IRREDUCIBILITY OF $x^n - x - 1$

KEITH CONRAD

1. INTRODUCTION

In 1956, Selmer [2] proved the following irreducibility theorem.

Theorem 1.1 (Selmer). For all $n \ge 2$, the polynomial $x^n - x - 1$ is irreducible in $\mathbf{Q}[x]$.

None of the standard irreducibility tests, such as reduction mod p or the Eisenstein criterion, can be applied to $x^n - x - 1$ for general n. However, in a special case we can use one of these tests: if n = p is prime then $x^p - x - 1$ is irreducible in $\mathbf{F}_p[x]$ and therefore is irreducible in $\mathbf{Q}[x]$. More generally, if a is an integer not divisible by p then $x^p - x - a$ is irreducible in $\mathbf{Q}[x]$ because the polynomial is irreducible in $\mathbf{F}_p[x]$: a proof of this is in many books on abstract algebra or field theory. Such a proof of irreducibility in $\mathbf{Q}[x]$ does not extend to $x^{p^m} - x - 1$ when $m \ge 2$, since that polynomial is generally reducible in $\mathbf{F}_p[x]$.

Example 1.2. If an integer $m \ge 2$ is not divisible by p then in characteristic p, a root of $x^p - x - 1/m$ is a root of $x^{p^m} - x - 1$:

$$\alpha^p = \alpha + \frac{1}{m} \Longrightarrow \alpha^{p^k} = \alpha + \frac{k}{m}$$
 in characteristic p

for all $k \ge 1$ by induction. Setting k = m gives us $\alpha^{p^m} = \alpha + 1$. The polynomial $x^p - x - 1/m$ in $\mathbf{F}_p[x]$ is irreducible, so in $\mathbf{F}_p[x]$, $x^p - x - 1/m$ is a nontrivial factor of $x^{p^m} - x - 1$

2. Proof of irreducibility

Selmer's original proof of Theorem 1.1 involves studying the distribution of the roots of $x^n - x - 1$ in **C**, relying at the end on the arithmetic–geometric mean inequality. The irreducibility proof that we give below is shorter and more algebraic. I learned it from David Rohrlich, who in turn learned it from Michael Filaseta.

Proof. For nonzero $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ of degree n, let $\tilde{f}(x)$ be its reciprocal polynomial:

$$\widetilde{f}(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = x^{\deg f} f(1/x).$$

We call $\tilde{f}(x)$ the reciprocal polynomial because its roots are the reciprocals of the roots of f(x). More precisely, if f(x) has leading coefficient a_0 and $f(0) \neq 0$ then

$$f(x) = a_0(x - r_1) \cdots (x - r_n) \Longrightarrow f(x) = f(0)(x - 1/r_1) \cdots (x - 1/r_n).$$

The following properties of this construction will be used below without comment:

- if $f(0) \neq 0$ then deg $f = \deg \tilde{f}$ and $\tilde{\tilde{f}} = f$,
- if f = gh then $\tilde{f} = \tilde{g}\tilde{h}$,
- for every nonzero constant c, $\widetilde{cf} = c\widetilde{f}$,

KEITH CONRAD

• if
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
 has degree *n* then the x^n -coefficient of $f(x)\tilde{f}(x)$ is $a_0^2 + a_1^2 + \dots + a_n^2$.

Check all of these properties yourself. The last one is the most interesting.

The proof of the theorem will be presented in three steps.

Step 1: For $n \ge 2$, $x^n - x - 1$ and its reciprocal polynomial have no common root in characteristic 0.

The reciprocal polynomial is $-x^n - x^{n-1} + 1$. If this shares a root with $x^n - x - 1$ in characteristic 0, say α , then

(2.1)
$$\alpha^n = \alpha + 1 \text{ and } \alpha^n = -\alpha^{n-1} + 1,$$

so $-\alpha^{n-1} = \alpha$. Thus $\alpha^n = -\alpha^2$. Substituting this into either equation in (2.1) gives us $-\alpha^2 = \alpha + 1$, which implies $\alpha^3 = 1$, so every power of α is either 1, α , or α^2 . If $\alpha^n = 1$ then the first equation in (2.1) becomes $1 = \alpha + 1$, which is false since $\alpha \neq 0$. If $\alpha^n = \alpha$ then $\alpha = \alpha + 1$, which is absurd. If $\alpha^n = \alpha^2$ then the two equations in (2.1) become $\alpha^2 = \alpha + 1$ and $\alpha^2 = -\alpha + 1$, so $\alpha = -\alpha$, but $\alpha \neq 0$. Thus a common root α in characteristic 0 doesn't exist.

<u>Step 2</u>: For $f(x) \in \mathbf{Z}[x]$, assume $f(0) \neq 0$ and f(x) and f(x) have no common roots in characteristic 0. If f(x) = g(x)h(x) for some nonconstant g(x) and h(x) in $\mathbf{Z}[x]$, then there is a k(x) in $\mathbf{Z}[x]$ with deg $k = \deg f$ such that $f\tilde{f} = k\tilde{k}$ and $k \neq \pm f$ or $\pm \tilde{f}$.

Since $f(0) \neq 0$, both g(0) and h(0) are not 0, so deg $\tilde{g} = \deg g$ and deg $\tilde{h} = \deg h$. Define

$$k(x) = g(x)h(x).$$

Then deg $k = \deg g + \deg \tilde{h} = \deg g + \deg h = \deg f$ and $k\tilde{k} = (g\tilde{h})(\tilde{g}h) = (gh)(\tilde{g}\tilde{h}) = f\tilde{f}$. If k and f are equal up to sign then $g\tilde{h}$ and gh are equal up to sign, so \tilde{h} and h are equal up to sign, but then every root of h (it has roots since h is nonconstant) would be a common root of f = gh and $\tilde{f} = \tilde{g}\tilde{h}$, which is a contradiction. The proof that k and \tilde{f} are not equal up to sign is similar with g in place of h.

Step 3: The polynomial $x^n - x - 1$, for $n \ge 2$, is irreducible in $\mathbf{Q}[x]$.

We argue by contradiction, and can assume n > 2 since the case n = 2 can be checked directly. If $x^n - x - 1$ is reducible in $\mathbf{Q}[x]$ then it factors into a product of two nonconstant polynomials in $\mathbf{Z}[x]$. Set $f(x) = x^n - x - 1$. By Steps 1 and 2, $f\tilde{f} = k\tilde{k}$ for some $k \in \mathbf{Z}[x]$ of degree n where k is not $\pm f$ or $\pm \tilde{f}$. Write $k(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, so $\tilde{k}(x) = b_0 x^n + b_1 x^{n-1} + \cdots + b_{n-1} x + b_n$. Then $k(0)\tilde{k}(0) = b_0 b_n = f(0)\tilde{f}(0) = (-1)(1) = -1$ in \mathbf{Z} , so $b_n = \pm 1$ and $b_0 = -b_n$. Replacing k with -k doesn't change deg k or $k\tilde{k}$, so with a sign change we can make k monic: $b_n = 1$. Then $b_0 = -1$.

Comparing the coefficients of x^n in both ff and kk,

$$1^{2} + (-1)^{2} + (-1)^{2} = b_{0}^{2} + b_{1}^{2} + \dots + b_{n}^{2}$$

Since $b_n^2 = 1$ and $b_0^2 = 1$, we get $b_1^2 + \dots + b_{n-1}^2 = 1$ in **Z**, so exactly one of b_1, \dots, b_{n-1} is ± 1 and the rest are 0: $k(x) = x^n + b_i x^i - 1$ with $1 \le i \le n-1$ and $b_i = \pm 1$.

Let's look at the terms of $f\tilde{f}$ and $k\tilde{k}$ in degrees above n:

$$f\tilde{f} = (x^n - x - 1)(-x^n - x^{n-1} + 1) = -x^{2n} - x^{2n-1} + x^{n+1} + \cdots$$

and

$$k\tilde{k} = (x^n + b_i x^i - 1)(-x^n + b_i x^{n-i} + 1) = -x^{2n} + b_i x^{2n-i} - b_i x^{n+i} + \cdots$$

 $\mathbf{2}$

where \cdots means terms of degree *n* or less. Thus

$$-x^{2n} - x^{2n-1} + x^{n+1} + \dots = -x^{2n} + b_i x^{2n-i} - b_i x^{n+i} + \dots$$

The terms on the left have distinct degrees since 2n > 2n - 1 > n + 1 (the last inequality uses n > 2), so there are three terms on the left with degree greater than n. Therefore on the right side $2n - i \neq n + i$ (otherwise the right side would have only one term with degree above n). If 2n - i > n + i then 2n - 1 = 2n - i, so i = 1 and $b_i = -1$, so $k = x^n - x - 1 = f$. If n + i > 2n - i then 2n - 1 = n + i, so i = n - 1 and $b_i = 1$, so $k = x^n + x^{n-1} - 1 = -\tilde{f}$. Recalling that k is not $\pm f$ or $\pm \tilde{f}$, we have reached a contradiction.

In the appendix we apply this method to more trinomials $x^n \pm x^m \pm 1$. For a further application of this method, see https://mathoverflow.net/questions/404106.

Remark 2.1. Before Selmer's work on $x^n - x - 1$, Perron [1] had proved irreducibility of $x^n + ax \pm 1$ in $\mathbf{Q}[x]$ for all integers a such that $|a| \geq 3$, and also for |a| = 2 provided 1 or -1 are not roots (e.g., $x^n - 2x + 1$ has 1 as a root and $x^{2m} + 2x + 1$ has -1 as a root).

APPENDIX A. MORE IRREDUCIBLE TRINOMIALS

The irreducibility argument we gave for $x^n - x - 1$ can be applied to nearly all trinomials of the form $x^n \pm x^m \pm 1$, in the sense that it tells us exactly when they are irreducible.

Theorem A.1. For 1 < m < n with $m \neq n/2$, and δ and ε equal to ± 1 , the polynomial $x^n + \delta x^m + \varepsilon$ is irreducible in $\mathbf{Q}[x]$ if and only if it has no root in common with its reciprocal polynomial.

Proof. Let $f(x) = x^n + \delta x^m + \varepsilon$. Then $\tilde{f}(x) = \varepsilon x^n + \delta x^{n-m} + 1 = \varepsilon (x^n + \varepsilon \delta x^{n-m} + \varepsilon)$. Since $m \neq n/2$ the middle terms of f(x) and $\tilde{f}(x)$ have different degrees, so f(x) and $\tilde{f}(x)$ are not scalar multiples of each other. Therefore irreducibility of f(x) in $\mathbf{Q}[x]$ implies f(x) and $\tilde{f}(x)$ have no common root.

Conversely, if f(x) and $\tilde{f}(x)$ have no common root then the proof of Theorem 1.1 goes through with f(x) in place of $x^n - x - 1$. (As in that proof, the product $f(x)\tilde{f}(x)$ has three terms of degree above n because $m \neq n/2$.) Details are left to the reader.

Concretely, if $m \neq n/2$ and $\delta, \varepsilon \in \{\pm 1\}$, then $x^n + \delta x^m + \varepsilon$ is irreducible except when it has a root in common with $x^n + \varepsilon \delta x^{n-m} + \varepsilon$.

Example A.2. Let's apply Theorem A.1 to $x^n + x + 1$. Computer data suggest that $x^n + x + 1$ is reducible if and only if $n \equiv 2 \mod 3$ with n > 2, and that in this case $x^2 + x + 1$ is a factor of $x^n + x + 1$. For example,

$$\begin{aligned} x^5 + x + 1 &= (x^2 + x + 1)(x^3 - x^2 + 1), \\ x^8 + x + 1 &= (x^2 + x + 1)(x^6 - x^5 + x^3 - x^2 + 1), \\ x^{11} + x + 1 &= (x^2 + x + 1)(x^9 - x^8 + x^6 - x^5 + x^3 - x^2 + 1). \end{aligned}$$

To prove $x^2 + x + 1$ is a factor of $x^n + x + 1$ if $n \equiv 2 \mod 3$, work in $\mathbf{Q}[x]/(x^2 + x + 1)$: $x^2 \equiv -x - 1$ and $x^3 \equiv 1$, so $x^{3j+2} + x + 1 \equiv x^2 + x + 1 \equiv 0$.

Next we will prove that if $x^n + x + 1$ is reducible in $\mathbf{Q}[x]$ then $n \equiv 2 \mod 3$. By Theorem A.1, reducibility implies $x^n + x + 1$ and its reciprocal polynomial $x^n + x^{n-1} + 1$ have a common root, say α :

$$\alpha^{n} + \alpha + 1 = 0$$
 and $\alpha^{n} + \alpha^{n-1} + 1 = 0$

KEITH CONRAD

Thus $\alpha = \alpha^{n-1}$, so $\alpha^n = \alpha^2$, which makes both of the equations above $\alpha^2 + \alpha + 1 = 0$. That implies $\alpha^3 = 1$, and definitely $\alpha \neq 1$, so from $\alpha^n = \alpha^2$ we must have $n \equiv 2 \mod 3$.

Selmer [2] showed that when $n \equiv 2 \mod 3$ and n > 2, so $x^n + x + 1 = (x^2 + x + 1)g_n(x)$, the polynomial $g_n(x)$ is irreducible over **Q**.

The polynomials $x^n - x + 1$ and $x^n + x - 1$ have properties similar to Example A.2: in each case there is a congruence condition on $n \mod 6$ that gives the polynomial an automatic low-degree factor, which is $x^2 - x + 1$:

- $x^n x + 1$ is irreducible unless $n \equiv 2 \mod 6$ with n > 2 (e.g., n = 8, 14, 20), when $x^2 x + 1$ is a factor,
- $x^n + x 1$ is irreducible unless $n \equiv 5 \mod 6$ (*e.g.*, n = 5, 11, 17), when $x^2 x + 1$ is a factor.

For $x^n - x + 1$ and $x^n + x - 1$, the congruence condition on $n \mod 6$ above is equivalent to the polynomial having a common root with its reciprocal polynomial, so by Theorem A.1 the congruence condition is equivalent to reducibility when n > 2.

Theorem A.1 avoids the case m = n/2. What happens in that case? Write n as 2m.

Corollary A.3. For all $m \ge 1$ and $\delta = \pm 1$, the polynomial $x^{2m} + \delta x^m - 1$ is irreducible in $\mathbf{Q}[x]$.

Proof. The proof of Theorem 1.1 still works when it is applied to both $x^{2m} + x^m - 1$ and $x^{2m} - x^m - 1$ (here the degree *n* is 2m). Details are left to the reader.

All that remains is $x^{2m} + \delta x^m + 1$, with constant term 1 and $\delta = \pm 1$. Examples generated by a computer suggest irreducibility is far less common than reducibility, as codified in the following theorem.

Theorem A.4. For $m \ge 1$, $x^{2m} + x^m + 1$ is irreducible over \mathbf{Q} if and only if m is a power of 3 and $x^{2m} - x^m + 1$ is irreducible over \mathbf{Q} if and only if $m = 2^i 3^j$ for some nonnegative integers i and j.

Proof. I learned the following argument from Dmitry Krachun.

There are two key points to keep in mind:

- (1) $x^2 + x + 1$ is the minimal polynomial of primitive 3rd roots of unity and $x^2 x + 1$ is the minimal polynomial of primitive 6th roots of unity. In the notation of cyclotomic polynomials, $x^2 + x + 1 = \Phi_3(x)$ and $x^2 x + 1 = \Phi_6(x)$.
- (2) If $f(x) \in \mathbf{Q}[x]$ and $f(x^m)$ is irreducible then $f(x^d)$ is irreducible when d is a (positive) factor of m. Indeed, arguing with the contrapositive, if $f(x^d) = g(x)h(x)$ for nonconstant g(x) and h(x) in $\mathbf{Q}[x]$, then $f(x^m) = g(x^{m/d})h(x^{m/d})$ and the polynomials on the right side are nonconstant. We will use this when d = p is a prime number: if $f(x^m)$ is irreducible over \mathbf{Q} then so is $f(x^p)$ for prime factors p of m.

First we will show

 $x^{2m} + x^m + 1$ is irreducible over $\mathbf{Q} \Longrightarrow m$ is a power of 3.

Set $f(x) = x^2 + x + 1$, so $x^{2m} + x^m + 1 = f(x^m)$. If $f(x^m)$ is irreducible over **Q** then we will show *m* is a power of 3 by showing for each prime $p \neq 3$ that $f(x^p)$ is reducible, so the only possible prime factor of *m* is 3. (See the second key point above.)

Let α be a root of $x^2 + x + 1$. The other root of $x^2 + x + 1$ is α^{-1} and $\alpha^3 = 1$, so powers α^k only depend on k modulo 3. For each prime $p \neq 3$, $p \equiv \pm 1 \mod 3$, so $\alpha^p = \alpha^{\pm 1}$. Therefore

 $f(\alpha^p) = f(\alpha^{\pm 1}) = 0$, so $f(x^p)$ is divisible by the minimal polynomial of α over \mathbf{Q} , which is $x^2 + x + 1$. That makes $f(x^p)$ reducible since its degree 2p is greater than 2.

Next we will show

$$x^{2m} - x^m + 1$$
 is irreducible over $\mathbf{Q} \Longrightarrow m = 2^i 3^j$ for some $i, j \ge 0$.

Now set $f(x) = x^2 - x + 1$, so to prove $f(x^m) = x^{2m} - x^m + 1$ can be irreducible only when the prime factors of m are 2 or 3, it suffices by the reasoning used above to show $f(x^p)$ is reducible for each prime p > 3.

Let β be a root of $x^2 - x + 1$, so the other root is β^{-1} and $\beta^6 = 1$, so β^k only depends on k modulo 6. For prime p > 3, $p \equiv \pm 1 \mod 6$, so $f(\beta^p) = f(\beta^{\pm 1}) = 0$. Thus $f(x^p)$ is divisible by $x^2 + x + 1$, which makes $f(x^p)$ reducible since its degree is greater than 2.

It remains to show that

m is a power of
$$3 \Longrightarrow \Phi_3(x^m) = x^{2m} + x^m + 1$$
 is irreducible over **Q**

and

$$m = 2^i 3^j \Longrightarrow \Phi_6(x^m) = x^{2m} - x^m + 1$$
 is irreducible over **Q**.

These are both special cases (n = 3 and n = 6) of the following property of all cyclotomic polynomials $\Phi_n(x)$: if m is a positive integer whose prime factors all divide n, then $\Phi_n(x^m) = \Phi_{mn}(x)$. This polynomial identity is a consequence of both sides being monic of the same degree $(m\varphi(n) = \varphi(mn))$ when all prime factors of m divide n), the right side being the minimal polynomial over \mathbf{Q} of all roots of unity of order mn, and the left side vanishing at all roots of unity of order mn.¹

References

- O. Perron, Neue Kriterien f
 ür die Irreduzibilit
 ät algebraischer Gleichungen, J. reine angew. Math. 132 (1907), 288-307. URL https://eudml.org/doc/149269.
- [2] E. Selmer, On the Irreducibility of Certain Trinomials, Math. Scand. 4 (1956), 287-302. URL https: //eudml.org/doc/165635.

¹In fact, for all positive integers m and n, $\Phi_n(x^m)$ is irreducible over \mathbf{Q} if and only if each prime factor of m is a factor of n. This becomes Theorem A.4 when n is 3 and 6.