
NOTES ON IDEALS

KEITH CONRAD

1. Introduction

Let R be a commutative ring (with identity). An ideal in R is an additive subgroup
I ⊂ R such that for all x ∈ I, Rx ⊂ I.

Example 1.1. For a ∈ R,

(a) := Ra = {ra : r ∈ R}
is an ideal. An ideal of the form (a) is called a principal ideal with generator a. We have
b ∈ (a) if and only if a | b. Note (1) = R.

An ideal containing an invertible element u also contains u−1u = 1 and thus contains
every r ∈ R since r = r · 1, so the ideal is R. This is why (1) = R is called the unit ideal:
it’s the only ideal containing units (invertible elements).

Example 1.2. For a and b ∈ R,

(a, b) := Ra+Rb =
{
ra+ r′b : r, r′ ∈ R

}
is an ideal. It is called the ideal generated by a and b. Note this is not (a)∪ (b)! That’s like
in group theory, where 〈g, h〉 consists of products of powers of g and h rather than being
〈g〉 ∪ 〈h〉.

More generally, for a1, . . . , an ∈ R the set (a1, a2, . . . , an) = Ra1 + · · ·+Ran is an ideal in
R, called a finitely generated ideal or the ideal generated by a1, . . . , an. In some rings every
ideal is principal, or more broadly every ideal is finitely generated, but there are also some
“big” rings in which some ideal is not finitely generated.

It would be wrong to say an ideal is not principal if it is described with two generators:
an ideal generated by several elements might be generated by fewer elements and even by
one element (a principal ideal). For example, in Z,

(1.1) (6, 8) = 6Z + 8Z
!

= 2Z.

Both 8 and 6 are elements of the ideal (6, 8), so 8 − 6 = 2 is in the ideal. Hence every
multiple of 2 is in the ideal, so 2Z ⊂ (6, 8). Conversely, the ideal (6, 8) is in 2Z since every
6m+ 8n is even. Thus (6, 8) = (2) as ideals in Z. This is analogous to group theory where
a subgroup generated by two elements could be cyclic (having a single generator).

Remark 1.3. The elements of the ideal (a, b) = aR + bR are all possible ax + by. This
includes the multiples of a and the multiples of b, but (a, b) more than that in general:
a typical element in (a, b) need not be a multiple of a or of b. Consider in Z the ideal
(6, 8) = 6Z + 8Z = 2Z: most even numbers are not multiples of 6 or of 8. Don’t confuse
the ideal (a, b) with the union (a) ∪ (b), which is usually not an ideal and in fact is not of
much interest.
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Generators of an ideal in a ring are analogous to a spanning set of a subspace of Rn. But
there is an important difference, illustrated by equation (1.1): all minimal spanning sets
for a subspace of Rn have the same size (dimension of the subspace), but in Z the ideal of
even numbers has minimal spanning sets {2} and {6, 8}, which are of different sizes.

Example 1.4. For rings R and S, R × S is a ring with componentwise operations. The
subsets R× {0} = {(r, 0) : r ∈ R} and {0} × S = {(0, s) : s ∈ S} are ideals in R× S. Both
are principal ideals: R× {0} = ((1, 0)) and {0} × S = ((0, 1)) in R× S.

It is not obvious at first why the concept of an ideal is important. Here are three reasons
why it is.

(1) Ideals in R are precisely the kernels of ring homomorphisms out of R, just as normal
subgroups of a group G are precisely the kernels of group homomorphisms out of
G. We will see why in Section 3.

(2) Ideals were first introduced, by Kummer, to restore unique factorization in certain
rings where that property failed. He referred not to ideals as defined above but to
“ideal numbers,” somewhat in the spirit of the term “imaginary numbers.”

(3) The study of commutative rings used to be called “ideal theory” (now it is called
commutative algebra), so evidently ideals have to be a pretty central aspect of
research into the structure of rings.

The following theorem says fields can be characterized by the types of ideals in it.

Theorem 1.5. Let a commutative ring R not be the zero ring. Then R is a field if and
only if its only ideals are (0) and (1).

Proof. In a field, every nonzero element is invertible, so an ideal in the field other than (0)
contains 1 and thus is (1). Conversely, if the only ideals are (0) and (1) then for all a 6= 0
in R we have (a) = (1), and that implies 1 = ab for some b, so a has an inverse. Therefore
all nonzero elements of R are invertible, so R is a field. �

2. Principal ideals

When is (a) ⊂ (b)? An ideal containing a also contains (a), and vice versa, so the
condition (a) ⊂ (b) is the same as a ∈ (b), which is true if and only if a = bc for some c ∈ R,
which means b | a. Thus

(a) ⊂ (b)⇐⇒ b | a in R.

Thus inclusion of one principal ideal in another corresponds to reverse divisibility of the
generators, or equivalently divisibility of one number into another in R corresponds to
reverse inclusion of the principal ideals they generate: x | y in R ⇐⇒ (y) ⊂ (x). For
instance in Z, 2 | 6 and (6) ⊂ (2). We don’t have (2) ⊂ (6) since 2 ∈ (2) but 2 6∈ (6). The
successive divisibility relations 2 | 4 | 8 | 16 | · · · correspond to the descending containment
relations (2) ⊃ (4) ⊃ (8) ⊃ (16) ⊃ · · · .

When does (a) = (b)? That is equivalent to a | b and b | a, so b = ac and a = bd for some
c, d ∈ R, which implies b = bdc and a = acd. If this common ideal is not (0) and R is an
integral domain, then 1 = dc and 1 = cd, so c and d are invertible. Thus a = bu where u = d
is invertible. Conversely, if a = bu where u is invertible then (a) = aR = buR = bR = (b),
so we have shown that in an integral domain, a generator of a principal ideal is determined
up to multiplication by a unit.

Here is the most important property of ideals in Z and F [T ], where F is a field.
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Theorem 2.1. In Z and F [T ] for every field F , all ideals are principal.

Proof. Let I be an ideal in Z or F [T ]. If I = {0}, then I = (0) is principal. Let I 6= (0).
We have division with remainder in Z and F [T ] and will give similar proofs in both rings,
side by side. Learn this proof.

Let a ∈ I − {0} with |a| minimal. So
(a) ⊂ I. To show I ⊂ (a), pick b ∈ I.
Write b = aq + r with 0 ≤ r < |a|. So
r = b− aq ∈ I. By the minimality of |a|,
r = 0. So b = aq ∈ (a).

Let f ∈ I−{0} with deg f minimal. So (f) ⊂
I. To show I ⊂ (f), pick g ∈ I. Write g =
fq + r with r = 0 or deg r < deg f . So r =
g−fq ∈ I. By the minimality of deg f , r = 0.
So g = fq ∈ (f). �

Example 2.2. In Z, consider the finitely generated ideal

(6, 9, 15) = 6Z + 9Z + 15Z.

This ideal must be principal, and in fact it is 3Z. To check the containment one way, since
6, 9, 15 ∈ 3Z we get 6Z + 9Z + 15Z ⊂ 3Z, and since 3 = −6 + 9 ∈ 6Z + 9Z + 15Z we have
3Z ⊂ 6Z + 9Z + 15Z. So the ideal (6, 9, 15) is the principal ideal (3).

Remark 2.3. To check two finitely generated ideals (r1, . . . , rm) and (r′1, . . . , r
′
n) are equal,

it is necessary and sufficient to check

r1, . . . , rm ∈ (r′1, . . . , r
′
n) and r′1, . . . , r

′
n ∈ (r1, . . . , rm).

For instance, to see in Z that (6, 9, 15) = (3) we can observe that 6, 9, 15 ∈ (3) and 3 =
−6 + 9 ∈ (6, 9, 15).

Example 2.4. For α ∈ C, let

Iα = {f(T ) ∈ Q[T ] : f(α) = 0} .
This is an ideal in Q[T ] (check!), so Iα = (h) for some h ∈ Q[T ]. Maybe the only polynomial
in Q[T ] that vanishes at α is 0 (e.g., α = π = 3.1415 . . ., which is transcendental). If there’s
some nonzero polynomial in Q[T ] with α as a root then Iα 6= (0), so h 6= 0. The condition
Iα = (h) means “for all f ∈ Q[T ], f(α) = 0 if and only if h | f”. Note the similarity to
orders in group theory: for g ∈ G, {n ∈ Z : gn = e} is a subgroup of Z so it is mZ for some
m ∈ Z with m ≥ 0 (m is the order of g, if g has finite order): gn = e if and only if m | n.

Example 2.5. Which f(T ) ∈ R[T ] satisfy f(i) = 0? The set I = {f ∈ R[T ] : f(i) = 0}
forms an ideal in R[T ] (check!) One such polynomial is T 2 + 1, so (T 2 + 1) ⊂ I. Let’s show
I = (T 2 + 1). We know I is principal, say I = (h). Then

T 2 + 1 ∈ (h)⇒ h | T 2 + 1,

so h = c or h = c(T 2+1) for some c ∈ R×. That means (h) = (c) = (1) or (h) = (T 2+1), but
the former is impossible since the constant polynomial 1 is not in I. So I = (h) = (T 2 + 1).

In Theorem 2.1 it is important that F is a field: if A is an integral domain and every
ideal in A[T ]is principal then A is a field. This is proved later in Theorem 6.12.

3. Ideals = Kernels, Quotient Rings

If f : R→ S is a ring homomorphism, then ker f = {r ∈ R : f(r) = 0} is an ideal in R:

(1) it is an additive subgroup of R since f is an additive homomorphism.
(2) if f(x) = 0 and r ∈ R, then rx ∈ ker f since

f(rx) = f(r)f(x) = f(r) · 0 = 0.
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Not only is every kernel of a ring homomorphism defined on R an ideal in R, but all ideals
in R arise in this way for some ring homomorphism out of R. Let’s see some examples before
proving this.

Example 3.1. For m ∈ Z, the ideal mZ in Z is the kernel of the reduction homomorphism
Z→ Z/(m).

Example 3.2. For α ∈ C, the set {f ∈ Q[T ] : f(α) = 0} is the kernel of the evaluation-at-α
homomorphism Q[T ]→ C where f(T ) 7→ f(α).

Example 3.3. For rings R and S, the ideals R×{0} and {0}× S in R× S are the kernels
of the projection homomorphisms R× S → S given by (r, s) 7→ s and R× S → R given by
(r, s) 7→ r.

Theorem 3.4. Every ideal in a ring R is the kernel of some ring homomorphism out of R.

Proof. Since I is an additive subgroup we have the additive quotient group (of cosets)

R/I = {r + I : r ∈ R} .
Denote r + I as r. Under addition of cosets, the identity is 0 and the inverse of r is −r.
Define multiplication on R/I by

r · r′ = rr′

for r, r′ ∈ R/I. We need to check that this is well-defined: say r1 = r2 and r′1 = r′2. Then

r1 − r2 = x ∈ I and r′1 − r′2 = y ∈ I. So to show r1r′1 = r2r′2,

r1r
′
1 − r2r′2 = (r1 − r2 + r2)r

′
1 − r2r′2

= (r1 − r2)r1 + r2(r
′
1 − r′2)

= xr′1 + r2y

∈ I + I = I.

Checking the rest of the conditions to have R/I be a ring is left to you.
The reduction mapping R → R/I by r 7→ r = r + I is not just an additive group

homomorphism but a ring homomorphism too. Indeed,

r1 + r2 = r1 + r2, r1r2 = r1r2, 1 = multiplicative identity in R/I

The kernel of R→ R/I is {
r ∈ R : r = 0

}
= {r : r + I = I} = I,

so we have constructed an example of a ring homomorphism out of R with prescribed kernel
I. This is analogous to the role of the canonical reduction homomorphism G → G/N in
group theory that proves every normal subgroup N of a group G is the kernel of some group
homomorphism out of G. �

Definition 3.5. For an ideal I in R, we call the ring R/I constructed in the above proof
the quotient ring of R modulo I.

To be clear about what the ring R/I is, it is the additive quotient group R/I (treating
R and I as additive groups) that is made into a ring by multiplying coset representatives,
which is well-defined because I is an ideal.

Example 3.6. When R = Z and I = mZ = (m), R/I = Z/(m) is the usual ring of integers
mod m.
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Example 3.7. For a ring R, R/(0) = R and R/(1) = R/R =
{

0
}

is the zero ring. So
working modulo 0 changes nothing (congruence mod 0 is ordinary quality), while working
modulo 1 collapses everything together.1

We’ll see more interesting examples of quotient rings in the next section.

Remark 3.8. The additive quotient group R/Z, which is isomorphic to the circle group S1,
is not a ring in any reasonable way: Z is a subgroup of R, not an ideal of R (the only ideals
in R are (0) and R), and multiplication on R/Z doesn’t make sense using representatives.
Example, 1/2 = 5/2 and 1/3 = 4/3 in R/Z, but (1/2) · (1/3) 6= (5/2) · (4/3) in R/Z since
20/6− 1/6 6∈ Z.

4. The quotient is isomorphic to the image

In group theory, if ϕ : G→ H is a group homomorphism with kernel N then ϕ is injective
if and only if N is trivial, and G/N ∼= ϕ(G) as groups by gN 7→ ϕ(g). These results carry
over to ring homomorphisms, using similar proofs.

Theorem 4.1. If ϕ : R→ S is a homomorphism of commutative rings with kernel I, then
ϕ is injective if and only if I = {0}, and R/I ∼= ϕ(R) as rings by r 7→ ϕ(r).

Proof. Since ϕ is additive we have ϕ(0) = 0 (look at ϕ(0) + ϕ(0) = ϕ(0 + 0) = ϕ(0) and
subtract ϕ(0) from both sides), so if ϕ is injective the only solution of ϕ(r) = 0 is r = 0.
So when ϕ is injective, I = {0}.

Conversely, if I = {0} then whenever ϕ(x) = ϕ(y) we can say ϕ(x− y) = ϕ(x)− ϕ(y) =
0, so x − y ∈ I = {0}, so x = y. Thus ϕ is injective. (This proof, which only uses
additivity properties of ϕ, is essentially the same as the proof in group theory that a group
homomorphism is injective if and only if its kernel is trivial.)

Now assume ϕ : R→ S is a ring homomorphism. We define a function ϕ : R/I → S by

ϕ(r + I) = ϕ(r).

This is well-defined: if r + I = r′ + I then r = r′ + x for some x ∈ I, so ϕ(r) = ϕ(r′ + x) =
ϕ(r′) + ϕ(x) = ϕ(r′). Then the fact that ϕ is a ring homomorphism will imply ϕ is a ring
homomorphism. For all r1 and r2 in R we have

ϕ((r1 + I) + (r2 + I)) = ϕ(r1 + r2 + I) = ϕ(r1 + r2)

and
ϕ(r1 + I) + ϕ(r2 + I) = ϕ(r1) + ϕ(r2)

so from ϕ(r1 + r2) = ϕ(r1) +ϕ(r2) we get that ϕ is additive. Multiplicativity of ϕ is shown
in the same way: for all r1 and r2 in R,

ϕ((r1 + I)(r2 + I)) = ϕ(r1r2 + I) = ϕ(r1r2)

and
ϕ(r1 + I)ϕ(r2 + I) = ϕ(r1)ϕ(r2),

so from ϕ(r1r2) = ϕ(r1)ϕ(r2) the mapping ϕ is multiplicative. Finally, ϕ(1+I) = ϕ(1) = 1.
Next we show ϕ : R/I → S is injective. That is equivalent to showing its kernel is zero:

if ϕ(r + I) = 0 then ϕ(r) = 0 so r ∈ I, and thus r + I is zero in R/I.

1In analysis, the additive group R/Z is sometimes called “the real numbers mod 1”, but that terminology
is not related to what we’re doing here: R/(1) = R/R = {0} is a one-element ring while R/Z is an infinite
group with representatives in [0, 1).
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Finally, since ϕ(R/I) = ϕ(R), the injective homomorphism ϕ : R/I → S has image
ϕ(R), so shrinking the target ring from S to ϕ(R) we get a ring isomorphism (a bijective
ring homomorphism) R/I → ϕ(R) using the function ϕ. �

Example 4.2. Evaluation at 0 is a ring homomorphism R[T ]→ R that has kernel (T ) and
image R (look at the effect of evaluation on constant polynomials to see it is surjective!),
so R[T ]/(T ) ∼= R. By similar reasoning, for every ring A we have A[T ]/(T ) ∼= A.

Example 4.3. Fix a real number c. Evaluation at c is a ring homomorphism R[T ]→ R that
has kernel (T−c) and image R (as in the previous example, the effect of this homomorphism
on constant polynomials shows each real number is a value), so R[T ]/(T − c) ∼= R. In the
same way, for every ring A we have A[T ]/(T − a) ∼= A for all a ∈ A.

The way the two isomorphisms in the previous examples work on the congruence class
of a particular polynomial is not the same (unless the polynomial is constant). Under
evaluation at 0 we have 2T + 3 mod T corresponding to 3, while under evaluation at 1 we
have 2T + 3 mod T − 1 corresponding to 5.

Example 4.4. Evaluation at 0 is a ring homomorphism Q[T ] 7→ R with kernel TQ[T ] = (T )
and image Q, so Q[T ]/(T ) ∼= Q. (Watch out: the image of this homomorphism is not R,
so we don’t get an isomorphism from Q[T ]/(T ) to R, but rather from Q[T ]/(T ) to Q.)

Example 4.5. What is the ring Q[T ]/(T 2)? Modulo T 2, each polynomial in Q[T ] is
congruent to a unique polynomial of the form a + bT for a, b ∈ Q. In Q[T ]/(T 2), T is not
0 but T 2 is 0. (This is analogous to Z/(9), where 3 6= 0 and 32 = 0.) Therefore Q[T ]/(T 2)

consists of elements a + bT where T 6= 0 and T
2

= 0. Addition and multiplication in
Q[T ]/(T 2) is described by the formulas

(a+ bT ) + (c+ dT ) = (a+ c) + (b+ d)T , (a+ bT )(c+ dT ) = ac+ (ad+ bc)T .

Example 4.6. Evaluation at i is a ring homomorphism R[T ]→ C that is surjective (a+bi is
the image of a+bT ) and its kernel is (T 2+1), so we get a ring isomorphism R[T ]/(T 2+1)→
C by f(T ) mod T 2 + 1 7→ f(i). Coset representatives in R[T ]/(T 2 + 1) can be chosen
uniquely as polynomials of the form a + bT , and the addition and multiplication of these
representatives in R[T ]/(T 2+1) behaves exactly like addition and multiplication of complex
numbers a + bi. The idea of using R[T ]/(T 2 + 1) as a rigorous definition of the complex
numbers goes back to Cauchy in 1847 [2], [3].

Example 4.7. Evaluation at 3
√

2 is a ring homomorphism Q[T ] → R whose kernel is
(T 3 − 2) and whose image is Q[ 3

√
2], so Q[T ]/(T 3 − 2) ∼= Q[ 3

√
2].

5. Ideals of Polynomials

In geometry, ideals often – but not always – arise as the functions vanishing on a subset
of some space. Let’s look at some ideals of polynomials defined in this way.

Example 5.1. In R[X], the ideal

I = (X) = {Xg(X) : g(X) ∈ R[X]}
is the set of polynomials in R[X] vanishing at 0.

Example 5.2. In R[X], the ideal

(X2 + 1) =
{

(X2 + 1)g(X) : g(X) ∈ R[X]
}

is {f(X) ∈ R[X] : f(i) = 0}, which is the polynomials in R[X] that vanish at i.
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Example 5.3. Let

I = {f(X,Y ) ∈ R[X,Y ] : f(0, 0) = 0} =

∑
i,j

aijX
iY j : a00 = 0

 .

Elements of I look like

aX + bY + cX2 + dXY + eY 2 + · · ·+ fX5Y 2 + · · · .
These are the polynomials in R[X,Y ] vanishing at (0, 0). We can write

I = {Xg(X,Y ) + Y h(X,Y ) : g(X,Y ), h(X,Y ) ∈ R[X,Y ]} = (X,Y ).

We claim that I is not a principal ideal. The proof is by contradiction. Suppose I = (k)
for some polynomial k = k(X,Y ). Since X and Y are examples of elements of I, if we had
such k then k` = X and km = Y for some polynomials ` and m in R[X,Y ]. This can
only happen if k is a nonzero constant, but I contains no nonzero constants. Thus I is not
principal.

Example 5.4. For a point (a, b) ∈ R2, let

Ia,b = {f ∈ R[X,Y ] : f(a, b) = 0} .
This ideal equals (X − a, Y − b). To see why, since X − a and Y − b are in Ia,b we have
(X − a, Y − b) ⊂ Ia,b. To prove Ia,b ⊂ (X − a, Y − b), here are two methods:

• Use the (finite!) Taylor expansion of polynomials at (a, b): each f ∈ R[X,Y ] can
be written as

f(X,Y ) = f(a, b) + polynomial in X − a, Y − b with no constant term,

so when f(a, b) = 0, we have

f(X,Y ) ∈ (X − a, Y − b).
• In the ring R[X,Y ]/(X − a, Y − b) we have X ≡ a and Y ≡ b, so a polynomial

expression in X and Y with real coefficients is congruent mod (X − a, Y − b) to the
same polynomial expression in a and b, or in other words f(X,Y ) ≡ f(a, b) mod
(X − a, Y − b). Thus when f ∈ Ia,b, meaning f(a, b) = 0, we get f(X,Y ) ∈
(X − a, Y − b).

Here is an incorrect proof that Ia,b ⊂ (X−a, Y −b): if f(X,Y ) ∈ Ia,b then f(X, b) ∈ R[X]
with a root at X = a and f(a, Y ) ∈ R[Y ] with a root at Y = b, so f(X, b) ∈ (X − a) in
R[X] and f(a, Y ) ∈ (Y − b) in R[Y ]. That does not prove f(X,Y ) ∈ (X − a, Y − b) since
it only uses ideals in the single-variable polynomial rings R[X] and R[Y ] without making
a link with the ideal (X − a, Y − b) in R[X,Y ]: (X − a) in R[X] is smaller than (X − a)
in R[X,Y ], since the first (X − a) only involves polynomials in X. Remember, as Remark
1.3 points out, that (X − a, Y − b) is not the union of (X − a) and (Y − b) in R[X,Y ].

The ideal Ia,b is the kernel of the evaluation homomorphism R[X,Y ]→ R at (a, b), where
f(X,Y ) 7→ f(a, b). This ideal is non-principal by the same reasoning as in Example 5.3,
which is that special case a = 0, b = 0.

Example 5.5. Consider the polynomials in R[X,Y ] vanishing on the y-axis:

I = {f ∈ R[X,Y ] : f(0, y) = 0 for all y ∈ R} .
See Figure 1. Since X ∈ I,

(X) = {X · g(X,Y ) : g ∈ R[X,Y ]} ⊂ I.
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(0, y)

Figure 1. Solutions to x = 0.

In fact (X) = I. To show this, write each f ∈ I in the form

f(X,Y ) = h(Y ) +X · g(X,Y ),

where h(Y ) ∈ R[Y ] is the “X-free” part of f . Then f(0, Y ) = h(Y ), so h(y) = 0 for all
y ∈ R. The only polynomial in R[Y ] with infinitely many roots is 0, so h(Y ) = 0, so
f = Xg(X) ∈ (X).

Remark 5.6. Context matters with notation: the ideal (X) in R[X,Y ] is not the same as
the ideal (X) in R[X].

Example 5.7. Consider the polynomials in R[X,Y ] vanishing on the parabola y = x2:

I =
{
f ∈ R[X,Y ] : f(x, y) = 0 when x, y ∈ R, y = x2

}
=

{
f ∈ R[X,Y ] : f(x, x2) = 0 for all x ∈ R

}
.

See Figure 2.

(x, x2)

Figure 2. Solutions to y = x2.

One polynomial in I is Y −X2, so (Y −X2) ⊂ I. In fact I = (Y −X2). To show this,
pick f(X,Y ) ∈ I. In the ring R[X,Y ]/(Y −X2) we have Y ≡ X2 so f(X,Y ) ≡ f(X,X2),
so f(X,Y ) − f(X,X2) ∈ (Y − X2). The polynomial f(X,X2) ∈ R[X] vanishes at each
x ∈ R, so f(X,X2) = 0 in R[X]. Therefore f(X,Y ) ∈ (Y −X2).

Starting with the inclusion of points on a curve in the plane

{(0, 0)} , {(2, 4)} ⊂
{

(x, y) : y = x2
}
⊂ R2,
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passing to the ideal of polynomials vanishing on these sets reverses all inclusions:

(X,Y ), (X − 2, Y − 4) ⊃ (Y −X2) ⊃ (0).

It’s easy to see algebraically that (Y − X2) ⊂ (X,Y ) since Y − X2 ∈ (X,Y ). While
it’s obvious geometrically that (2, 4) lies on the curve y = x2, to check algebraically that
(Y −X2) ⊂ (X − 2, Y − 4) can look tedious by comparison:

Y −X2 = Y − 4 + 4− (X − 2 + 2)2

= Y − 4 + 4− (X − 2)2 − 2 · 2(X − 2)− 4

= (Y − 4)− (X − 2)2 − 4(X − 2)

∈ (X − 2, Y − 4).

6. Prime and Maximal Ideals

The rings whose behavior is closest to what is taught in high school algebra are integral
domains and fields. It’s important to know when a quotient ring R/I is an integral domain
or a field, and such ideals I have special names.

Definition 6.1. An ideal I ⊂ R is called a prime ideal if the quotient ring R/I is an
integral domain. We call I a maximal ideal if the quotient ring R/I is a field.

Typically prime ideals are written as P and Q, while maximal ideals are written as M .
Since the creators of ideal theory were German, we often follow their lead and write prime
and maximal ideals using gothic fonts: p and q for prime ideals and m for maximal ideals.

Example 6.2. In Z, all ideals are mZ for m ≥ 0 by Theorem 2.1. Furthermore, Z/(m) is
an integral domain exactly when m = 0 and m = p is a prime number, and Z/(m) is a field
exactly when m = p is a prime number: if a 6≡ 0 mod p for a prime p then gcd(a, p) = 1
since p is prime, so ax + py = 1 for some x, y ∈ Z and thus ax ≡ 1 mod p, so all nonzero
elements of Z/(p) are units. When m > 1 is not prime, a factor of m between 1 and m
reduces to a zero divisor in Z/(m), so Z/(m) is not a field. So the prime ideals in Z are (0)
and (p) for prime numbers p and the maximal ideals in Z are (p) for prime numbers p: the
nonzero prime ideals in Z are maximal.

Similar reasoning shows that in F [X] for a field F , the prime ideals are (0) and (π(X)) for
irreducible π(X) ∈ F [X] and the maximal ideals are (π(X)) for irreducible π(X) ∈ F [X].

Example 6.3. In Q the only ideals are (0) and (1), with (0) being a maximal and prime
ideal.

Example 6.4. The ideal (X) in R[X] is a maximal ideal since R[X]/(X) ∼= R (use eval-
uation at 0) and R is a field, while the ideal (X) in R[X,Y ] is a prime ideal that is not a
maximal ideal since R[X,Y ]/(X) ∼= R[Y ] (substitute 0 for X and view R[X,Y ] as R[X][Y ]
and use Example 4.2) and R[Y ] is an integral domain but not a field.

Example 6.5. The ideal (Y −X2) in R[X,Y ] is prime and not maximal: the substitution
homomorphism R[X,Y ] → R[X] sending every f(X,Y ) to f(X,X2), or equivalently the
evaluation homomorphism R[X][Y ] → R[X] where Y 7→ X2, is surjective with kernel
(Y −X2) by Example 5.7, so R[X,Y ]/(Y −X2) ∼= R[X], which is an integral domain but
not a field.

Here are a few simple ways the terminology of prime and maximal ideals works.
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• Since R/(0) ∼= R, the ideal (0) in R is prime if and only if R is an integral domain
and the ideal (0) in R is maximal if and only if R is a field.
• Every field is an integral domain, so every maximal ideal is a prime ideal: if R/I

is a field then R/I is an integral domain. The converse is false, e.g., (0) is a prime
ideal in Z but not a maximal ideal and (Y ) is a prime ideal in R[X,Y ] but not a
maximal ideal.
• The zero ring is not considered to be an integral domain or a field, since in an

integral domain or field 1 6= 0 by definition. For a ring R, the quotient ring R/(1)
is the zero ring, so the ideal (1) is not considered to be a prime ideal or a maximal
ideal: prime and maximal ideals are always proper ideals (not the whole ring).

Theorem 6.6. An ideal I in R is prime if and only if I 6= R and for all a, b ∈ R the
condition ab ∈ I implies a ∈ I or b ∈ I. An ideal I is maximal if and only if I 6= R and for
ideals J such that I ⊂ J ⊂ R, we have J = I or J = R.

This theorem explains the terminology “maximal”: a maximal ideal is one that is truly
maximal among all proper ideals of the ring.

Proof. To say R/I is an integral domain is the same as saying R/I 6=
{

0
}

and in R/I, if

ab = 0, then a = 0 or b = 0. This is equivalent to saying I 6= R and if ab ∈ I then a ∈ I or
b ∈ I, so those properties are equivalent to I being a prime ideal.

Now suppose R/I is a field and J is an ideal with I ⊂ J ⊂ R. To prove J = I or J = R,
assume J 6= I. We will show J contains 1, so J = R. Let j ∈ J − I, so in R/I we have
j 6≡ 0 mod I. Since R/I is a field, there is a k ∈ R such that jk ≡ 1 mod I, so jk = 1 + x
for some x ∈ I. Thus 1 = jk− x. Since j ∈ J we have jk ∈ J , and since x ∈ I ⊂ J we have
1 = jk − x ∈ J . Thus J = R.

Conversely, suppose that I is a maximal ideal: it is proper ideal of R such that the only
ideals J satisfying I ⊂ J ⊂ R are J = I or J = R. To prove R/I is a field, pick a 6= 0 in R/I.
We will show a has an inverse in R/I. Consider the sum I +Ra = {x+ ra : x ∈ I, r ∈ R}.
This is an ideal in R (check!), it contains I (use r = 0), and it contains a (use x = 0 and
r = 1), so the ideal I +Ra is larger than I. Therefore I +Ra = R. That implies 1 = x+ ra
for some x ∈ I and r ∈ R, so ra ≡ 1 mod I, and thus a mod I has an inverse. �

Remark 6.7. In math, the word “or” allows for both options to happen: the condition
“xy = 0 implies x = 0 or y = 0” in an integral domain absolutely includes the possibility
that x and y are both 0. Just think about the integers: xy = 0 in Z tells us x is 0 or y is
0 or (just for emphasis!) both are 0, with the “both” bit being part of what “or” means
so we don’t make that explicit. Integral domains are supposed to mimic that situation, so
an ideal p is prime when it is a proper ideal and ab ∈ p implies a ∈ p or b ∈ p or (just for
emphasis!) both a and b are in p.

We mentioned above that while all maximal ideals are prime (because all fields are integral
domains), not all prime ideals in a ring have to be maximal. The following theorem gives
a set of conditions that are sufficient for all nonzero prime ideals to be maximal, so the
maximal ideals are the nonzero prime ideals.

Theorem 6.8. If R is an integral domain in which all ideals are principal then every
nonzero prime ideal in R is maximal.

It is crucial that we refer in the theorem to nonzero prime ideals: by Example 6.2, in Z
the nonzero prime ideals iare maximal but the zero ideal is prime and not maximal. The
zero ideal is maximal only in a field.
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Proof. Write a nonzero prime ideal of R as (p) for some p ∈ R (the ideal is principal by
hypothesis). To prove (p) is maximal, let I be an ideal with (p) ⊂ I ⊂ R. We will show
I = (p) or I = R.

By hypothesis, I = (a) for some a ∈ R. Then the condition (p) ⊂ I says (p) ⊂ (a), so
p ∈ (a). Thus p = ab for some b ∈ R, so ab ≡ 0 mod (p). Since (p) is a prime ideal, R/(p)
is an integral domain and therefore a ≡ 0 mod (p) or b ≡ 0 mod (p). We will show one of
these cases leads to (a) = (p) and the other leads to (a) = R.

If a ≡ 0 mod (p) then a = pa′ for some a′ ∈ R, so p = ab = pa′b. Since R is an integral
domain, 1 = a′b, so b is a unit. Thus (a) = (ab) = (p).

If b ≡ 0 mod (p) then b = pb′ for some b′ ∈ R, so p = ab = pab′. As before we can cancel
p, getting 1 = ab′, so a is a unit. Thus (a) = (1) = R. �

Definition 6.9. An integral domain in which all ideals are principal is called a principal
ideal domain, which is abbreviated to PID.

Example 6.10. The rings Z and F [T ] for a field F are PIDs by Theorem 2.1.

Theorem 6.8 says that in a PID, every nonzero prime ideal is maximal. The converse has
many counterexamples: an integral domain in which all nonzero prime ideals are maximal
can have nonprincipal ideals.

Example 6.11. In Z[
√

5] = {a + b
√

5 : a, b ∈ Z}, it can be shown that all nonzero
prime ideals of Z[

√
5] are maximal, but the ideal (2, 1 +

√
5) in Z[

√
5] is nonprincipal. More

generally, if d is an integer that is not a perfect square then all nonzero prime ideals in Z[
√
d]

turn out to be maximal, and when d ≡ 1 mod 4 (such as d = 5, 13, 17, 21,−3,−7,−11 and

−15) the ideal (2, 1 +
√
d) in Z[

√
d] turns out to be nonprincipal.

When F is a field, F [T ] is a PID by Theorem 2.1. The next theorem is a converse result.

Theorem 6.12. If A is a commutative ring such that A[T ] is a PID then A is a field.

Proof. To begin, A is an integral domain since A is a subring of A[T ] and a subring of an
integral domain is an integral domain.

To prove A is a field when A[T ] is a PID, we will give two proofs. The second proof is
more conceptual than the first.

For the first proof, pick a 6= 0 in A. We want to show a is a unit in A. By hypothesis, the
ideal (a, T ) in A[T ] is principal, say (a, T ) = (f(T )). Then f(T ) 6= 0, f(T ) | a, and f(T ) | T .
Write the first divisibility condition as a = f(T )g(T ) for some g(T ) ∈ A[T ], so g(T ) 6= 0.
Since A is an integral domain we have deg(fg) = deg f + deg g, so deg f + deg g = 0.
Thus f(T ) is constant, say f(T ) = c. Then c | T , so T = ch(T ) for an h(T ) ∈ A[T ].
Comparing leading coefficients (or coefficients of T ) on both sides, we get c ∈ A×, so
(f(T )) = (c) = A[T ]. Thus (a, T ) = (f(T )) = A[T ], so 1 is in (a, T ): 1 = au(T ) + Tv(T )
for some u(T ) and v(T ) in A[T ]. Comparing constant terms on both sides shows a ∈ A×,
so we have shown all nonzero elements of A are units in A: A is a field.

For the second proof that A is a field, the ideal (T ) in A[T ] is prime since A[T ]/(T ) ∼= A
is an integral domain, so by Theorem 6.8 with R = A[T ] the ideal (T ) in A[T ] is maximal.
Therefore A[T ]/(T ) is a field, so A is a field. �

The second proof of Theorem 6.12 is more slick than the first, but it doesn’t give us an
example of a nonprincipal ideal in A[T ] when A is an integral domain that is not a field.
The first proof tells us some examples: the ideal (a, T ) in A[T ] is not principal if a ∈ A is
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not 0 or a unit. For example, (2, T ) is not principal in Z[T ] and (X,Y ) is not principal in
R[X,Y ] = (R[X])[Y ]. It is worthwhile writing out the proof that (2, T ) is nonprincipal in
Z[T ] using the method shown in the proof of Theorem 6.12.

Theorems 2.1 and 6.12 tell us that A is a field if and only if A[T ] is a PID. Without
assuming A is an integral domain, having all ideals of A[T ] be principal is not equivalent
to A being a field. For example, all ideals in (Z/(6))[T ] turn out to be principal but Z/(6)
is not a field. When A is an arbitrary commutative ring, all ideals in A[T ] are principal
if and only if A is a finite product of fields.2 A proof of this is in Pete Clark’s answer at
https://math.stackexchange.com/questions/361258/.

The last thing we will show about maximal ideals is that every nonzero ring contains a
maximal ideal, and thus also a prime ideal (since all maximal ideals are prime). Some rings
have only one maximal ideal (like (0) in Q), and in some rings it may be hard to describe the
maximal ideals, but at least one exists.3 The proof of this uses Zorn’s lemma, a fundamental
set-theoretic result that is equivalent to the axiom of choice. This is usually the first time
students meet Zorn’s lemma in algebra. Here is the statement of Zorn’s lemma.

Zorn’s lemma: If S is a nonempty partially ordered set and every totally
ordered subset has an upper bound in S then S has a maximal element m:
there is an m ∈ S such that x ≤ m for all x ∈ S to which m is comparable.

Theorem 6.13. Every nonzero commutative ring R contains a maximal ideal.

Proof. We will use Zorn’s lemma. Consider the set of all proper ideals in R:

S = {I ⊂ R : I ideal, I 6= R} .

The set S is nonempty since (0) ∈ S. Partially order S by inclusion; i.e. I ≤ J means that
I ⊆ J . Suppose we have a totally ordered subset {Iα}α∈A. Let

I =
⋃
α∈A

Iα.

This is an ideal: say x, y ∈ I. Then x ∈ Iα and y ∈ Iβ for some α, β ∈ A. Either Iα ⊆ Iβ or
Iβ ⊆ Iα because our subset of S is totally ordered. Then x+ y ∈ Iβ ⊆ I or x+ y ∈ Iα ⊆ I.
Either way we get x+ y ∈ I. If x ∈ I, so x ∈ Iα for some α, and r ∈ R, then rx ∈ Iα ⊆ I.
This shows I is an ideal in R.

The ideal I is proper: if I = R, then 1 ∈ I, so 1 ∈ Iα for some α, which is impossible as
each Iα is proper. So I ∈ S and Iα ⊆ I for all α ∈ A. We’ve shown every totally ordered
subset of S has an upper bound in S. So by Zorn’s lemma, S contains a maximal element.
A maximal element of S is, by definition, a proper ideal in R that is not contained in a
proper ideal other than itself, and such an ideal is maximal ideal by Theorem 6.6. �

Note that the upper bounds constructed on totally ordered subsets of S are typically not
the maximal elements coming from Zorn’s lemma. That is, the justification to apply Zorn’s
lemma is a completely separate task from actually applying Zorn’s lemma and seeing what
can be said about a maximal element. For example, if S is the set of all proper ideals of Z,
partially ordered by inclusion, then the totally ordered subset of ideals {12kZ : k ≥ 1} has
upper bounds in Z such as 12Z or 4Z, which are not maximal elements of S.

2This fits the example A = Z/(6) because Z/(6) ∼= Z/(2)× Z/(3) by the Chinese remainder theorem.
3In contrast, a nontrivial group need not have a maximal proper subgroup. For instance, every proper
subgroup of Q is contained in a larger proper subgroup, so there is no maximal proper subgroup of Q.

https://math.stackexchange.com/questions/361258/
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Corollary 6.14. In a nonzero commutative ring, every proper ideal is contained in a max-
imal ideal.

Proof. Let R be a nonzero commutative ring and J be a proper ideal in R. We want to
show there is a maximal ideal M in R such that J ⊂M ⊂ R.

The quotient ring R/J is nonzero, so by Theorem 6.13 it contains a maximal ideal, say
M . The composite of the reduction maps R → R/J → (R/J)/M is a surjective ring
homomorphism. Let M denote the kernel, so by Theorem 4.1 there is an induced ring
isomorphism R/M ∼= (R/J)/M . Therefore R/M is a field, so M is maximal in R. Since
elements of J vanish in (R/J)/M , J ⊂M . �

Corollary 6.14 could be proved with Zorn’s lemma by modifying the proof of Theorem
6.13: show there is a maximal element in the set S of proper ideals in R that contain J .
The purpose of proving Corollary 6.14 in the way we did above is to illustrate how passage
to a quotient ring can let us reduce a question about general ideals to the special case of
the ideal (0). This is a very useful method in algebra.

We will use Corollary 6.14 near the end of the next section to create the nonstandard
real numbers.

7. The real numbers as a quotient ring

As an application of quotient rings, in this section we will construct R from Q. Before
we do this in Definition 7.6, the only numbers we will use are rational.

Every real number should be a limit of a sequence of rational numbers, which suggests
we could define a real number as a sequence of rational numbers that (intuitively) has that
real number as a limit. At the same time, different sequences in Q can have the same
limit (consider (0, 0, 0, 0, . . .), (1, 1/2, 1/3, 1/4, . . .), and (1/4,−1/9, 1/16,−1/25, . . .), so we
need to decide when two sequences in Q should converge to the same real number without
mentioning real numbers. There are two tasks: (i) describe the sequences in Q that ought to
converge in R without using limits (since a limit may not be rational) and (ii) describe when
two such sequences in Q have the same limit, so they should be the same “real number.”

Definition 7.1. A sequence x = {xk} in Q is called Cauchy if for all rational ε > 0 there
is a K ∈ Z+ such that k, ` ≥ K =⇒ |xk − x`| ≤ ε.

The intuition behind this definition is that in a Cauchy sequence the terms don’t just get
consecutively close (xk−xk−1 tends to 0), but uniformly close: xk−x` is small for all large
k and `. The partial sums of the harmonic series, Hk = 1+1/2+ · · ·+1/k, get consecutively
close but diverge, so consecutive closeness can not be used in the definition of a Cauchy
sequence. Every convergent sequence is a Cauchy sequence,4 and Cauchy sequences are the
sequences that “want” to converge even if there is no actual limit yet.

Lemma 7.2. If x = {xk} is a Cauchy sequence in Q then it is bounded: there is a rational
number b > 0 such that |xk| ≤ b for all k.

Proof. In the definition of x being a Cauchy sequence let ε = 1. Then there is some K ∈ Z+

such that k, ` ≥ K =⇒ |xk − x`| ≤ 1. In particular, if k ≥ K then |xk − xK | ≤ 1, so

k ≥ K =⇒ |xk| = |xk − xK + xK | ≤ |xk − xK |+ |xK | ≤ 1 + |xK |.
Therefore we can use for b the maximum of |x1|, |x2|, . . . , |xK−1| and 1 + |xK |. �

4If xk → x then for all rational ε > 0 there is a K such that k ≥ K ⇒ |x − xk| ≤ ε/2, so k, ` ≥ K ⇒
|xk − x`| = |(xk − x) + (x− x`)| ≤ |xk − x|+ |x− x`| ≤ ε/2 + ε/2 = ε.
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Denote by C the set of all Cauchy sequences in Q, and by S the set of all sequences in
Q (Cauchy or not), so C ⊂ S and S is a commutative ring with componentwise operations,
additive identity 0 = (0, 0, 0, . . .), and multiplicative identity 1 = (1, 1, 1, . . .). Constant
sequences are Cauchy, so Q embeds into C by identifying r ∈ Q with the constant sequence
(r, r, r, . . .). The next theorem implies C is a subring of S.

Theorem 7.3. If x and y are Cauchy sequences in Q then x±y and xy are also Cauchy.

Proof. Pick a rational ε > 0.
To prove the sequence x + y = {xk + yk} is Cauchy consider the inequality

|(xk + yk)− (x` + y`)| = |xk − x` + yk − y`| ≤ |xk − x`|+ |yk − y`|.
This suggests applying the definition of a Cauchy sequence with ε/2 instead of ε: there is
some K ∈ Z+ such that k, ` ≥ K =⇒ |xk − x`| ≤ ε/2 and |yk − y`| ≤ ε/2.5 Then

k, ` ≥ K =⇒ |(xk + yk)− (x` + y`)| ≤ |xk − x`|+ |yk − y`| ≤
ε

2
+
ε

2
= ε.

The proof that x− y is Cauchy is nearly the same, and details are left to the reader.
Proving xy is Cauchy is more subtle. Consider the inequality

(7.1) |xkyk − x`y`| = |(xk − x`)yk + (yk − y`)x`| ≤ |xk − x`||yk|+ |yk − y`||x`|.
The sequences x and y are bounded by Lemma 7.2, so using a common bound for both
there is some rational b > 0 such that |xk| ≤ b and |yk| ≤ b for all k. Then by (7.1)

|xkyk − x`y`| ≤ |xk − x`|b+ |yk − y`|b.
That suggests using ε/(2b) in place of ε in the definition of Cauchy sequences: there is some
K such that k, ` ≥ K =⇒ |xk − x`| ≤ ε/(2b) and |yk − y`| ≤ ε/(2b). Then

k, ` ≥ K =⇒ |xkyk − x`y`| ≤
ε

2b
b+

ε

2b
b = ε. �

It is intuitively clear that two convergent sequences have the same limit if and only if
their difference sequence tends to 0. That motivates the next definition.

Definition 7.4. A sequence of rational numbers x = {xk} is called a null sequence if
xk → 0: for all rational ε > 0 there is a K such that for k ≥ K we have |xk| ≤ ε.

Let N denote the set of all null sequences in Q.

Theorem 7.5. The set N is a proper ideal in C.

Proof. First we check N ⊂ C. For x in N and a rational ε > 0, use ε/2 in the definition of
a null sequence: there is some K such that for all k ≥ K we have |xk| ≤ ε/2. Then for all
k, ` ≥ K we have |xk − x`| ≤ |xk|+ |x`| ≤ ε/2 + ε/2 = ε, so {xk} is Cauchy.

The proof that the sum and difference of two null sequences is a null sequence uses a
similar ε/2 argument, and is left to the reader.

Suppose x ∈ N and y ∈ C. To prove xy ∈ N , by Lemma 7.2 the sequence y is bounded,
say |yk| ≤ b for some rational b > 0 and all k. Then |xkyk| ≤ |xk|b, so if for a rational ε > 0
we use ε/b in place of ε in the definition of x being a null sequence it follows from the upper
bound on |xkyk| that xy is a null sequence.

The ideal N is not all of C since it does not contain, for instance, the constant sequences
(r, r, r, . . .) where r ∈ Q×. �

5Strictly speaking the choice of K at first depends on the choice of sequence x or y, but by using the larger
of the two K’s we can use one K for both.
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Since C is a commutative ring andN is a proper ideal in C, C/N is a nonzero commutative
ring using addition and multiplication of coset representatives.

Definition 7.6. The real numbers R are defined to be C/N : Cauchy sequences in Q modulo
sequences in Q that tend to 0.

By the construction of quotient rings R is a commutative ring. The composition Q →
C → C/N , where the first mapping is r 7→ (r, r, r, . . .) and the second is reduction, is a ring
homomorphism. It is injective since (r, r, r, . . .) ∈ N only if r = 0. Thus we can view Q as
a subfield of R.

Theorem 7.7. The ring R is a field.

Proof. We want to prove each nonzero element of R has an inverse: if x is a Cauchy sequence
in Q that is not a null sequence we will find a Cauchy sequence y such that xy ≡ 1 mod N ,
or equivalently xkyk − 1→ 0. In fact we’ll show for all large k that xk 6= 0 and we can use
yk = 1/xk for large k.

Claim: a Cauchy sequence in Q that does not tend to 0 is eventually bounded away
from 0: there is some rational c > 0 and k0 ∈ Z+ such that |xk| ≥ c for all k ≥ k0.

The proof of the claim will need the Cauchy property, as a general sequence not tending
to 0 does not have to be eventually bounded away from 0: consider 1, 0, 1, 0, 1, 0, . . ..

To prove the claim we prove its contrapositive: a Cauchy sequence x that is not eventually
bounded away from 0 must be a null sequence. Not being eventually bounded away from 0
means it is not true that there is a rational c > 0 and a k0 such that k ≥ k0 =⇒ |xk| ≥ c.
So for all rational ε > 0 there is no k0 such that k ≥ k0 =⇒ |xk| ≥ ε,6 hence for all rational
ε > 0 and all k0 there is some k ≥ k0 such that |xk| < ε. Starting with one k0 and k ≥ k0
such that |xk| < ε, repeatedly picking a new k0 that exceeds the previously chosen k and
then a new k greater than or equal to the new k0 so that |xk| < ε, we get for each rational
ε > 0 that |xk| < ε for infinitely many k. Taking ε = 1, 1/2, 1/3, . . ., this implies that a
subsequence of x tends to 0. The Cauchy property will let us bootstrap this to show the
whole sequence x tends to 0, i.e., x is a null sequence.

To prove xk → 0 means for all rational ε > 0 we want to show there is some K such that
k ≥ K =⇒ |xk| ≤ ε. Since x is Cauchy, there is a K such that k, ` ≥ K =⇒ |xk−x`| ≤ ε/2.
From the previous paragraph with ε/2 in place of ε, there are infinitely many indices
k1 < k2 < k3 < · · · such that |xki | ≤ ε/2. Eventually the ki are greater than or equal
to K, and using such ki in the role of ` from the Cauchy condition we get

k ≥ K =⇒ |xk| = |xk − xki + xki | ≤ |xk − xki |+ |xki | ≤
ε

2
+
ε

2
= ε.

That completes the proof of (the contrapositive of) the claim.
Using c and k0 as in the claim, for k ≥ k0 we have |xk| ≥ c > 0, so xk 6= 0. Define a

sequence of rational numbers y by

yk =

{
1/xk, if k ≥ k0,
1, if k < k0.

Then for k, ` ≥ k0 we have

|yk − y`| =
∣∣∣∣ 1

xk
− 1

x`

∣∣∣∣ =
|xk − x`|
|xk||x`|

≤ |xk − x`|
c2

,

6We change the letter c to ε for psychological purposes.
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and from x being Cauchy this bound implies y is Cauchy: for all rational ε > 0 there is a
K such that k, ` ≥ K ⇒ |xk − x`| ≤ εc2, so k, ` ≥ max(K, k0)⇒ |yk − y`| ≤ (εc2)/c2 = ε.

Since xkyk = 1 for k ≥ k0, the difference xy − 1 has k-th component 0 for all k ≥ k0.
A sequence whose terms eventually all equal 0 is in N , so xy − 1 ∈ N and therefore in
R = C/N we get xy ≡ 1 mod N . �

This theorem proves that C/N is a field, so N is a maximal ideal in C.
There is more that should be done: define an ordering on R (that is, define positive and

negative) in terms of representative rational Cauchy sequences, show every real number is a
limit of rational numbers, and show every Cauchy sequence of real numbers converges (this
is the completeness property: Cauchy = convergent for sequences in R). Details of these
properties are at the end of [5, §3, Chap. IX], from which our treatment is adapted.

How does the construction of R from Q as a quotient ring compare to what is done in
analysis books? There are two common ways of defining R from Q: Dedekind cuts and
equivalence classes of Cauchy sequences of rational numbers. Dedekind cuts are formaliza-
tions of subsets of Q like {r ∈ Q : r < x} for real x that make no direct reference to x
itself. The idea is that each real number is characterized by the rationals that are less than
it. Dedekind cuts are used in [1, §8.6], [7, §2, Chap. 1], [8, §6, Chap. 1], and [9, App.,
Chap. 1], and get rather ugly for multiplication because defining that operation requires
many cases and proving properties with that definition is tedious. The other method, using
Cauchy sequences in Q, is in [10, Chap. 2] and [11, Chap. 5]. It uses an equivalence relation
on C:

{xk} ∼ {yk} ⇐⇒ xk − yk → 0.

It is not hard to check this is an equivalence relation: {xk} ∼ {xk}, if {xk} ∼ {yk} then
{yk} ∼ {xk}, and if {xk} ∼ {yk} and {yk} ∼ {zk} then {xk} ∼ {zk}. The real numbers are
defined as equivalence classes of Cauchy sequences in Q for the relation ∼. This is the same
as our C/N since Cauchy sequences in Q are equivalent for ∼ precisely when their difference
is in N , so {xk} ∼ {yk} ⇔ {xk} ≡ {yk} mod N . Equivalence classes for ∼ are the same as

cosets in C/N . The sum and product of equivalence classes are {xk} + {yk} = {xk + yk}
and {xk} · {yk} = {xkyk}. Checking these are well-defined amounts to an argument like the
one used to prove addition and multiplication in a quotient ring using coset representatives
are well-defined; the case of multiplication requires an additional step essentially equivalent
to proving N is an ideal.

What happens if we consider the construction analogous to C/N using real numbers
instead of rational numbers: Cauchy sequences in R modulo null sequences in R? Because
all real Cauchy sequences have a real limit, this construction essentially gives us R back. But
there is something interesting that can be done with the product ring of all real sequences

R∞ =
∏
k≥1

R = {(a1, a2, a3, . . .) : ak ∈ R},

which at first looks too big to be useful (there are so many non-Cauchy sequences!).
For each n ≥ 1 the ideal Vn = {a ∈ R∞ : an = 0} in R∞ is principal, generated by

(1, 1, . . . , 1, 0, 1, . . .), which is 0 in the nth component and 1 elsewhere, with R∞/Vn ∼= R
by projection R∞ → R onto the nth component. Thus each ideal Vn is maximal and the
quotient ring R∞/Vn is not anything new since it is isomorphic to R.

Consider a new ideal in R∞: the sequences in R whose terms are 0 beyond some point:

V = {a ∈ R∞ : ak = 0 for all large enough k}.
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This is an ideal, and it is proper since it doesn’t contain (1, 1, 1, . . .). By Corollary 6.14, the
proper ideal V of R∞ is contained in some maximal ideal M .7 We have V 6⊂ Vn for each
n since the sequence that is 1 in the nth component and 0 elsewhere is in V but not Vn.
Since V ⊂ M , M is not one of the ideals Vn. The next theorem shows each maximal ideal
of R∞ other than V1, V2, V3, . . . can be described in the way we defined M .

Theorem 7.8. A maximal ideal of R∞ that is not some Vn must contain V .

Proof. LetM be a maximal ideal of R∞ withM 6= Vn for all n ≥ 1. Let xn = (. . . , 0, 1, 0, . . .)
be 1 in the nth component and 0 everywhere else and yn = (. . . , 1, 0, 1, . . .) be 0 in the nth
component and 1 everywhere else. Then Vn is the principal ideal (yn) = ynR

∞.
Since xnyn = 0 ∈ M and R∞/M is a field, for each n ≥ 1 we have xn ∈ M or yn ∈ M .

If yn ∈ M then Vn = (yn) ⊂ M , so M = Vn since Vn is maximal. That is a contradiction,
so xn ∈ M for all n. That implies each sequence that is nonzero in only one component is
in M , so by adding finitely many such sequences together we get V ⊂M (why?). �

While there are many choices for M , none of them can be described in a concrete way.
The field R∞/M , which is usually denoted ∗R, has a unique ordering and is called a model
for the nonstandard real numbers. It contains R (as the image of R→ R∞ → R∞/M where
the first mapping is on the diagonal and the second is the canonical reduction map) and
also contains infinitely large and infinitely small numbers. How does R∞/M , up to field
isomorphism, depend on the choice of M that contains V ? This question is closely related
to set theory: to say all choices of maximal ideal M containing V lead to isomorphic fields
R∞/M is equivalent to the continuum hypothesis8 [6]. The fields ∗R and R are elementarily
equivalent in the sense of model theory, and this is codified in the transfer principle. For
more on ∗R see [4, Chap. 12] and watch the YouTube video “Hyperreal Numbers” by
blargoner.
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