
NOETHERIAN RINGS

KEITH CONRAD

1. Introduction

In a PID, every ideal has a single generator. In a ring that is not a PID, there may not
be a bound on the number of generators of all the ideals. For example, in the polynomial
ring Q[X,Y ], the ideal (X,Y ) has a generating set of size 2 but not one of size 1 (it is not
principal), and the ideal (Xn, Xn−1Y, . . . ,XY n−1, Y n) in Q[X,Y ] has a generating set of
size n + 1 but not one of size n. Despite these variations, there is an important finiteness
property of the ring Q[X,Y ]: all of its ideals are finitely generated.

Definition 1.1. A commutative ring R is called Noetherian if each ideal in R is finitely
generated.

This name honors Emmy Noether, who in her landmark paper [6] in 1921 proved proper-
ties of such rings by conceptual methods instead of by laborious computations. She referred
to such rings as those satisfying “the finiteness condition” (die Endlichkeitsbedingung). The
label “Noetherian ring” is due to Chevalley [1] in 1943.

2. Examples

A simple (and boring) example of a Noetherian ring is a field. A more general class of
examples is PIDs, since all of their ideals are singly generated. Noetherian rings can be
regarded as a good generalization of PIDs: the property of all ideals being singly generated
is often not preserved under common ring-theoretic constructions (e.g., Z is a PID but
Z[X] is not), but the property of all ideals being finitely generated does remain valid under
many constructions of new rings from old rings. For example, we will see below that every
quadratic ring Z[

√
d] is Noetherian; many of these rings are not PIDs.

The standard example of a non-Noetherian ring is a polynomial ring K[X1, X2, . . . ] in
infinitely many variables over a field K. Non-Noetherian rings need not be “really huge”;
there is a non-Noetherian ring contained in Q[X]: the ring of integral-valued polynomials

Int(Z) = {f ∈ Q[X] : f(Z) ⊂ Z}

is not Noetherian.1 This ring is bigger than Z[X], e.g.,
(
X
2

)
= X(X−1)

2 is in Int(Z) but not

in Z[X], as is
(
X
n

)
= X(X−1)···(X−n+1)

n! for all n ≥ 2.

3. Properties of Noetherian rings

Theorem 3.1. The following conditions on a commutative ring R are equivalent:

(1) R is Noetherian: all ideals of R are finitely generated.
(2) each infinite increasing sequence of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · in R eventually

stabilizes: Ik = Ik+1 for all large k.2

1See https://math.stackexchange.com/questions/408219 for a proof.
2The notation ⊂ only means containment, not strict containment.
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(3) Every nonempty collection S of ideals of R contains a maximal element with respect
to inclusion: there’s an ideal in S not strictly contained in another ideal in S.

The first theorem in Noether’s paper [6, p. 30] is that (1) ⇒ (2), and she called this
the “theorem of the finite chain” (Satz von der endlichen Kette). The standard label for
property (2) is the ascending chain condition or ACC. Immediately after proving (1)⇒ (2),
she observed that (2) ⇒ (1) and therefore that (2) could be used as a definition of her
“finiteness condition” in place of (1).

Proof. (1) ⇒ (2): If I1 ⊂ I2 ⊂ · · · is an increasing sequence of ideals, let I =
⋃

n≥1 In. This
is an ideal since each pair of elements in I lies in a common In, by the increasing condition,
so I is closed under addition and multiplication by elements of R. By (1), I is finitely
generated. Using the increasing condition again, each finite subset of I lies in a common
In, so a finite generating set of I is in some Im. Thus I ⊂ Im, and of course also Im ⊂ I, so
I = Im. Then for all n ≥ m, Im ⊂ In ⊂ I = Im, so In = Im.

(2) ⇒ (1): We prove the contrapositive. Suppose (1) is false, so R has an ideal I that is
not finitely generated. Pick r1 ∈ I. Since I is not finitely generated, I 6= (r1), so there is
an r2 ∈ I − (r1). Since I 6= (r1, r2), there is an r3 ∈ I − (r1, r2). Proceed in a similar way
to pick rn in I for all n ≥ 1 by making rn ∈ I − (r1, . . . , rn−1) for n ≥ 2. Then we have an
increasing sequence of ideals (r1) ⊂ (r1, r2) ⊂ · · · ⊂ (r1, . . . , rn) ⊂ · · · in R where each ideal
is strictly contained in the next one, so (2) is false.

(2) ⇒ (3): We will prove the contrapositive. If (3) is false then there is a nonempty
collection S of ideals in R containing no maximal member with respect to inclusion. There-
fore if we start with an ideal I1 in R, we can recursively find ideals I2, I3, . . . such that In
strictly contains In−1 for all n ≥ 2. (If there were no ideal in S strictly containing In−1,
then In−1 would be a maximal element of S, which doesn’t exist.)

(3) ⇒ (1): Let I be an ideal in R. To prove I is finitely generated, let S be the set of

all finitely generated ideals contained in I. By (3), there is an Ĩ ∈ S that’s contained in

no other element of S, so Ĩ is a finitely generated ideal in I and no other finitely generated

ideal of R contains Ĩ. We will show Ĩ = I by contradiction, which would prove I is finitely

generated. If Ĩ 6= I, pick a ∈ I − Ĩ. Since Ĩ is finitely generated, also Ĩ + Ra is finitely

generated, so Ĩ+Ra ∈ S. However, Ĩ+Ra strictly contains Ĩ, which contradicts maximality

of Ĩ as a member of S. Thus Ĩ = I. �

The third condition of Theorem 3.1 shows a Noetherian ring R other than the zero ring
has a maximal ideal (let S be the set of proper ideals in R) and every proper ideal I in a
Noetherian ring R is contained in a maximal ideal (let S be the set of proper ideals of R
that contain I). This does not need Zorn’s lemma, which is used to show maximal ideals
exist in arbitrary nonzero commutative rings. Many theorems about general commutative
rings that are proved with Zorn’s lemma can be proved without Zorn’s lemma when the
ring is Noetherian.

The following two theorems put the second condition of Theorem 3.1 to use.

Theorem 3.2. Let R be a Noetherian ring. Each surjective ring homomorphism R → R
is injective, and thus is an isomorphism.

Proof. Let ϕ : R → R be a surjective ring homomorphism. For the nth iterate ϕn (the
n-fold composition of ϕ with itself), let Kn = ker(ϕn). This is an ideal in R and these



NOETHERIAN RINGS 3

ideals form an increasing chain:

K1 ⊂ K2 ⊂ K3 ⊂ · · ·

since r ∈ Kn ⇒ ϕn(r) = 0 ⇒ ϕn+1(r) = ϕ(ϕn(r)) = ϕ(0) = 0, so r ∈ Kn+1. Since R is
a Noetherian ring, Kn = Kn+1 for some n. Pick r ∈ kerϕ, so ϕ(r) = 0. The map ϕn is
surjective since ϕ is surjective, so r = ϕn(r′) for some r′ ∈ R. Thus 0 = ϕ(r) = ϕ(ϕn(r′)) =
ϕn+1(r′). Therefore r′ ∈ ker(ϕn+1) = ker(ϕn), so r = ϕn(r′) = 0. That shows kerϕ = {0},
so ϕ is injective. �

The ring R = K[X1, X2, . . .] for a field K is not Noetherian and a surjective ring
homomorphism R → R that is not injective is the shift-substitution f(X1, X2, . . .) 7→
f(X2, X3, . . .) for all f ∈ R.

There is no analogue of Theorem 3.2 for injective ring homomorphisms. For example,
R[X] is a Noetherian ring since it’s a PID and the substitution homomorphism f(X) 7→
f(X2) on R[X] is an injective ring homomorphism that is not surjective.

Theorem 3.3. If R is a Noetherian integral domain that is not a field, then every nonzero
nonunit in R can be factored into irreducibles.

We assume R is not a field because irreducible factorizations don’t have a meaning for
units, so we want R to contain some nonzero elements that aren’t units.

Proof. This will be a proof by contradiction.
Suppose there is an element a in R that is not 0 or a unit and has no irreducible factor-

ization. We will find another nonzero nonunit b ∈ R that does not admit a factorization
into irreducibles and such that there is a strict inclusion of ideals (a) ⊂ (b).

Since a is not irreducible and it is not 0 or a unit, there is a factorization a = bc where b
and c are nonunits (and obviously they are not 0 either). If both b and c have an irreducible
factorization, then so does a (just multiply together irreducible factorizations for b and c),
so at least one of b or c has no irreducible factorization. Without loss of generality, say b
has no irreducible factorization. Then since c is not a unit, the inclusion (a) ⊂ (b) is strict.

Rewriting a as a1 and b as a2, we have a strict containment of ideals

(a1) ⊂ (a2)

where a2 is a nonzero nonunit with no irreducible factorization. Using a2 in the role of a1
in the previous paragraph, there is a strict inclusion of ideals

(a2) ⊂ (a3)

for some nonzero nonunit a3 that has no irreducible factorization. This argument can be
repeated and leads to an infinite increasing chain of (principal) ideals

(3.1) (a1) ⊂ (a2) ⊂ (a3) ⊂ · · ·

where all inclusions are strict. This is impossible in a Noetherian ring, so we have a con-
tradiction. Therefore nonzero nonunits without an irreducible factorization do not exist in
R: all nonzero nonunits in R have an irreducible factorization. �

Theorem 3.3 is not saying a Noetherian integral domain has unique factorization: just
because an element has an irreducible factorization doesn’t mean it is unique (up to the
order of multiplication and multiplication of terms by units). Many Noetherian integral
domains do not have unique factorization.
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Remark 3.4. If an integral domain R contains a nonzero nonunit a that has no irreducible
factorization, then Theorem 3.3 tells us R can’t be Noetherian, so R must contain an ideal
that isn’t finitely generated. In fact, the proof of Theorem 3.3 gives us an (abstract) example
of an ideal in R that isn’t finitely generated: the union of ideals I :=

⋃
n≥0(an) is an ideal

because (an) ⊂ (an+1) for all n, and I isn’t finitely generated because if it were finitely
generated then the containments (an) ⊂ (an+1) could not be strict for all n.

We now show that some basic operations on rings preserve the property of being Noe-
therian.

Theorem 3.5. If R is a Noetherian ring, then so is R/I for each ideal I in R.

Proof. Every ideal in R/I has the form J/I for an ideal J of R such that I ⊂ J ⊂ R. Since
R is a Noetherian ring, J is a finitely generated ideal in R, and that finite generating set
for J reduces to a generating set for J/I as an ideal of R/I. �

To create more examples of Noetherian rings we can use the following very important
theorem.

Theorem 3.6 (Hilbert Basis Theorem). If R is a Noetherian ring, then so is R[X].

The reason for the name “Basis Theorem” is that a generating set for an ideal may be
called a “basis” even if it’s not linearly independent (cf. the modern term “Gröbner basis”).
The theorem says if each ideal in R has a “finite basis”, then this is true of ideals in R[X].

Proof. The theorem is clear if R = 0, so assume R 6= {0}. To prove each ideal I in R[X] is
finitely generated, we assume I is not finitely generated and will get a contradiction.

We have I 6= (0). Define a sequence of polynomials f1, f2, . . . in I as follows.

(1) Pick f1 to be an element of I − (0) with minimal degree. (It is not unique.)
(2) Since I 6= (f1), as I is not finitely generated, pick f2 in I−(f1) with minimal degree.

Note deg f1 ≤ deg f2 by the minimality condition on deg f1.
(3) For k ≥ 2, if we have defined f1, . . . , fk in I then I 6= (f1, . . . , fk) since I is not

finitely generated, so we may pick fk+1 in I − (f1, . . . , fk) with minimal degree.

We have deg fk ≤ deg fk+1 for all k: the case k = 1 was checked before, and for k ≥ 2,
fk and fk+1 are in I − (f1, . . . , fk−1) so deg fk ≤ deg fk+1 by the minimality condition on
deg fk.

For k ≥ 1, let dk = deg fk and ck be the leading coefficient of fk, so dk ≤ dk+1 and
fk(X) = ckX

dk+ lower-degree terms.
The ideal (c1, c2, . . . ) in R (an ideal of leading coefficients) is finitely generated since R

is Noetherian. Each element in this ideal is an R-linear combination of finitely many ck, so
(c1, c2, . . . ) = (c1, . . . , cm) for some m.

Since cm+1 ∈ (c1, c2, . . . , cm), we have

(3.2) cm+1 =
m∑
k=1

rkck

for some rk ∈ R. From the inequalities dk ≤ dm+1 for k ≤ m, the leading term in fk(X) =
ckX

dk + · · · can be moved into degree dm+1 by using fk(X)Xdm+1−dk = ckX
dm+1 + · · · , and

this is in I since fk(X) ∈ I and I is an ideal in R[X]. By (3.2), the R-linear combination
m∑
k=1

rkfk(X)Xdm+1−dk
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is in the ideal (f1, . . . , fm) and its coefficient of Xdm+1 is
∑m

k=1 rkck, which equals the leading
coefficient cm+1 of fm+1(X) in degree dm+1. The difference

(3.3) fm+1(X)−
m∑
k=1

rkfk(X)Xdeg fm+1−deg fk

is in I, it is not 0 since fm+1 ∈ I − (f1, . . . , fm), and it has degree less than dm+1 since
the terms cm+1X

dm+1 cancel out. But fm+1(X) has minimal degree among polynomials in
I − (f1, . . . , fm), and (3.3) is in I − (f1, . . . , fm) with lower degree than dm+1. That’s a
contradiction. Thus I is finitely generated. �

To summarize this proof in a single phrase, “use an ideal of leading coefficients”.
In the proof, the Noetherian property of R is used where we said (c1, c2, . . . ) = (c1, . . . , cm)

for some m. All we need to get the contradiction in the proof is cm+1 ∈ (c1, . . . , cm) for
some m. Since (c1) ⊂ (c1, c2) ⊂ (c1, c2, c3) ⊂ · · · , what we need is the following property:
for each infinite increasing sequence of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · in R, Im = Im+1 for some
m. Of course this is implied by the Noetherian property, but it also implies the Noetherian
property since a non-Noetherian ring has an infinite increasing sequence of ideals with strict
containments at each step: see the proof of (2) ⇒ (1) in Theorem 3.1.

Remark 3.7. Our proof of the Hilbert Basis Theorem, which is due to Sarges [7], is by
contradiction and thus is not constructive. A constructive proof runs as follows. For R 6= 0,
I a nonzero ideal in R[X], and n ≥ 0, let Ln be the set of leading coefficients of polynomials
in I of degree at most n together with 0. This is an ideal in R by the way polynomials
add and get scaled by R. (While Ln might be (0) for small n, Ln 6= (0) for large n since I
contains a nonzero polynomial and multiplying that by powers of X gives us polynomials
in I of all higher degrees.) Since Ln ⊂ Ln+1, the ideals {Ln} in R stabilize at some point,
say Ln = Lm for n ≥ m. (Thus Lm is generated by the leading coefficients of all nonzero
polynomials in I, so we could have defined Lm that way.) Each Ln has finitely many
generators. When Ln 6= (0), let Pn be a finite set of polynomials of degree at most n in I
whose leading coefficients generate Ln. The union of the finite sets Pn for n ≤ m where
Ln 6= (0) is a generating set for I [4, Sect. 7.10]. This way of proving Hilbert’s basis theorem
is essentially due to Artin, according to van der Waerden [8].

Where in the proof of Theorem 3.6 did we use the assumption that R is Noetherian? It
is how we know the ideals (c1, . . . , ck) for k ≥ 1 stabilize for large k, so cm+1 ∈ (c1, . . . , cm)
for some m. The contradiction we obtain from that really shows cm+1 6∈ (c1, . . . , cm) for all
m, so the proof of Theorem 3.6 could be viewed as proving the contrapositive: if R[X] is
not Noetherian then R is not Noetherian.

The converse of Theorem 3.6 is true: if the ring R[X] is Noetherian, then so is the ring
R by Theorem 3.5, since R ∼= R[X]/(X)

Corollary 3.8. If R is a Noetherian ring, then so is R[X1, . . . , Xn] for all n ≥ 1.

Proof. We induct on n. The case n = 1 is Theorem 3.6. For n ≥ 2, write R[X1, . . . , Xn] as
R[X1, . . . , Xn−1][Xn], with R[X1, . . . , Xn−1] being Noetherian by the inductive hypothesis,
so we are reduced to the base case. �

Remark 3.9. Corollary 3.8 in the special cases R = C and R = Z were proved by Hilbert
in 1890 [3, Theorem I, p. 474], [3, Theorem II, p. 485] as a pure existence theorem, not by
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an algorithm.3 This is what first made Hilbert famous in mathematics. Earlier, Gordan [2]
settled the case n = 2 of Corollary 3.8 for R = C in 1868 by long calculations and spent
20 years unsuccessfully working on n = 3. Hilbert’s proof that C[X1, . . . , Xn] is Noetherian
for all n was revolutionary, illustrating the power of existence proofs over constructive
methods, and this became characteristic of much of modern mathematics. With the rise
of fast computers in the late 20th century, generating sets for polynomial ideals can be
computed routinely with Gröbner bases, which are a multivariable polynomial replacement
for the Euclidean algorithm of polynomials in one variable.

Using polynomial rings and quotient rings, we now can build lots of Noetherian rings.

Example 3.10. The quadratic ring Z[
√
d] for a nonsquare integer d is Noetherian. That

follows from viewing Z[
√
d] as Z[X]/(X2 − d): evaluation at

√
d is a surjective ring homo-

morphism Z[X]→ Z[
√
d] with kernel (X2− d),4 so Z[

√
d] ∼= Z[X]/(X2− d). The ring Z[X]

is Noetherian by Hilbert’s basis theorem, and Z[X]/(X2−d) is Noetherian by Theorem 3.5,

so Z[
√
d] is Noetherian.

Example 3.11. The rings Z[
√

2,
√

3] and Z[i, 3
√

2, 7
√

10] are Noetherian since Z[
√

2,
√

3] ∼=
Z[X,Y ]/(X2 − 2, Y 2 − 3) and Z[i, 3

√
2, 7
√

10] ∼= Z[X,Y, Z]/(X2 + 1, Y 3 − 2, Z7 − 10).

Example 3.12. The ring Z[X, 1/X] is Noetherian by viewing it as Z[X,Y ]/(XY − 1).

Example 3.13. For a field K and ideal I in K[X1, . . . , Xn], the ring K[X1, . . . , Xn]/I is
Noetherian since K is trivially Noetherian. For instance, R[X,Y, Z]/(X2 +Y 3−Z5, XY Z)
is Noetherian.

Remark 3.14. Besides polynomials in finitely many variables, formal power series in
finitely many variables are important. For a Noetherian ring R, the formal power series
ring R[[X1, . . . , Xn]] is Noetherian (first proved by Chevalley [1, Lemma 8]). The proof of
this reduces to the case n = 1 by induction, as in the polynomial case, since R[[X1, . . . , Xn]]
is R[[X1, . . . , Xn−1]][[Xn]] when n ≥ 2. Formal power series need not have a leading coeffi-
cient, so the proof in the polynomial case doesn’t work directly for power series. What can
be used with power series instead of a leading term is a lowest degree term, so the proof of
Theorem 3.5 can be adapted to formal power series by changing highest-degree coefficients
into lowest-degree coefficients. An infinite “limiting process” occurs in the proof since the
multipliers on a generating set for the ideal are power series. See [4, Theorem 7.11].

The last property we’ll discuss about Noetherian rings is their “primary ideal decomposi-
tion,” which is an analogue in all Noetherian rings of prime-power factorization in Z. Each
n > 1 can be written as a product of prime powers: n = pe11 · · · p

ek
k for primes pi and ei ≥ 1.

Viewing this as an equation of principal ideals,

(n) = (pe11 · · · p
ek
k ) = (pe11 ) ∩ · · · ∩ (pekk ).

We’ll show each proper ideal in a Noetherian ring is a finite intersection of primary ideals,
which are a generalization of the ideals (pe) in Z.

3Hilbert could not use the proof that we gave for his basis theorem, since he didn’t have the concept of
a Noetherian ring in full generality available to him.

4Although Z[X] is not Euclidean, there is unique division with remainder by a monic polynomial, such as

X2−d. If f(
√
d) = 0 where f(X) ∈ Z[X] and we write f(X) = (X2−d)Q(X)+R(X) where R(X) = a+bX,

then the condition f(
√
d) = 0 implies a+ b

√
d = 0, so a = b = 0 and thus R(X) = 0, so f(X) ∈ (X2 − d).
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Definition 3.15. An ideal Q in a commutative ring R is called primary if Q 6= R and the
zero divisors in R/Q are nilpotent: if ab ≡ 0 mod Q and a 6≡ 0 mod Q, then bn ≡ 0 mod Q
for some n ≥ 1. Equivalently, if ab ≡ 0 mod Q then a ≡ 0 mod Q or some bn ≡ 0 mod Q.

Example 3.16. For a prime ideal P in R, the only zero divisor in R/P is 0, so a prime
ideal is a primary ideal.

Example 3.17. For R = Z, its primary ideals are (0) and (pe) for prime numbers p and
e ≥ 1, so we can think of primary ideals as a generalization of prime powers.5

To realize ideals as intersections of primary ideals, it’s useful to have the following names
for ideals that are or are not intersections of other ideals.

Definition 3.18. In a commutative ring R, an ideal I is called reducible if I = J ∩ J ′ for
ideals J and J ′ strictly containing I. An irreducible ideal is proper and not reducible.

Irreducibility of I means I 6= R and whenever I = J ∩ J ′ for ideals J and J ′ in R, either
J or J ′ is I.

Example 3.19. For R = Z, intersections of ideals are related to least common multiples:
(a)∩ (b) = (lcm(a, b)). For example, (6)∩ (9) = (18). If (a)∩ (b) = (81) then lcm(a, b) = 81,
and the only way that can happen is if a = ±81 or b = ±81 (why?), so (a) = (81) or
(b) = (81). More generally, if (a) ∩ (b) = (pe) for a prime number p and e ≥ 1, then
(a) = (pe) or (b) = (pe), so (pe) is an irreducible ideal in Z. The irreducible ideals in Z are
(0) and prime-power ideals (pe).

Theorem 3.20. In a nonzero Noetherian ring, each proper ideal is an intersection of finitely
many irreducible ideals.

Proof. Let S be the set of proper ideals that are not an intersection of finitely many irre-
ducible ideals. To show S = ∅, assume S 6= ∅. Since our ring is Noetherian, S contains a
maximal element by Theorem 3.1(3), say I. Then I is a proper ideal and I is not irreducible
by the definition of S, so I = J ∩ J ′ for two ideals J and J ′ that strictly contain I. The
ideals J and J ′ are proper, e.g., if J = (1) then I = (1) ∩ J ′ = J ′, but J ′ 6= I.

Since I is a strict subset of J and J ′, which are both proper, the maximality of I in S
implies J and J ′ are each an intersection of finitely many irreducible ideals:

J = I1 ∩ · · · ∩ Ik, J ′ = I ′1 ∩ · · · ∩ I ′`,

where Ii and I ′j are irreducible. Then

I = J ∩ J ′ = I1 ∩ · · · ∩ Ik ∩ I ′1 ∩ · · · ∩ I ′`,

which contradicts the condition I ∈ S. Thus S = ∅. �

Lemma 3.21. Let I be an ideal in a commutative ring R.

(a) I is irreducible in R if and only if the zero ideal (0) in R/I is irreducible.
(b) I is primary in R if and only if the zero ideal (0) in R/I is primary.

Property (b) is analogous to saying an ideal P in R is a prime ideal if and only if the
zero ideal in R/P is a prime ideal.

5Some powers of prime ideals are not primary: see https://math.stackexchange.com/questions/93478/
is-each-power-of-a-prime-ideal-a-primary-ideal. Primary ideals need not be powers of prime ideals.

https://math.stackexchange.com/questions/93478/is-each-power-of-a-prime-ideal-a-primary-ideal
https://math.stackexchange.com/questions/93478/is-each-power-of-a-prime-ideal-a-primary-ideal
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Proof. (a) First suppose I is irreducible in R, so I 6= R. Then R/I 6= {0}, so (0) is a proper
ideal of R/I.

Each ideal in R/I has a unique description as J/I for an ideal J in R that contains
I. To prove (0) is irreducible in R/I, suppose (0) is an intersection of two ideals in R/I:
(0) = J/I ∩ J ′/I where J and J ′ are ideals in R containing I. Then (0) = (J ∩ J ′)/I, so
I = J ∩ J ′. Irreducibility of I in R implies J = I or J ′ = I, so J/I or J ′/I is (0).

The converse direction of (a) is left to the reader.
(b) Saying I is primary in R means I 6= R and zero divisors in R/I are nilpotent. Saying

(0) is primary in R/I means (0) 6= R/I and zero divisors in (R/I)/(0) are nilpotent. The
conditions “I 6= R” and “(0) 6= R/I” are equivalent and (R/I)/(0) ∼= R/I, so the properties
of I being primary in R and (0) being primary in R/I are equivalent. �

Theorem 3.22. In a nonzero Noetherian ring every irreducible ideal is a primary ideal.

Proof. By Theorem 3.5 and Lemma 3.21, it suffices to show that in a Noetherian ring, if
the zero ideal is irreducible then it is primary.

Suppose (0) is an irreducible ideal in a Noetherian ring R and xy = 0 in R. We want to
prove x = 0 or y is nilpotent.

To each r ∈ R is an associated ideal called its annihilator: Ann(r) = {a ∈ R : ar = 0}.
Consider the following increasing chain of ideals in R using powers of y:

Ann(y) ⊂ Ann(y2) ⊂ Ann(y3) ⊂ · · · .
Since R is Noetherian, this chain stabilizes: for some n ≥ 1, Ann(ym) = Ann(yn) for all
m ≥ n. We’re going to use Ann(yn+1) = Ann(yn) to prove x = 0 or yn = 0.

Claim: (x) ∩ (yn) = (0).
Pick a ∈ (x) ∩ (yn). Since a ∈ (x) and xy = 0, we have ay = 0. Since a ∈ (yn) we have

a = byn, so 0 = ay = byn+1, so b ∈ Ann(yn+1) = Ann(yn). Thus byn = 0, so a = 0. That
proves the claim.

From the claim and irreducibility of (0) in R, (x) = (0) or (yn) = (0). Therefore x = 0
or yn = 0, so (0) is a primary ideal in R. �

Theorem 3.23. In a nonzero Noetherian ring, each proper ideal is an intersection of finitely
many primary ideals.

Proof. This follows from Theorems 3.20 and 3.22. �

Remark 3.24. The proof of Theorem 3.23, if you unravel it, has three steps: (i) define
irreducible ideals, (ii) show proper ideals are finite intersections of irreducible ideals and (iii)
show irreducible ideals are primary. There is a similar approach to proving each nonzero
finite abelian group A is a direct sum of cyclic subgroups of prime power order: define
indecomposable finite abelian groups as nonzero and not a direct sum of nonzero subgroups,
show each nonzero A is a direct sum of indecomposable subgroups, and show indecomposable
finite abelian groups are cyclic of prime-power order.6

Theorem 3.23 was first proved for the polynomial ring C[X1, . . . , Xn] by Lasker [5] in 1905.
Noether’s much shorter proof, valid for all Noetherian rings, was a powerful illustration of
her abstract approach to studying rings and ideals, which proved results in a general setting
that previously seemed intimately tied to computations with polynomials.

The primary ideal decomposition in Noetherian rings can be refined to include uniqueness
aspects. This is treated in books on commutative algebra.

6See https://kconrad.math.uconn.edu/blurbs/grouptheory/finite-abelian.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/finite-abelian.pdf
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numerischen Coefficienten einer endlichen Anzahl solcher Formen ist, J. Reine Angew. Mathematik 69
(1868), 323–354. URL https://eudml.org/doc/148066.

[3] D. Hilbert, Ueber die Theorie der algebraischen Formen, Math. Annalen 36 (1890), 473–534. URL
https:// eudml.org/doc/157506.

[4] N. Jacobson, “Basic Algebra II”, 2nd ed., W. H. Freeman & Co., New York, 1989.
[5] E. Lasker, Zur Theorie der Moduln und Ideale, Math. Annalen 60 (1905), 20–116, URL https://eudml.

org/doc/158174.
[6] E. Noether, Idealtheorie in Ringbereichen, Math. Annalen 83 (1921), 24–66. URL https://eudml.

org/doc/158855. English translation by D. Berlyne https://arxiv.org/abs/1401.2577.
[7] H. Sarges, Ein Beweis des Hilbertschen Basissatzes, J. Reine Angew. Math. 283 (1976), 436–437. URL

https://eudml.org/doc/151744.
[8] B. L. van der Waerden, On the sources of my book Moderne Algebra, Historia. Math. 2 (1975), 31–40.

URL https://core.ac.uk/download/pdf/82253306.pdf.

https://www.jstor.org/stable/1969105
https://www.jstor.org/stable/1969105
https://eudml.org/doc/148066
https://eudml.org/doc/157506
https://eudml.org/doc/158174
https://eudml.org/doc/158174
https://eudml.org/doc/158855
https://eudml.org/doc/158855
https://arxiv.org/abs/1401.2577
https://eudml.org/doc/151744
https://core.ac.uk/download/pdf/82253306.pdf

	1. Introduction
	2. Examples
	3. Properties of Noetherian rings
	References

