IRREDUCIBILITY OF z" —z -1

KEITH CONRAD

1. INTRODUCTION
In 1956, Selmer [2] proved the following irreducbility theorem.
Theorem 1.1 (Selmer). For all n > 2, the polynomial ™ — x — 1 is irreducible in Q[x].

None of the standard irreducibility tests, such as reduction mod p or the Eisenstein
criterion, can be applied to 2™ — z — 1 for general n. However, in a special case we can use
one of these tests: if n = p is prime then 2 — 2 — 1 is irreducible in Fp[z] and therefore is
irreducible in Q[z]. More generally, if a is an integer not divisible by p then 2P —z — a is
irreducible in Q[x] because the polynomial is irreducible in Fy,[z]: a proof of this is in many
books on abstract algebra or field theory. Such a proof of irreducibility in Q[z] does not
extend to zP" — 2 — 1 when m > 2, since that polynomial is generally reducible in F,[z].

Example 1.2. If an integer m > 2 is not divisible by p then in characteristic p, a root of
2P —x —1/m is a root of P — x — 1:

1 K k. -
o =a+ — = o = «a+ — in characteristic p
m m
for all £ > 1 by induction. Setting k = m gives us o”" = a+1. The polynomial 2P —x—1/m
in Fp[z] is irreducible, so in Fy[z], 2P — 2 — 1/m is a nontrivial factor of 27" — x — 1

2. PROOF OF IRREDUCIBILITY

Selmer’s original proof of Theorem 1.1 involves studying the distribution of the roots
of £ — x — 1 in C, relying at the end on the arithmetic—geometric mean inequality. The
irreducibility proof that we give below is shorter and more algebraic. I learned it from
David Rohrlich, who in turn learned it from Michael Filaseta.

Proof. For nonzero f(z) = apa™ + an_12" ' + -+ 4+ a1z + ap of degree n, let f(x) be its
reciprocal polynomial:
f(x) = apa™ + a12™ 4 -t ap1x + an = 2987 f(1/2).

We call f(x) the reciprocal polynomial because its roots are the reciprocals of the roots of
f(z). More precisely, if f(z) has leading coefficient ag and f(0) # 0 then

f(@) =ao(x —r1) - (x —rp) = f(z) = f(O)(x — 1/r1) -+ (z — 1/rp).
The following properties of this construction will be used below without comment:
o if £(0) 0 then deg f = deg f and f = f,
e if f = gh then f = gh,

e for every nonzero constant ¢, cf = cf,
1
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o if f(x Z a;z* has degree n then the z"-coefficient of f(z)f(x) is ag+a?+---+a2.
=0
Check all of these properties yourself. The last one is the most interesting.
The proof of the theorem will be presented in three steps.
Step 1: For n > 2, 2™ — x — 1 and its reciprocal polynomial have no common root in
characteristic 0.

The reciprocal polynomial is —z” — 2™~ + 1. If this shares a root with 2™ — 2 — 1 in
characteristic 0, say «, then

(2.1) a"=a+1and " = "t 41,

S0 _anfl 2

= a. Thus o = —a*. Substituting this into either equation in (2.1) gives us
—a? = o+ 1, which implies o = 1, so every power of « is either 1, a, or o2. If o™ = 1 then
the first equation in (2.1) becomes 1 = « + 1, which is false since a # 0. If @ = « then
a = o+ 1, which is absurd. If o™ = o2 then the two equations in (2.1) become a? = a + 1
and o? = —a+1,s0 @ = —a, but a # 0. Thus a common root « in characteristic 0 doesn’t
exist. _
Step 2: For f(x) € Z[x], assume f(0) # 0 and f(x) and f(z) have no common roots in
characteristic 0. If f(z) = g(x)h(z) for some nonconstant g(x) and h(x) in Z|[x], then there
is a k(z) in Z[z] with degk = deg f such that ff = kk and k # +f or +f.

Since f(0) # 0, both ¢g(0) and h(0) are not 0, so deg g = deg g and deg% = deg h. Define

k(x) = g(x)h(@).

Then deg k = deg g+ deg h = deg g + deg h = deg f and kk = (gh)(gh) = (gh)(gh) = ff. If
k and f are equal up to sign then gz and gh are equal up to sign, so h and h are equal up
to sign, but then every root of h (it has roots since h is nonconstant) would be a common
root of f = gh and f = gh which is a contradiction. The proof that & and f are not equal
up to sign is similar with g in place of h.

Step 3: The polynomial 2™ — z — 1, for n > 2, is irreducible in Q|z].

We argue by contradiction, and can assume n > 2 since the case n = 2 can be checked
directly. If 2™ —z — 1 is reducible in Q[x] then it factors into a product of two nonconstant
polynomials in Z[z]. Set f(x) = 2™ —x — 1. By Steps 1 and 2, ff— kk for some k € Z[z]
of degree n where k is not +f or :I:f Write k(x) = bpa™ + by_12™ 1 4+ - + bz + by, so
k(z) = boz" +bya" ' 4 - -4 by_12 +by,. Then k(0)k(0) = bob, = f(O)f(O) =(-1)(1) = -1
in Z, so b, = £1 and by = —b,. Replacing k with —k doesn’t change degk or k%, so with
a sign change we can make k monic: b, = 1. Then by = —1.

Comparing the coeflicients of 2™ in both ff and k%,

12+ (=1)? + (=1)> = b3 + b7 + -+ + b2.

Since b2 =1 and b2 = 1, we get b? +--- +b2_; = 1 in Z, so exactly one of by, ..., by_1 is
+1 and the rest are 0: k(z) = 2" + bx' — 1 with 1 <i <n —1 and b; = +1.
Let’s look at the terms of ff and kk in degrees above n:

f}v: (2" —z — 1)(—2" e 1) = _p2n gl el

and
kk = (2" + bz’ — 1)(—2" + bjz" " + 1) = —2®" + bz?" " — bzt 4 ...
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where - -+ means terms of degree n or less. Thus
_x2n _ 1,271—1 + xn-f—l 4= _1,271 + bixQn—z o bil'n—H 4.

The terms on the left have distinct degrees since 2n > 2n — 1 > n 4 1 (the last inequality
uses n > 2), so there are three terms on the left with degree greater than n. Therefore on
the right side 2n — i # n+i (otherwise the right side would have only one term with degree
above n). If 2n—i >n+ithen2n—1=2n—i,soi=1land b; = —1,s0ok=z"—x—1=f.
Ifn+i>2n—ithen2n—1=n+i,soi=n—1and b; =1, sok:x"—i—x"*l—l:—f.
Recalling that k is not &=f or £ f, we have reached a contradiction. O

In the appendix we apply this method to more trinomials =™ + 2" 4+ 1. For a further
application of this method, see https://mathoverflow.net/questions/404106.

Remark 2.1. Before Selmer’s work on z" — x — 1, Perron [1] had proved irreducibility of
2" + ax £ 1 in Q[z] for all integers a such that |a| > 3, and also for |a| = 2 provided 1 or
—1 are not roots (e.g., ™ — 2x + 1 has 1 as a root and 22 + 2z + 1 has —1 as a root).

APPENDIX A. MORE IRREDUCIBLE TRINOMIALS

The irreducibility argument we gave for £ —x — 1 can be applied to nearly all trinomials
of the form z" 4+ 2" + 1, in the sense that it tells us exactly when they are irreducible.

Theorem A.l. For 1 < m < n with m # n/2, and § and € equal to +1, the polynomial
x4 0x™ + ¢ is irreducible in Q[x] if and only if it has no root in common with its reciprocal
polynomaal.

Proof. Let f(z) = 2™ 4+ 6z™ +e. Then f(z) = ex™ 4+ 62" ™ + 1 = g(a" + 02" ™ + ¢).

Since m # n/2 the middle terms of f(x) and f(z) have different degrees, so f(z) and f(x)

are not scalar multiples of each other. Therefore irreducibility of f(z) in Q[z] implies f(z)

and f(z) have no common root.

Conversely, if f(x) and f(x) have no common root then the proof of Theorem 1.1 goes

through with f(x) in place of ™ — 2z — 1. (As in that proof, the product f(z)f(x) has three
terms of degree above n because m # n/2.) Details are left to the reader. 0

Concretely, if m # n/2 and d,e € {£1}, then 2" + 62™ + ¢ is irreducible except when it
has a root in common with 2" + edx™ ™ + €.

Example A.2. Let’s apply Theorem A.1 to 2™ + z + 1. Computer data suggest that
"+ +1 is reducible if and only if n = 2 mod 3 with n > 2, and that in this case 2+ 2z +1
is a factor of 2" 4+ x + 1. For example,

P +r+1 = (P +z+1)(a® -2+ 1),
Btr+1l = (@+a+1)@% -2 +2% 22+ 1),
41 = (P4 +D@% -2 428 -2+ 23— 22 1),

To prove 22 + z + 1 is a factor of 2" + z + 1 if n = 2 mod 3, work in Q[z]/(z? + x + 1):
?=—zx—land2d=1,s02 2+ +1=2>4+2+1=0.

Next we will prove that if ™ 4+ + 1 is reducible in Q[z] then n = 2 mod 3. By Theorem
A.1, reducibility implies ™ +  + 1 and its reciprocal polynomial 2" + 2" ! + 1 have a
common root, say o

a"+a+1l=0and a”+a" 1 +1=0.
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Thus a = o™ 1, so o™ = o, which makes both of the equations above a?+a+1 = 0. That
implies a® = 1, and definitely o # 1, so from " = a? we must have n = 2 mod 3.

Selmer [2] showed that when n =2 mod 3 and n > 2,50 2" + 2 + 1 = (22 + 2 + 1)gn (),
the polynomial g, (z) is irreducible over Q.

The polynomials 2" —x+1 and ™ +x — 1 have properties similar to Example A.2: in each
case there is a congruence condition on n mod 6 that gives the polynomial an automatic
low-degree factor, which is 22 — x + 1:

e " — x + 1 is irreducible unless n = 2 mod 6 with n > 2 (e.g., n = 8,14, 20), when
z? — x + 1 is a factor,

e 2" +x — 1 is irreducible unless n = 5 mod 6 (e.g., n = 5,11,17), when 22 — 2z + 1 is
a factor.

For 2™ — 2z + 1 and 2" + x — 1, the congruence condition on n mod 6 above is equivalent to
the polynomial having a common root with its reciprocal polynomial, so by Theorem A.1
the congruence condition is equivalent to reducibility when n > 2.

Theorem A.1 avoids the case m = n/2. What happens in that case? Write n as 2m.

Corollary A.3. For allm > 1 and § = £1, the polynomial 2*™ + §z™ — 1 is irreducible in
Qlz].

Proof. The proof of Theorem 1.1 still works when it is applied to both 2™ 4 2™ — 1 and
2™ — 2™ — 1 (here the degree n is 2m). Details are left to the reader. O

All that remains is £2™ 4§z 4 1, with constant term 1 and § = +1. Examples generated
by a computer suggest irreducibility is far less common than reducibility, as codified in the
following theorem.

Theorem A.4. Form > 1, 2™ + 2™ + 1 is irreducible over Q if and only if m is a power
of 3 and ®™ — ™ 4 1 is irreducible over Q if and only if m = 2'37 for some nonnegative
integers ¢ and j.

Proof. 1T learned the following argument from Dmitry Krachun.
There are two key points to keep in mind:

(1) 22 +2+1 is the minimal polynomial of primitive 3rd roots of unity and x? —z +1 is
the minimal polynomial of primitive 6th roots of unity. In the notation of cyclotomic
polynomials, 2 + z + 1 = ®3(z) and 22 — z + 1 = $g(x).

(2) If f(x) € Q[z] and f(z™) is irreducible then f(z?) is irreducible when d is a (pos-
itive) factor of m. Indeed, arguing with the contrapositive, if f(z%) = g(x)h(z) for
nonconstant g(z) and h(x) in Q[z], then f(z™) = g(z™/%)h(z™/%) and the polyno-
mials on the right side are nonconstant. We will use this when d = p is a prime
number: if f(2™) is irreducible over Q then so is f(xP) for prime factors p of m.

First we will show
2™ 4 ™ 4 1 is irreducible over Q = m is a power of 3.

Set f(x) =2?+x+ 1,50 2™+ 2™+ 1= f(2™). If f(z™) is irreducible over Q then we
will show m is a power of 3 by showing for each prime p # 3 that f(x?) is reducible, so the
only possible prime factor of m is 3. (See the second key point above.)

Let o be a root of 224z +1. The other root of 22 +z+1is o~ ! and o® = 1, so powers a
only depend on k modulo 3. For each prime p # 3, p = +1 mod 3, so o = a*!. Therefore

k
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f(aP) = f(a*!) =0, so f(xP) is divisible by the minimal polynomial of « over Q, which is
22 + 2 + 1. That makes f(2P) reducible since its degree 2p is greater than 2.
Next we will show

%™ — 2™ 4 1 is irreducible over Q = m = 2'3/ for some i,j > 0.

Now set f(x) = 2 — 2 + 1, so to prove f(2™) = x?™ — 2™ + 1 can be irreducible only

when the prime factors of m are 2 or 3, it suffices by the reasoning used above to show
f(zP) is reducible for each prime p > 3.

Let B be a root of 22 — z + 1, so the other root is 57! and 5% = 1, so 8* only depends
on k modulo 6. For prime p > 3, p = +£1 mod 6, so f(3?) = f(B*!) = 0. Thus f(aP) is
divisible by 22 4 x 4 1, which makes f(zP) reducible since its degree is greater than 2.

It remains to show that

m is a power of 3 => ®3(z™) = 2?™ 4+ 2™ + 1 is irreducible over Q
and
m = 237 = ®g(z™) = 2¥™ — 2™ + 1 is irreducible over Q.

These are both special cases (n = 3 and n = 6) of the following property of all cyclotomic
polynomials ®,(x): if m is a positive integer whose prime factors all divide n, then ®,,(z™) =
®,,n(z). This polynomial identity is a consequence of both sides being monic of the same
degree (my(n) = p(mn) when all prime factors of m divide n), the right side being the
minimal polynomial over Q of all roots of unity of order mn, and the left side vanishing at
all roots of unity of order mn.! O
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