AN IRREDUCIBLE THAT FACTORS MODULO ALL PRIMES

KEITH CONRAD

Let $\alpha=\sqrt{2}+\sqrt{3}$. To find a monic polynomial in $\mathbf{Q}[T]$ with root α, start by squaring α :

$$
\begin{aligned}
\alpha^{2}=2+2 \sqrt{6}+3=5+2 \sqrt{6} & \Longrightarrow \alpha^{2}-5=2 \sqrt{6} \\
& \Longrightarrow\left(\alpha^{2}-5\right)^{2}=24 \\
& \Longrightarrow \alpha^{4}-10 \alpha^{2}+25=24 .
\end{aligned}
$$

Thus $\alpha^{4}-10 \alpha^{2}+1=0$, so $\sqrt{2}+\sqrt{3}$ is a root of $T^{4}-10 T^{2}+1$. This polynomial has four roots in $\mathbf{R}: \sqrt{2}+\sqrt{3} \approx 3.1462, \sqrt{2}-\sqrt{3} \approx-.3178,-\sqrt{2}+\sqrt{3} \approx .3178$, and $-\sqrt{2}-\sqrt{3} \approx-3.1462$.
Theorem 1. The polynomial $T^{4}-10 T^{2}+1$ is irreducible in $\mathbf{Q}[T]$.
Proof. If the polynomial were reducible, it could be expressed as a linear times a cubic in $\mathbf{Q}[T]$ or as a product of two quadratics in $\mathbf{Q}[T]$.

If there were a linear factor in $\mathbf{Q}[T]$ then $T^{4}-10 T^{2}+1$ would have a rational root. But the square of every root is $5 \pm 2 \sqrt{6}$, which is irrational since $\sqrt{6}$ is irrational.

If $T^{4}-10 T^{2}+1$ were a product of two quadratics in $\mathbf{Q}[T]$, then without loss of generality those factors are both monic. There are four roots in \mathbf{R}, so by unique factorization in $\mathbf{R}[T]$ a monic quadratic factor in $\mathbf{Q}[T]$ must be $(T-r)(T-s)$ for two of the real roots r and s. Therefore in a factorization into monic quadratics, one of the two factors has root $\sqrt{2}+\sqrt{3}$ and the factor with that root is one of the following:

$$
\begin{aligned}
(T-(\sqrt{2}+\sqrt{3}))(T-(\sqrt{2}-\sqrt{3})) & =T^{2}-2 \sqrt{2} T-1, \\
(T-(\sqrt{2}+\sqrt{3}))(T-(-\sqrt{2}+\sqrt{3})) & =T^{2}-2 \sqrt{3} T+1, \\
(T-(\sqrt{2}+\sqrt{3}))(T-(-\sqrt{2}-\sqrt{3})) & =T^{2}-(5+2 \sqrt{6}) .
\end{aligned}
$$

All of these have an irrational coefficient, so there are no quadratic factors in $\mathbf{Q}[T]$. This completes the proof that $T^{4}-10 T^{2}+1$ is irreducible in $\mathbf{Q}[T]$.

For $T^{4}-10 T^{2}+1$ neither standard irreducibility test in $\mathbf{Q}[T]-\operatorname{reduction} \bmod p$ or the Eisenstein criterion - can prove its irreducibility: for each prime $p, T^{4}-10 T^{2}+1 \bmod p$ is reducible and for no $c \in \mathbf{Z}$ is $(T+c)^{4}-10(T+c)^{2}+1$ Eisenstein at p.
Theorem 2. For each $c \in \mathbf{Z},(T+c)^{4}-10(T+c)^{2}+1$ not an Eisenstein polynomial.
Proof. Suppose for some $c \in \mathbf{Z}$ and prime p that $(T+c)^{4}-10(T+c)^{2}+1$ is Eisenstein at a prime p. Since

$$
\begin{aligned}
(T+c)^{4}-10(T+c)^{2}+1 & =T^{4}+4 c T^{3}+\left(6 c^{2}-10\right) T^{2}+\left(4 c^{3}-20 c\right) T+\left(c^{4}-10 c^{2}+1\right) \\
& =T^{4}+4 c T^{3}+2\left(3 c^{2}-5\right) T^{2}+4 c\left(c^{2}-5\right) T+\left(c^{4}-10 c^{2}+1\right)
\end{aligned}
$$

we have $p \mid 4 c$, so $p=2$ or $p \mid c$. If $p \mid c$ then the constant term $c^{4}-10 c^{2}+1$ is not divisible by p, which contradicts the Eisenstein condition at p. Therefore $p=2$, so $c^{4}-10 c^{2}+1$ is even, which implies c is odd. Then $c^{2} \equiv 1 \bmod 8$, so $c^{4}-10 c^{2}+1 \equiv 1-10+1 \equiv 0 \bmod 8$, which contradicts the Eisenstein condition at 2.

Before we show $T^{4}-10 T^{2}+1 \bmod p$ is reducible for every prime p, the data below for $p \leq 43$ support this claim.

p	$T^{4}-10 T^{2}+1 \bmod p$	p	$T^{4}-10 T^{2}+1 \bmod p$
2	$(T+1)^{4}$	19	$\left(T^{2}+4\right)\left(T^{2}+5\right)$
3	$\left(T^{2}+1\right)^{2}$	23	$(T+2)(T-2)(T+11)(T-11)$
5	$\left(T^{2}+2\right)\left(T^{2}-2\right)$	29	$\left(T^{2}+8\right)\left(T^{2}+11\right)$
7	$\left(T^{2}+T-1\right)\left(T^{2}-T-1\right)$	31	$\left(T^{2}+15 T-1\right)\left(T^{2}-15 T-1\right)$
11	$\left(T^{2}+T+1\right)\left(T^{2}-T+1\right)$	37	$\left(T^{2}+7 T+1\right)\left(T^{2}-7 T+1\right)$
13	$\left(T^{2}+5 T+1\right)\left(T^{2}-5 T+1\right)$	41	$\left(T^{2}+7 T-1\right)\left(T^{2}-7 T-1\right)$
17	$\left(T^{2}+5 T-1\right)\left(T^{2}-5 T-1\right)$	43	$\left(T^{2}+9\right)\left(T^{2}+24\right)$

Theorem 3. For each prime $p, T^{4}-10 T^{2}+1 \bmod p$ is reducible.
Proof. The polynomial $T^{4}-10 T^{2}+1$ has three monic quadratic factorizations in $\mathbf{R}[T]$, found from the monic quadratic factors appearing in the proof of Theorem 2 and their conjugates. Here are the monic quadratic factorizations:

$$
\begin{aligned}
T^{4}-10 T^{2}+1 & =\left(T^{2}-2 \sqrt{2} T-1\right)\left(T^{2}+2 \sqrt{2} T-1\right), \\
& =\left(T^{2}-2 \sqrt{3} T+1\right)\left(T^{2}+2 \sqrt{3} T+1\right), \\
& =\left(T^{2}-(5+2 \sqrt{6})\right)\left(T^{2}-(5-2 \sqrt{6})\right) .
\end{aligned}
$$

For each prime p, at least one of these factorizations makes sense $\bmod p$. In $\mathbf{F}_{p}[T]$, the first factorization makes sense if 2 is a square $\bmod p$, the second factorization makes sense if 3 is a square $\bmod p$, and the third factorization makes sense if 6 is a square $\bmod p$.

For example, take $p=7$. Since $2 \equiv 3^{2} \bmod 7$, if we replace $\sqrt{2}$ with 3 in the first quadratic factorization of $T^{4}-10 T^{2}+1$ and treat coefficients as elements of \mathbf{F}_{7} then

$$
\begin{aligned}
\left(T^{2}-(2 \cdot 3) T-1\right)\left(T^{2}+(2 \cdot 3) T-1\right) & =\left(T^{2}+T-1\right)\left(T^{2}-T-1\right) \bmod 7 \\
& =T^{4}-3^{2}+1 \bmod 7 \\
& =T^{4}-10^{2}+1 \bmod 7
\end{aligned}
$$

Taking $p=5$, since $6 \equiv 1^{2} \bmod 5$ we can replace $\sqrt{6}$ with 1 in the third quadratic factorization of $T^{4}-10 T^{2}+1$ to get a factorization modulo 5 :

$$
\begin{aligned}
\left(T^{2}-(5+2 \cdot 1)\right)\left(T^{2}-(5-2 \cdot 1)\right) & =\left(T^{2}-7\right)\left(T^{2}-3\right) \bmod 5 \\
& =T^{4}-10^{2}+21 \bmod 5 \\
& =T^{4}-10^{2}+1 \bmod 5 .
\end{aligned}
$$

In elementary number theory, it can be shown that for each prime p and integers a and b, if $a \bmod p$ and $b \bmod p$ are not squares $\bmod p$ then $a b \bmod p$ is a square $\bmod p .{ }^{1}$ Taking $a=2$ and $b=3$, for each prime p at least one of 2,3 , or 6 has to be a square $\bmod p$, and that gives meaning in $\mathbf{F}_{p}[T]$ to at least one of the monic quadratic factorizations of $T^{4}-10 T^{2}+1$. Thus for each prime $p, T^{4}-10 T^{2}+1 \bmod p$ is reducible.

In a similar way, for integers a and b such that a, b,and $a b$ are all not perfect squares, $\sqrt{a}+\sqrt{b}$ is a root of $T^{4}-2(a+b) T^{2}+(a-b)^{2}$ and this polynomial is irreducible in $\mathbf{Q}[T]$ and for no prime p does it have an Eisenstein translate at p or is it reducible $\bmod p$.

[^0]
[^0]: ${ }^{1}$ This is related to Euler's criterion for quadratic residues.

