = x^3 - 2$ after $(3, \pm 5)$ are

$$\left(\frac{129}{100}, \pm \frac{383}{1000}\right)$$
 and $\left(\frac{164323}{29241}, \pm \frac{66234835}{5000211}\right)$.

¹This norm function on $\mathbf{Z}[\sqrt{-2}]$ is the squared absolute value as complex numbers: $a^2 + 2b^2 = |a + b\sqrt{-2}|^2$.