IRREDUCIBILITY OF $x^{n}-x-1$

KEITH CONRAD

1. Introduction

In 1956, Selmer [2] proved the following irreducbility theorem.
Theorem 1.1 (Selmer). For all $n \geq 2$, the polynomial $x^{n}-x-1$ is irreducible in $\mathbf{Q}[x]$.
None of the standard irreducibility tests, such as reduction mod p or the Eisenstein criterion, can be applied to $x^{n}-x-1$ for general n. However, in a special case we can use one of these tests: if $n=p$ is prime then $x^{p}-x-1$ is irreducible in $\mathbf{F}_{p}[x]$ and therefore is irreducible in $\mathbf{Q}[x]$. More generally, if a is an integer not divisible by p then $x^{p}-x-a$ is irreducible in $\mathbf{Q}[x]$ because the polynomial is irreducible in $\mathbf{F}_{p}[x]$: a proof of this is in many books on abstract algebra or field theory. Such a proof of irreducibility in $\mathbf{Q}[x]$ does not extend to $x^{p^{m}}-x-1$ when $m \geq 2$, since that polynomial is generally reducible in $\mathbf{F}_{p}[x]$.

Example 1.2. If an integer $m \geq 2$ is not divisible by p then in characteristic p, a root of $x^{p}-x-1 / m$ is a root of $x^{p^{m}}-x-1$:

$$
\alpha^{p}=\alpha+\frac{1}{m} \Longrightarrow \alpha^{p^{k}}=\alpha+\frac{k}{m} \text { in characteristic } p
$$

for all $k \geq 1$ by induction. Setting $k=m$ gives us $\alpha^{p^{m}}=\alpha+1$. The polynomial $x^{p}-x-1 / m$ in $\mathbf{F}_{p}[x]$ is irreducible, so in $\mathbf{F}_{p}[x], x^{p}-x-1 / m$ is a nontrivial factor of $x^{p^{m}}-x-1$

2. Proof of irreducibility

Selmer's original proof of Theorem 1.1 involves studying the distribution of the roots of $x^{n}-x-1$ in \mathbf{C}, relying at the end on the arithmetic-geometric mean inequality. The irreducibility proof that we give below is shorter and more algebraic. I learned it from David Rohrlich, who in turn learned it from Michael Filaseta.

Proof. For nonzero $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ of degree n, let $\widetilde{f}(x)$ be its reciprocal polynomial:

$$
\tilde{f}(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=x^{\operatorname{deg} f} f(1 / x) .
$$

We call $\tilde{f}(x)$ the reciprocal polynomial because its roots are the reciprocals of the roots of $f(x)$. More precisely, if $f(x)$ has leading coefficient a_{0} and $f(0) \neq 0$ then

$$
f(x)=a_{0}\left(x-r_{1}\right) \cdots\left(x-r_{n}\right) \Longrightarrow \widetilde{f}(x)=f(0)\left(x-1 / r_{1}\right) \cdots\left(x-1 / r_{n}\right) .
$$

The following properties of this construction will be used below without comment:

- if $f(0) \neq 0$ then $\operatorname{deg} f=\operatorname{deg} \tilde{f}$ and $\tilde{\tilde{f}}=f$,
- if $f=g h$ then $\widetilde{f}=\widetilde{g} \widetilde{h}$,
- for every nonzero constant $c, \widetilde{c f}=c \widetilde{f}$,
- if $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ has degree n then the x^{n}-coefficient of $f(x) \widetilde{f}(x)$ is $a_{0}^{2}+a_{1}^{2}+\cdots+a_{n}^{2}$. Check all of these properties yourself. The last one is the most interesting.

The proof of the theorem will be presented in three steps.
Step 1: For $n \geq 2, x^{n}-x-1$ and its reciprocal polynomial have no common root in characteristic 0 .

The reciprocal polynomial is $-x^{n}-x^{n-1}+1$. If this shares a root with $x^{n}-x-1$ in characteristic 0 , say α, then

$$
\begin{equation*}
\alpha^{n}=\alpha+1 \text { and } \alpha^{n}=-\alpha^{n-1}+1, \tag{2.1}
\end{equation*}
$$

so $-\alpha^{n-1}=\alpha$. Thus $\alpha^{n}=-\alpha^{2}$. Substituting this into either equation in (2.1) gives us $-\alpha^{2}=\alpha+1$, which implies $\alpha^{3}=1$, so every power of α is either $1, \alpha$, or α^{2}. If $\alpha^{n}=1$ then the first equation in (2.1) becomes $1=\alpha+1$, which is false since $\alpha \neq 0$. If $\alpha^{n}=\alpha$ then $\alpha=\alpha+1$, which is absurd. If $\alpha^{n}=\alpha^{2}$ then the two equations in (2.1) become $\alpha^{2}=\alpha+1$ and $\alpha^{2}=-\alpha+1$, so $\alpha=-\alpha$, but $\alpha \neq 0$. Thus a common root α in characteristic 0 doesn't exist.

Step 2: For $f(x) \in \mathbf{Z}[x]$, assume $f(0) \neq 0$ and $f(x)$ and $\widetilde{f}(x)$ have no common roots in characteristic 0 . If $f(x)=g(x) h(x)$ for some nonconstant $g(x)$ and $h(x)$ in $\mathbf{Z}[x]$, then there is a $k(x)$ in $\mathbf{Z}[x]$ with $\operatorname{deg} k=\operatorname{deg} f$ such that $f \widetilde{f}=k \widetilde{k}$ and $k \neq \pm f$ or $\pm \widetilde{f}$.

Since $f(0) \neq 0$, both $g(0)$ and $h(0)$ are not 0 , so $\operatorname{deg} \widetilde{g}=\operatorname{deg} g$ and $\operatorname{deg} \widetilde{h}=\operatorname{deg} h$. Define

$$
k(x)=g(x) \widetilde{h}(x) .
$$

Then $\operatorname{deg} k=\operatorname{deg} g+\operatorname{deg} \widetilde{h}=\operatorname{deg} g+\operatorname{deg} h=\operatorname{deg} f$ and $k \widetilde{k}=(g \widetilde{h})(\widetilde{g} h)=(g h)(\widetilde{g} \widetilde{h})=f \widetilde{f}$. If k and f are equal up to sign then $g \widetilde{h}$ and $g h$ are equal up to sign, so \widetilde{h} and h are equal up to sign, but then every root of h (it has roots since h is nonconstant) would be a common root of $f=g h$ and $\widetilde{f}=\widetilde{g} \widetilde{h}$, which is a contradiction. The proof that k and \widetilde{f} are not equal up to sign is similar with g in place of h.

Step 3: The polynomial $x^{n}-x-1$, for $n \geq 2$, is irreducible in $\mathbf{Q}[x]$.
We argue by contradiction, and can assume $n>2$ since the case $n=2$ can be checked directly. If $x^{n}-x-1$ is reducible in $\mathbf{Q}[x]$ then it factors into a product of two nonconstant polynomials in $\mathbf{Z}[x]$. Set $f(x)=x^{n}-x-1$. By Steps 1 and $2, f \widetilde{f}=k \widetilde{k}$ for some $k \in \mathbf{Z}[x]$ of degree n where k is not $\pm f$ or $\pm \widetilde{f}$. Write $k(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}$, so $\widetilde{k}(x)=b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n-1} x+b_{n}$. Then $k(0) \widetilde{k}(0)=b_{0} b_{n}=f(0) \widetilde{f}(0)=(-1)(1)=-1$ in \mathbf{Z}, so $b_{n}= \pm 1$ and $b_{0}=-b_{n}$. Replacing k with $-k$ doesn't change $\operatorname{deg} k$ or $k \widetilde{k}$, so with a sign change we can make k monic: $b_{n}=1$. Then $b_{0}=-1$.

Comparing the coefficients of x^{n} in both $f \widetilde{f}$ and $k \widetilde{k}$,

$$
1^{2}+(-1)^{2}+(-1)^{2}=b_{0}^{2}+b_{1}^{2}+\cdots+b_{n}^{2}
$$

Since $b_{n}^{2}=1$ and $b_{0}^{2}=1$, we get $b_{1}^{2}+\cdots+b_{n-1}^{2}=1$ in \mathbf{Z}, so exactly one of b_{1}, \ldots, b_{n-1} is ± 1 and the rest are 0 : $k(x)=x^{n}+b_{i} x^{i}-1$ with $1 \leq i \leq n-1$ and $b_{i}= \pm 1$.

Let's look at the terms of $f \widetilde{f}$ and $k \widetilde{k}$ in degrees above n :

$$
f \widetilde{f}=\left(x^{n}-x-1\right)\left(-x^{n}-x^{n-1}+1\right)=-x^{2 n}-x^{2 n-1}+x^{n+1}+\cdots
$$

and

$$
k \widetilde{k}=\left(x^{n}+b_{i} x^{i}-1\right)\left(-x^{n}+b_{i} x^{n-i}+1\right)=-x^{2 n}+b_{i} x^{2 n-i}-b_{i} x^{n+i}+\cdots
$$

where \cdots means terms of degree n or less. Thus

$$
-x^{2 n}-x^{2 n-1}+x^{n+1}+\cdots=-x^{2 n}+b_{i} x^{2 n-i}-b_{i} x^{n+i}+\cdots .
$$

The terms on the left have distinct degrees since $2 n>2 n-1>n+1$ (the last inequality uses $n>2$), so there are three terms on the left with degree greater than n. Therefore on the right side $2 n-i \neq n+i$ (otherwise the right side would have only one term with degree above n). If $2 n-i>n+i$ then $2 n-1=2 n-i$, so $i=1$ and $b_{i}=-1$, so $k=x^{n}-x-1=f$. If $n+i>2 n-i$ then $2 n-1=n+i$, so $i=n-1$ and $b_{i}=1$, so $k=x^{n}+x^{n-1}-1=-\widetilde{f}$. Recalling that k is not $\pm f$ or $\pm \widetilde{f}$, we have reached a contradiction.

In the appendix we apply this method to more trinomials $x^{n} \pm x^{m} \pm 1$. For a further application of this method, see https://mathoverflow.net/questions/404106.

Remark 2.1. Before Selmer's work on $x^{n}-x-1$, Perron [1] had proved irreducibility of $x^{n}+a x \pm 1$ in $\mathbf{Q}[x]$ for all integers a such that $|a| \geq 3$, and also for $|a|=2$ provided 1 or -1 are not roots (e.g., $x^{n}-2 x+1$ has 1 as a root and $x^{2 m}+2 x+1$ has -1 as a root).

Appendix A. More irreducible trinomials

The irreducibility argument we gave for $x^{n}-x-1$ can be applied to nearly all trinomials of the form $x^{n} \pm x^{m} \pm 1$, in the sense that it tells us exactly when they are irreducible.

Theorem A.1. For $1<m<n$ with $m \neq n / 2$, and δ and ε equal to ± 1, the polynomial $x^{n}+\delta x^{m}+\varepsilon$ is irreducible in $\mathbf{Q}[x]$ if and only if it has no root in common with its reciprocal polynomial.
Proof. Let $f(x)=x^{n}+\delta x^{m}+\varepsilon$. Then $\tilde{f}(x)=\varepsilon x^{n}+\delta x^{n-m}+1=\varepsilon\left(x^{n}+\varepsilon \delta x^{n-m}+\varepsilon\right)$. Since $m \neq n / 2$ the middle terms of $f(x)$ and $\widetilde{f}(x)$ have different degrees, so $f(x)$ and $\widetilde{f}(x)$ are not scalar multiples of each other. Therefore irreducibility of $f(x)$ in $\mathbf{Q}[x]$ implies $f(x)$ and $\widetilde{f}(x)$ have no common root.

Conversely, if $f(x)$ and $\widetilde{f}(x)$ have no common root then the proof of Theorem 1.1 goes through with $f(x)$ in place of $x^{n}-x-1$. (As in that proof, the product $f(x) \widetilde{f}(x)$ has three terms of degree above n because $m \neq n / 2$.) Details are left to the reader.

Concretely, if $m \neq n / 2$ and $\delta, \varepsilon \in\{ \pm 1\}$, then $x^{n}+\delta x^{m}+\varepsilon$ is irreducible except when it has a root in common with $x^{n}+\varepsilon \delta x^{n-m}+\varepsilon$.
Example A.2. Let's apply Theorem A. 1 to $x^{n}+x+1$. Computer data suggest that $x^{n}+x+1$ is reducible if and only if $n \equiv 2 \bmod 3$ with $n>2$, and that in this case $x^{2}+x+1$ is a factor of $x^{n}+x+1$. For example,

$$
\begin{aligned}
x^{5}+x+1 & =\left(x^{2}+x+1\right)\left(x^{3}-x^{2}+1\right) \\
x^{8}+x+1 & =\left(x^{2}+x+1\right)\left(x^{6}-x^{5}+x^{3}-x^{2}+1\right) \\
x^{11}+x+1 & =\left(x^{2}+x+1\right)\left(x^{9}-x^{8}+x^{6}-x^{5}+x^{3}-x^{2}+1\right)
\end{aligned}
$$

To prove $x^{2}+x+1$ is a factor of $x^{n}+x+1$ if $n \equiv 2 \bmod 3$, work in $\mathbf{Q}[x] /\left(x^{2}+x+1\right)$: $x^{2} \equiv-x-1$ and $x^{3} \equiv 1$, so $x^{3 j+2}+x+1 \equiv x^{2}+x+1 \equiv 0$.

Next we will prove that if $x^{n}+x+1$ is reducible in $\mathbf{Q}[x]$ then $n \equiv 2 \bmod 3$. By Theorem A.1, reducibility implies $x^{n}+x+1$ and its reciprocal polynomial $x^{n}+x^{n-1}+1$ have a common root, say α :

$$
\alpha^{n}+\alpha+1=0 \text { and } \alpha^{n}+\alpha^{n-1}+1=0
$$

Thus $\alpha=\alpha^{n-1}$, so $\alpha^{n}=\alpha^{2}$, which makes both of the equations above $\alpha^{2}+\alpha+1=0$. That implies $\alpha^{3}=1$, and definitely $\alpha \neq 1$, so from $\alpha^{n}=\alpha^{2}$ we must have $n \equiv 2 \bmod 3$.

Selmer [2] showed that when $n \equiv 2 \bmod 3$ and $n>2$, so $x^{n}+x+1=\left(x^{2}+x+1\right) g_{n}(x)$, the polynomial $g_{n}(x)$ is irreducible over \mathbf{Q}.

The polynomials $x^{n}-x+1$ and $x^{n}+x-1$ have properties similar to Example A.2: in each case there is a congruence condition on $n \bmod 6$ that gives the polynomial an automatic low-degree factor, which is $x^{2}-x+1$:

- $x^{n}-x+1$ is irreducible unless $n \equiv 2 \bmod 6$ with $n>2$ (e.g., $n=8,14,20$), when $x^{2}-x+1$ is a factor,
- $x^{n}+x-1$ is irreducible unless $n \equiv 5 \bmod 6(e . g ., n=5,11,17)$, when $x^{2}-x+1$ is a factor.
For $x^{n}-x+1$ and $x^{n}+x-1$, the congruence condition on $n \bmod 6$ above is equivalent to the polynomial having a common root with its reciprocal polynomial, so by Theorem A. 1 the congruence condition is equivalent to reducibility when $n>2$.

Theorem A. 1 avoids the case $m=n / 2$. What happens in that case? Write n as $2 m$.
Corollary A.3. For all $m \geq 1$ and $\delta= \pm 1$, the polynomial $x^{2 m}+\delta x^{m}-1$ is irreducible in $\mathbf{Q}[x]$.

Proof. The proof of Theorem 1.1 still works when it is applied to both $x^{2 m}+x^{m}-1$ and $x^{2 m}-x^{m}-1$ (here the degree n is $2 m$). Details are left to the reader.

All that remains is $x^{2 m}+\delta x^{m}+1$, with constant term 1 and $\delta= \pm 1$. Examples generated by a computer suggest irreducibility is far less common than reducibility, as codified in the following theorem.

Theorem A.4. For $m \geq 1, x^{2 m}+x^{m}+1$ is irreducible over \mathbf{Q} if and only if m is a power of 3 and $x^{2 m}-x^{m}+1$ is irreducible over \mathbf{Q} if and only if $m=2^{i} 3^{j}$ for some nonnegative integers i and j.

Proof. I learned the following argument from Dmitry Krachun.
There are two key points to keep in mind:
(1) $x^{2}+x+1$ is the minimal polynomial of primitive 3 rd roots of unity and $x^{2}-x+1$ is the minimal polynomial of primitive 6 th roots of unity. In the notation of cyclotomic polynomials, $x^{2}+x+1=\Phi_{3}(x)$ and $x^{2}-x+1=\Phi_{6}(x)$.
(2) If $f(x) \in \mathbf{Q}[x]$ and $f\left(x^{m}\right)$ is irreducible then $f\left(x^{d}\right)$ is irreducible when d is a (positive) factor of m. Indeed, arguing with the contrapositive, if $f\left(x^{d}\right)=g(x) h(x)$ for nonconstant $g(x)$ and $h(x)$ in $\mathbf{Q}[x]$, then $f\left(x^{m}\right)=g\left(x^{m / d}\right) h\left(x^{m / d}\right)$ and the polynomials on the right side are nonconstant. We will use this when $d=p$ is a prime number: if $f\left(x^{m}\right)$ is irreducible over \mathbf{Q} then so is $f\left(x^{p}\right)$ for prime factors p of m.
First we will show

$$
x^{2 m}+x^{m}+1 \text { is irreducible over } \mathbf{Q} \Longrightarrow m \text { is a power of } 3 .
$$

Set $f(x)=x^{2}+x+1$, so $x^{2 m}+x^{m}+1=f\left(x^{m}\right)$. If $f\left(x^{m}\right)$ is irreducible over \mathbf{Q} then we will show m is a power of 3 by showing for each prime $p \neq 3$ that $f\left(x^{p}\right)$ is reducible, so the only possible prime factor of m is 3 . (See the second key point above.)

Let α be a root of $x^{2}+x+1$. The other root of $x^{2}+x+1$ is α^{-1} and $\alpha^{3}=1$, so powers α^{k} only depend on k modulo 3 . For each prime $p \neq 3, p \equiv \pm 1 \bmod 3$, so $\alpha^{p}=\alpha^{ \pm 1}$. Therefore
$f\left(\alpha^{p}\right)=f\left(\alpha^{ \pm 1}\right)=0$, so $f\left(x^{p}\right)$ is divisible by the minimal polynomial of α over \mathbf{Q}, which is $x^{2}+x+1$. That makes $f\left(x^{p}\right)$ reducible since its degree $2 p$ is greater than 2 .

Next we will show

$$
x^{2 m}-x^{m}+1 \text { is irreducible over } \mathbf{Q} \Longrightarrow m=2^{i} 3^{j} \text { for some } i, j \geq 0 .
$$

Now set $f(x)=x^{2}-x+1$, so to prove $f\left(x^{m}\right)=x^{2 m}-x^{m}+1$ can be irreducible only when the prime factors of m are 2 or 3 , it suffices by the reasoning used above to show $f\left(x^{p}\right)$ is reducible for each prime $p>3$.

Let β be a root of $x^{2}-x+1$, so the other root is β^{-1} and $\beta^{6}=1$, so β^{k} only depends on k modulo 6. For prime $p>3, p \equiv \pm 1 \bmod 6$, so $f\left(\beta^{p}\right)=f\left(\beta^{ \pm 1}\right)=0$. Thus $f\left(x^{p}\right)$ is divisible by $x^{2}+x+1$, which makes $f\left(x^{p}\right)$ reducible since its degree is greater than 2 .

It remains to show that

$$
m \text { is a power of } 3 \Longrightarrow \Phi_{3}\left(x^{m}\right)=x^{2 m}+x^{m}+1 \text { is irreducible over } \mathbf{Q}
$$

and

$$
m=2^{i} 3^{j} \Longrightarrow \Phi_{6}\left(x^{m}\right)=x^{2 m}-x^{m}+1 \text { is irreducible over } \mathbf{Q} .
$$

These are both special cases ($n=3$ and $n=6$) of the following property of all cyclotomic polynomials $\Phi_{n}(x)$: if m is a positive integer whose prime factors all divide n, then $\Phi_{n}\left(x^{m}\right)=$ $\Phi_{m n}(x)$. This polynomial identity is a consequence of both sides being monic of the same degree $(m \varphi(n)=\varphi(m n)$ when all prime factors of m divide n), the right side being the minimal polynomial over \mathbf{Q} of all roots of unity of order $m n$, and the left side vanishing at all roots of unity of order $m n .{ }^{1}$

References

[1] O. Perron, Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. reine angew. Math. 132 (1907), 288-307. URL https://eudml.org/doc/149269.
[2] E. Selmer, On the Irreducibility of Certain Trinomials, Math. Scand. 4 (1956), 287-302. URL https: //eudml.org/doc/165635.

[^0]
[^0]: ${ }^{1}$ In fact, for all positive integers m and $n, \Phi_{n}\left(x^{m}\right)$ is irreducible over \mathbf{Q} if and only if each prime factor of m is a factor of n. This becomes Theorem A. 4 when n is 3 and 6 .

