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Let α =
√

2 +
√

3. To find a monic polynomial in Q[T ] with root α, start by squaring α:

α2 = 2 + 2
√

6 + 3 = 5 + 2
√

6 =⇒ α2 − 5 = 2
√

6

=⇒ (α2 − 5)2 = 24

=⇒ α4 − 10α2 + 25 = 24.

Thus α4−10α2+1 = 0, so
√

2+
√

3 is a root of T 4−10T 2+1. This polynomial has four roots
in R:

√
2+
√

3 ≈ 3.1462,
√

2−
√

3 ≈ −.3178, −
√

2+
√

3 ≈ .3178, and −
√

2−
√

3 ≈ −3.1462.

Theorem 1. The polynomial T 4 − 10T 2 + 1 is irreducible in Q[T ].

Proof. If the polynomial were reducible, it could be expressed as a linear times a cubic in
Q[T ] or as a product of two quadratics in Q[T ].

If there were a linear factor in Q[T ] then T 4 − 10T 2 + 1 would have a rational root. But
the square of every root is 5± 2

√
6, which is irrational since

√
6 is irrational.

If T 4−10T 2 +1 were a product of two quadratics in Q[T ], then without loss of generality
those factors are both monic. There are four roots in R, so by unique factorization in R[T ]
a monic quadratic factor in Q[T ] must be (T − r)(T − s) for two of the real roots r and s.
Therefore in a factorization into monic quadratics, one of the two factors has root

√
2 +
√

3
and the factor with that root is one of the following:

(T − (
√

2 +
√

3))(T − (
√

2−
√

3)) = T 2 − 2
√

2T − 1,

(T − (
√

2 +
√

3))(T − (−
√

2 +
√

3)) = T 2 − 2
√

3T + 1,

(T − (
√

2 +
√

3))(T − (−
√

2−
√

3)) = T 2 − (5 + 2
√

6).

All of these have an irrational coefficient, so there are no quadratic factors in Q[T ]. This
completes the proof that T 4 − 10T 2 + 1 is irreducible in Q[T ]. �

For T 4 − 10T 2 + 1 neither standard irreducibility test in Q[T ] – reduction mod p or the
Eisenstein criterion – can prove its irreducibility: for each prime p, T 4 − 10T 2 + 1 mod p is
reducible and for no c ∈ Z is (T + c)4 − 10(T + c)2 + 1 Eisenstein at p.

Theorem 2. For each c ∈ Z, (T + c)4 − 10(T + c)2 + 1 not an Eisenstein polynomial.

Proof. Suppose for some c ∈ Z and prime p that (T + c)4 − 10(T + c)2 + 1 is Eisenstein at
a prime p. Since

(T + c)4 − 10(T + c)2 + 1 = T 4 + 4cT 3 + (6c2 − 10)T 2 + (4c3 − 20c)T + (c4 − 10c2 + 1)

= T 4 + 4cT 3 + 2(3c2 − 5)T 2 + 4c(c2 − 5)T + (c4 − 10c2 + 1)

we have p | 4c, so p = 2 or p | c. If p | c then the constant term c4− 10c2 + 1 is not divisible
by p, which contradicts the Eisenstein condition at p. Therefore p = 2, so c4 − 10c2 + 1 is
even, which implies c is odd. Then c2 ≡ 1 mod 8, so c4 − 10c2 + 1 ≡ 1− 10 + 1 ≡ 0 mod 8,
which contradicts the Eisenstein condition at 2. �
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Before we show T 4 − 10T 2 + 1 mod p is reducible for every prime p, the data below for
p ≤ 43 support this claim.

p T 4 − 10T 2 + 1 mod p p T 4 − 10T 2 + 1 mod p
2 (T + 1)4 19 (T 2 + 4)(T 2 + 5)
3 (T 2 + 1)2 23 (T + 2)(T − 2)(T + 11)(T − 11)
5 (T 2 + 2)(T 2 − 2) 29 (T 2 + 8)(T 2 + 11)
7 (T 2 + T − 1)(T 2 − T − 1) 31 (T 2 + 15T − 1)(T 2 − 15T − 1)
11 (T 2 + T + 1)(T 2 − T + 1) 37 (T 2 + 7T + 1)(T 2 − 7T + 1)
13 (T 2 + 5T + 1)(T 2 − 5T + 1) 41 (T 2 + 7T − 1)(T 2 − 7T − 1)
17 (T 2 + 5T − 1)(T 2 − 5T − 1) 43 (T 2 + 9)(T 2 + 24)

Theorem 3. For each prime p, T 4 − 10T 2 + 1 mod p is reducible.

Proof. The polynomial T 4 − 10T 2 + 1 has three monic quadratic factorizations in R[T ],
found from the monic quadratic factors appearing in the proof of Theorem 2 and their
conjugates. Here are the monic quadratic factorizations:

T 4 − 10T 2 + 1 = (T 2 − 2
√

2T − 1)(T 2 + 2
√

2T − 1),

= (T 2 − 2
√

3T + 1)(T 2 + 2
√

3T + 1),

= (T 2 − (5 + 2
√

6))(T 2 − (5− 2
√

6)).

For each prime p, at least one of these factorizations makes sense mod p. In Fp[T ], the
first factorization makes sense if 2 is a square mod p, the second factorization makes sense
if 3 is a square mod p, and the third factorization makes sense if 6 is a square mod p.

For example, take p = 7. Since 2 ≡ 32 mod 7, if we replace
√

2 with 3 in the first
quadratic factorization of T 4 − 10T 2 + 1 and treat coefficients as elements of F7 then

(T 2 − (2 · 3)T − 1)(T 2 + (2 · 3)T − 1) = (T 2 + T − 1)(T 2 − T − 1) mod 7

= T 4 − 32 + 1 mod 7

= T 4 − 102 + 1 mod 7.

Taking p = 5, since 6 ≡ 12 mod 5 we can replace
√

6 with 1 in the third quadratic factor-
ization of T 4 − 10T 2 + 1 to get a factorization modulo 5:

(T 2 − (5 + 2 · 1))(T 2 − (5− 2 · 1)) = (T 2 − 7)(T 2 − 3) mod 5

= T 4 − 102 + 21 mod 5

= T 4 − 102 + 1 mod 5.

In elementary number theory, it can be shown that for each prime p and integers a and
b, if a mod p and b mod p are not squares mod p then ab mod p is a square mod p.1 Taking
a = 2 and b = 3, for each prime p at least one of 2, 3, or 6 has to be a square mod p,
and that gives meaning in Fp[T ] to at least one of the monic quadratic factorizations of
T 4 − 10T 2 + 1. Thus for each prime p, T 4 − 10T 2 + 1 mod p is reducible. �

In a similar way, for integers a and b such that a, b ,and ab are all not perfect squares,√
a+
√
b is a root of T 4 − 2(a+ b)T 2 + (a− b)2 and this polynomial is irreducible in Q[T ]

and for no prime p does it have an Eisenstein translate at p or is it reducible mod p.

1This is related to Euler’s criterion for quadratic residues.


