IRREDUCIBILITY OF $x^n - x - 1$

KEITH CONRAD

In 1956, Selmer [2] proved the following theorem.

Theorem 1 (Selmer). For all $n \geq 2$, the polynomial $x^n - x - 1$ is irreducible in $\mathbb{Q}[x]$.

None of the standard irreducibility tests, such as reduction mod p or the Eisenstein criterion, can be applied to $x^n - x - 1$ for general n. However, in a special case we can use one of these tests: if $n = p$ is prime then $x^p - x - 1$ is irreducible mod p and therefore is irreducible in $\mathbb{Q}[x]$. More generally, if a is an integer not divisible by p then $x^p - x - a$ is irreducible in $\mathbb{Q}[x]$ because the polynomial is irreducible mod p; a proof of this is in many books on abstract algebra or field theory. Such a proof of irreducibility does not extend to $x^{pn} - x - 1$ when $m \geq 2$, since this polynomial is generally reducible mod p.

Example 2. If an integer $m > 1$ is not divisible by p then a root of $x^p - x - 1/m$ in characteristic p is a root of $x^{pn} - x - 1$:

$$a^p = \alpha + \frac{1}{m} \implies \alpha^m = \alpha + \frac{k}{m}$$

for all $k \geq 1$ by induction. Setting $k = m$ gives us $\alpha^m = \alpha + 1$. The polynomial $x^p - x - 1/m$ is irreducible in $\mathbb{F}_p[x]$, so $x^p - x - 1/m$ is a nontrivial factor of $x^{pn} - x - 1$ in $\mathbb{F}_p[x]$.

Selmer’s original proof of Theorem 1 involved studying the distribution of the roots of $x^n - x - 1$ in \mathbb{C}, relying at the end on the arithmetic–geometric mean inequality. The irreducibility proof that we give below is shorter and more algebraic. I learned it from David Rohrlich, who in turn learned it from Michael Filaseta.

Proof. For nonzero $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ of degree n, let $\tilde{f}(x)$ be its reciprocal polynomial:

$$\tilde{f}(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = x^{\deg f} f(1/x).$$

We call $\tilde{f}(x)$ the reciprocal polynomial because its roots are the reciprocals of the roots of $f(x)$. More precisely, if $f(x)$ has leading coefficient a_0 and $f(0) \neq 0$ then

$$f(x) = a_0(x - r_1) \cdots (x - r_n) \implies \tilde{f}(x) = f(0)(x - 1/r_1) \cdots (x - 1/r_n).$$

The following properties of this construction will be used below without comment:

- if $f(0) \neq 0$ then $\deg f = \deg \tilde{f}$ and $\tilde{f} = f$,
- if $f = gh$ then $\tilde{f} = \tilde{g} \tilde{h}$,
- for every nonzero constant c, $c \tilde{f} = c \tilde{f}$,
- if $f(x) = \sum_{i=0}^n a_i x^i$ has degree n then the x^n-coefficient of $f(x) \tilde{f}(x)$ is $a_0^2 + a_1^2 + \cdots + a_n^2$.

Check all of these properties yourself. The last one is the most interesting.

The proof of the theorem will be presented in three steps.
Step 1: For \(n \geq 2 \), \(x^n - x - 1 \) and its reciprocal polynomial have no common root in characteristic 0.

The reciprocal polynomial is \(-x^n - x^{n-1} + 1\). If this shares a root with \(x^n - x - 1 \) in characteristic 0, say \(\alpha \), then
\[
\alpha^n = \alpha + 1 \quad \text{and} \quad \alpha^n = -\alpha^{n-1} + 1,
\]
so \(-\alpha^{n-1} = \alpha\). Thus \(\alpha^n = -\alpha^2 \). Substituting this into either equation in (1) gives us \(-\alpha^2 = \alpha + 1\), which implies \(\alpha^3 = 1 \), so every power of \(\alpha \) is either 1, \(\alpha \), or \(\alpha^2 \). If \(\alpha^n = 1 \) then the first equation in (1) becomes \(1 = \alpha + 1 \), which is false since \(\alpha \neq 0 \). If \(\alpha^n = \alpha \) then \(\alpha = \alpha + 1 \), which is absurd. If \(\alpha^n = \alpha^2 \) then the two equations in (1) become \(\alpha^2 = \alpha + 1 \) and \(\alpha^2 = -\alpha + 1 \), so \(\alpha = -\alpha \), but \(\alpha \neq 0 \). Thus a common root \(\alpha \) in characteristic 0 doesn’t exist.

Step 2: For \(f(x) \in \mathbb{Z}[x] \), assume \(f(0) \neq 0 \) and \(f(x) \) and \(\tilde{f}(x) \) have no common roots in characteristic 0. If \(f(x) = g(x)h(x) \) for some nonconstant \(g(x) \) and \(h(x) \) in \(\mathbb{Z}[x] \), then there is a \(k(x) \) in \(\mathbb{Z}[x] \) with \(\deg k = \deg f \) such that \(ff = kk \) and \(k \neq \pm f \) or \(\pm \tilde{f} \). If \(f(x) \) is monic and \(f(0) = \pm 1 \) then we can choose \(k(x) \) to be monic with \(k(0) = \pm 1 \).

Since \(f(0) \neq 0 \), both \(g(0) \) and \(h(0) \) are not 0, so \(\deg \tilde{g} = \deg g \) and \(\deg \tilde{h} = \deg h \). Define
\[
k(x) = g(x)\tilde{h}(x).
\]
Then \(\deg k = \deg g + \deg \tilde{h} = \deg g + \deg h = \deg f \) and \(\tilde{g}h = (gh)(\tilde{h}) = (gh)(\tilde{h}) = \tilde{f}f \). If \(k \) and \(f \) are equal up to sign then \(\tilde{g}h \) and \(gh \) are equal up to sign, so \(h \) and \(\tilde{h} \) are equal up to sign, but then every root of \(h \) (it has roots since \(h \) is nonconstant) would be a common root of \(f = gh \) and \(\tilde{f} = g\tilde{h} \), which is a contradiction. The proof that \(k \) and \(\tilde{f} \) are not equal up to sign is similar with \(g \) in place of \(h \).

If \(f(x) \) is monic and \(f(0) = \pm 1 \) then \((f\tilde{f})(0) = f(0)(\text{lead } f) = \pm 1 \) so also \((k\tilde{k})(0) = \pm 1 \), or \(k(0)(\text{lead } k) = \pm 1 \). This is in \(\mathbb{Z} \), so \(k(0) \) and lead \(k \) are \(\pm 1 \) (maybe not equal). Replacing \(k \) with \(-k \) doesn’t change \(\deg k \) or \(\deg \tilde{k} \), so with a sign change we can make \(k \) monic.

Step 3: (We’re ready!) The polynomial \(x^n - x - 1 \), for \(n \geq 2 \), is irreducible in \(\mathbb{Q}[x] \).

We argue by contradiction, and can assume \(n > 2 \) since the case \(n = 2 \) can be checked directly. If \(x^n - x - 1 \) is reducible in \(\mathbb{Q}[x] \) then it factors into a product of two nonconstant polynomials in \(\mathbb{Z}[x] \). Set \(f(x) = x^n - x - 1 \). By Steps 1 and 2, \(ff = \tilde{k}k \) for some monic \(k \in \mathbb{Z}[x] \) of degree \(n \) with \(k(0) = \pm 1 \) and \(k \) is not \(\pm f \) or \(\pm \tilde{f} \). Write \(k(x) = b_nx^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 \), so \(b_n \) is 1 and \(b_0 = \pm 1 \). Comparing the coefficients of \(x^n \) in both \(ff \) and \(kk \),
\[
1^2 + (-1)^2 + (-1)^2 = b_0^2 + b_1^2 + \cdots + b_n^2.
\]
Since \(b_n = 1 \) and \(b_0 = \pm 1 \), we get \(b_1^2 + \cdots + b_{n-1}^2 = 1 \) in \(\mathbb{Z} \), so exactly one of \(b_1, \ldots, b_{n-1} \) is \(\pm 1 \) and the rest are 0: \(k(x) = x^n + b_ix^i + b_0 \) with 1 \(\leq i \leq n-1 \) and \(b_i = \pm 1 \). Let’s look at the terms of \(\tilde{f}f \) and \(k\tilde{k} \) in degrees above \(n \):
\[
\tilde{f}f = (x^n - x - 1)(-x^n - x^{n-1} + 1) = -x^{2n} - x^{2n-1} + x^{n+1} + \cdots
\]
and
\[
k\tilde{k} = (x^n + b_ix^i + b_0)(b_0x^n + b_ix^{n-i} + 1) = b_0x^{2n} + b_ix^{n-i} + b_0b_ix^{n+i} + \cdots
\]
where \(\cdots \) means terms of degree \(n \) or less. From the leading terms \(b_0 = -1 \), so
\[
-x^{2n} - x^{2n-1} + x^{n+1} + \cdots = -x^{2n} + b_ix^{n-i} - b_ix^{n+i} + \cdots.
\]
The terms on the left have distinct degrees since $2n > 2n - 1 > n + 1$ (the last inequality uses $n > 2$), so on the right side $2n - i \neq n + i$. If $2n - i > n + i$ then $i = 1$ and $b_i = -1$, so $k = x^n - x - 1 = f$. If $n + i > 2n - i$ then $i = n - 1$ and $b_i = 1$, so $k = x^n + x^{n-1} - 1 = -\tilde{f}$. Recalling that k is not ±f or ±\tilde{f}, we have reached a contradiction. □

In the appendix we discuss how this proof applies to more trinomials $x^n \pm x^m \pm 1$.

Remark 3. Before Selmer’s work on $x^n - x - 1$, Perron [1] had proved irreducibility of $x^n + ax \pm 1$ in $\mathbb{Q}[x]$ for all integers a such that $|a| \geq 3$, and also for $|a| = 2$ provided 1 or −1 are not roots (e.g., $x^n - 2x + 1$ has 1 as a root and $x^{2m} + 2x + 1$ has −1 as a root).

Appendix A. More irreducible trinomials

The irreducibility argument we gave for $x^n - x - 1$ can be applied to nearly all trinomials of the form $x^n \pm x^m \pm 1$, in the sense that it tells us exactly when they are irreducible.

Theorem 4. For $1 < m < n$ with $m \neq n/2$, and δ and ε equal to ±1, the polynomial $x^n + \delta x^m + \varepsilon$ is irreducible in $\mathbb{Q}[x]$ if and only if it has no root in common with its reciprocal polynomial.

Proof. Let $f(x) = x^n + \delta x^m + \varepsilon$. Then $\tilde{f}(x) = \varepsilon x^n + \delta x^{m-n} + 1 = \varepsilon(x^n + \varepsilon \delta x^{m-n} + \varepsilon)$. Since $m \neq n/2$ the middle terms of $f(x)$ and $\tilde{f}(x)$ have different degrees, so $f(x)$ and $\tilde{f}(x)$ are not scalar multiples of each other. Therefore irreducibility of $f(x)$ in $\mathbb{Q}[x]$ implies $f(x)$ and $\tilde{f}(x)$ have no common root.

Conversely, if $f(x)$ and $\tilde{f}(x)$ have no common root then the proof of Theorem 1 goes through with $f(x)$ in place of $x^n - x - 1$. (As in that proof, the product $f(x)\tilde{f}(x)$ has three terms of degree above n because $m \neq n/2$.) Details are left to the reader. □

In down-to-earth terms, if $m \neq n/2$ and $\delta, \varepsilon \in \{\pm 1\}$, then $x^n + \delta x^m + \varepsilon$ is irreducible except when it has a root in common with $x^n + \varepsilon \delta x^{m-n} + \varepsilon$.

Example 5. Let’s apply Theorem 4 to $x^n + x + 1$. Computer data suggest that $x^n + x + 1$ is reducible if and only if $n \equiv 2 \mod 3$ with $n > 2$, and in this case $x^2 + x + 1$ is a factor of $x^n + x + 1$. For example,

\[
\begin{align*}
x^5 + x + 1 &= (x^2 + x + 1)(x^3 - x^2 + 1), \\
x^8 + x + 1 &= (x^2 + x + 1)(x^6 - x^5 + x^3 - x^2 + 1), \\
x^{11} + x + 1 &= (x^2 + x + 1)(x^9 - x^8 + x^6 - x^5 + x^3 - x^2 + 1).
\end{align*}
\]

To prove $x^2 + x + 1$ is a factor of $x^n + x + 1$ if $n \equiv 2 \mod 3$, work in $\mathbb{Q}[x]/(x^2 + x + 1)$: $x^2 \equiv -x - 1$ and $x^3 \equiv 1$, so $x^{3j+2} + x + 1 \equiv x^2 + x + 1 \equiv 0$.

Next we will prove that if $x^n + x + 1$ is reducible in $\mathbb{Q}[x]$ then $n \equiv 2 \mod 3$. By Theorem 4, reducibility implies $x^n + x + 1$ and its reciprocal polynomial $x^n + x^{n-1} + 1$ have a common root, say α:

$$\alpha^n + \alpha + 1 = 0 \quad \text{and} \quad \alpha^n + \alpha^{n-1} + 1 = 0.$$

Thus $\alpha = \alpha^{n-1}$, so $\alpha^n = \alpha^2$, which makes both of the equations above $\alpha^2 + \alpha + 1 = 0$. That implies $\alpha^3 = 1$, and definitely $\alpha \neq 1$, so from $\alpha^n = \alpha^2$ we must have $n \equiv 2 \mod 3$.

Selmer [2] showed that when $n \equiv 2 \mod 3$ and $n > 2$, so $x^n + x + 1 = (x^2 + x + 1)g_n(x)$, the polynomial $g_n(x)$ is irreducible over \mathbb{Q}.

The polynomials $x^n - x + 1$ and $x^n + x - 1$ have properties similar to Example 5: in each case there is a congruence condition on $n \mod 6$ that gives the polynomial an automatic
low-degree factor (discover it yourself by generating numerical data), and that congruence condition on \(n \) turns out to be equivalent to the polynomial having a common root with its reciprocal polynomial, so those \(n \) not fitting the congruence condition mod 6 lead to an irreducible polynomial.

Theorem 4 avoids the case \(m = n/2 \). What happens in that case?

Corollary 6. For all \(m \geq 1 \) and \(\delta = \pm 1 \), the polynomial \(x^{2m} + \delta x^m - 1 \) is irreducible in \(\mathbb{Q}[x] \).

Proof. The proof of Theorem 1 still works when it is applied to both \(x^{2m} + x^m - 1 \) and \(x^{2m} - x^m - 1 \) (here the degree \(n \) is \(2m \)). Details are left to the reader. \(\square \)

The polynomials \(x^{2m} + \delta x^m + 1 \) with constant term 1 and \(\delta = \pm 1 \) are more subtle, with irreducibility being the exception rather than the norm. For \(m \geq 1 \), numerical evidence suggests that \(x^{2m} + x^m + 1 \) is irreducible over \(\mathbb{Q} \) if and only if \(m \) is a power of 3 and \(x^{2m} - x^m + 1 \) is irreducible over \(\mathbb{Q} \) if and only if \(m = 2^i 3^j \) for some \(i \) and \(j \).

References
