THE GAUSS NORM AND GAUSS'S LEMMA

KEITH CONRAD

In algebra, the name "Gauss's Lemma" is used to describe any of a circle of related results about polynomials with integral coefficients. Here are three.

The first result, which can be found in [1, p. 528], says that a factorization in $\mathbf{Q}[T]$ of a polynomial in $\mathbf{Z}[T]$ can be adjusted to be a factorization in $\mathbf{Z}[T]$ just by scaling the factors.
Theorem 1. If $f(T) \in \mathbf{Z}[T]$ is nonzero and $f(T)=g(T) h(T)$ in $\mathbf{Q}[T]$ then $f(T)=$ $G(T) H(T)$ where $G(T)$ and $H(T)$ are in $\mathbf{Z}[T], G$ is a scalar multiple of g in $\mathbf{Q}[T]$ and H is a scalar multiple of h in $\mathbf{Q}[T]$.
Example 2. Let $f(T)=T^{2}-4$. Then $f(T)=(3 T-6)(T / 3-2 / 3)$ is a factorization in $\mathbf{Q}[T]$. Multiplying the first factor by $1 / 3$ and the second factor by 3 , we get the more familiar factorization $f(T)=(T-2)(T+2)$ in $\mathbf{Z}[T]$.

The second result, which is in [3, p. 40], is about primitive polynomials. A polynomial in $\mathbf{Z}[T]$ is called primitive when its coefficients are relatively prime when considered together. For example, $6 T^{2}+10 T+15$ is primitive; even though each pair of coefficients is not relatively prime, the triple of coefficients $(6,10,15)$ is relatively prime and that makes the polynomial primitive.
Theorem 3. If $f(T)$ and $g(T)$ are primitive in $\mathbf{Z}[T]$ then $f(T) g(T)$ is primitive.
The third result was essentially stated by Gauss himself [2, Article 42].
Theorem 4. If $f(T)$ is monic in $\mathbf{Z}[T]$ and $f(T)=g(T) h(T)$ in $\mathbf{Q}[T]$ where $g(T)$ and $h(T)$ are monic, then $g(T)$ and $h(T)$ are in $\mathbf{Z}[T]$.

We will prove these theorems with an extension of the p-adic absolute value from \mathbf{Q} to $\mathbf{Q}[T]$.
Definition 5. For a polynomial $f(T)=\sum a_{n} T^{n}$ in $\mathbf{Q}[T]$ and a prime p, define the p-adic Gauss norm of f to be $|f|_{p}=\max _{n}\left|a_{n}\right|_{p}$.

In this definition we are not specifying the degree of the polynomial f, but it doesn't matter since the maximum in the definition of $|f|_{p}$ is unaffected by additional coefficients that are 0 . If $f(T)=c$ is constant then $|f|_{p}=|c|_{p}$, so $|\cdot|_{p}$ on $\mathbf{Q}[T]$ restricts to the p-adic absolute value on \mathbf{Q}.
Example 6. If $f(T)=6 T^{2}-(5 / 3) T+4 / 7$, we have $|f|_{2}=\max (1 / 2,1,1 / 4)=1,|f|_{3}=$ $\max (1 / 3,3,1)=3,|f|_{5}=\max (1,1 / 5,1)=1,|f|_{7}=\max (1,1,7)=7$, and $|f|_{p}=1$ for all $p>7$. Note $\prod_{p}|f|_{p}=21$ and $21 f(T)=126 T^{2}-35 T+12$ is a scalar multiple of $f(T)$ with integral coefficients that is primitive. This idea will be used later.

To get used to the meaning of the p-adic Gauss norms as p varies, we show how to use them to describe being primitive in $\mathbf{Z}[T]$.
Theorem 7. A polynomial $f(T)$ in $\mathbf{Q}[T]$ is primitive in $\mathbf{Z}[T]$ if and only if $|f|_{p}=1$ for all primes p.

Proof. If f is primitive in $\mathbf{Z}[T]$ then for each prime p we have $|f|_{p}=1$ because all the coefficients of f are integers (so $|f|_{p} \leq 1$) and at least one of its coefficients is not divisible by p (so $|f|_{p}=1$).

Conversely, assume for each prime p that $|f|_{p}=1$. Then each coefficient of f has p-adic absolute value at most 1 for all p, so each coefficient of f is a p-adic integer for all p. A rational number that is in \mathbf{Z}_{p} for all p is in \mathbf{Z}, so $f(T) \in \mathbf{Z}[T]$. If $f(T)$ were not primitive then its coefficients would share a common prime factor p and then $|f|_{p}<1$ for that p. Therefore the assumption that $|f|_{p}=1$ for all p implies f is primitive.

Clearly $|f|_{p} \geq 0$ with equality if and only if $f=0$, and easily $|f+g|_{p} \leq \max \left(|f|_{p},|g|_{p}\right)$ and $|f g|_{p} \leq|f|_{p}|g|_{p}$ by the formulas for adding and multiplying polynomials together with the strong triangle inequality. Perhaps surprisingly, $|\cdot|_{p}$ is actually multiplicative on $\mathbf{Q}[T]$.
Theorem 8. For f and g in $\mathbf{Q}[T],|f g|_{p}=|f|_{p}|g|_{p}$.
Proof. If $f=0$ or $g=0$ then the equality is obvious, so we can assume f and g each have some nonzero coefficients: $|f|_{p}>0$ and $|g|_{p}>0$.

Write $f(T)=\sum a_{m} T^{m}$ and $g(T)=\sum b_{n} T^{n}$. (We don't specify where the polynomials stop; coefficients equal 0 in large degrees.) Since $|f g|_{p} \leq|f|_{p}|g|_{p}$, to prove $|f g|_{p}=|f|_{p}|g|_{p}$ we seek a coefficient in $f g$ with absolute value $|f|_{p}|g|_{p}$. We will do this in two ways.

Method 1: Focus on where coefficients of maximal absolute value in f and g first occur.
Set $|f|_{p}=\left|a_{M}\right|_{p}$ with M minimal and $|g|_{p}=\left|b_{N}\right|_{p}$ with N minimal: $\left|a_{m}\right|_{p}<\left|a_{M}\right|_{p}$ for $m<M$ and $\left|b_{n}\right|_{p}<\left|b_{N}\right|_{p}$ for $n<N$. (If either M or N is 0 then such an inequality is an empty condition.) We seek a coefficient in $f g$ with absolute value $|f|_{p}|g|_{p}$ and will find it in degree $M+N$.

The coefficient of T^{M+N} in $f g$ is $\sum_{m=0}^{M+N} a_{m} b_{M+N-m}$. The term in this sum at $m=M$ is $a_{M} b_{N}$. For $0 \leq m<M$,

$$
\left|a_{m} b_{M+N-m}\right|_{p}=\left|a_{m}\right|_{p}\left|b_{M+N-m}\right|_{p} \leq\left|a_{m}\right|_{p}|g|_{p}=\left|a_{m}\right|_{p}\left|b_{N}\right|_{p}<\left|a_{M}\right|_{p}\left|b_{N}\right|_{p}
$$

For $M<m \leq M+N$ we have $0 \leq M+N-m<N$, so

$$
\left|a_{m} b_{M+N-m}\right|_{p}=\left|a_{m}\right|_{p}\left|b_{M+N-m}\right|_{p} \leq|f|_{p}\left|b_{M+N-m}\right|_{p}=\left|a_{M}\right|_{p}\left|b_{M+N-m}\right|_{p}<\left|a_{M}\right|_{p}\left|b_{N}\right|_{p} .
$$

Thus $\left|a_{m} b_{M+N-m}\right|_{p}<\left|a_{M} b_{N}\right|_{p}$ for $0 \leq m \leq M+N$ with $m \neq M$, so by the strong triangle inequality we get

$$
\left|\sum_{m=0}^{M+N} a_{m} b_{M+N-m}\right|_{p}=\left|a_{M} b_{N}\right|_{p}=\left|a_{M}\right|_{p}\left|b_{N}\right|_{p}=|f|_{p}|g|_{p} .
$$

Method 2: Focus on where coefficients of maximal absolute value in f and g last occur.
Now set $|f|_{p}=\left|a_{M}\right|_{p}$ with M maximal and $|g|_{p}=\left|b_{N}\right|_{p}$ with N maximal: $\left|a_{m}\right|_{p}<\left|a_{M}\right|_{p}$ for $m>M$ and $\left|b_{n}\right|_{p}<\left|b_{N}\right|_{p}$ for $n>N$. We'll see that a coefficient in $f g$ of p-adic absolute value $|f|_{p}|g|_{p}$ occurs in degree $M+N$.

The coefficient of T^{M+N} in $f g$ is $\sum_{m=0}^{M+N} a_{m} b_{M+N-m}$ and the term in this sum at $m=M$ is $a_{M} b_{N}$. If $0 \leq m<M$ then $M+N-m>N$, so

$$
\left|a_{m} b_{M+N-m}\right|_{p}=\left|a_{m}\right|_{p}\left|b_{M+N-m}\right|_{p} \leq|f|_{p}\left|b_{M+N-n}\right|_{p}=\left|a_{M}\right|_{p}\left|b_{M+N-n}\right|_{p}<\left|a_{M}\right|_{p}\left|b_{N}\right|_{p} .
$$

For $M<m \leq M+N$,

$$
\left|a_{m} b_{M+N-m}\right|_{p}=\left|a_{m}\right|_{p}\left|b_{M+N-m}\right|_{p} \leq\left|a_{m}\right|_{p}|g|_{p}=\left|a_{m}\right|_{p}\left|b_{N}\right|_{p}<\left|a_{M}\right|_{p}\left|b_{N}\right|_{p} .
$$

Thus $\left|a_{m} b_{M+N-m}\right|_{p}<\left|a_{M} b_{N}\right|_{p}$ for $0 \leq m \leq M+N$ with $m \neq M$, so by the strong triangle inequality we get

$$
\left|\sum_{m=0}^{M+N} a_{m} b_{M+N-m}\right|_{p}=\left|a_{M} b_{N}\right|_{p}=\left|a_{M}\right|_{p}\left|b_{N}\right|_{p}=|f|_{p}|g|_{p}
$$

The proof of Theorem 8 did not need the coefficients to be rational: Definition 5 for the prime p makes sense on $\mathbf{Q}_{p}[T]$, not just $\mathbf{Q}[T]$ (where p can vary), and Theorem 8 holds on $\mathbf{Q}_{p}[T]$ by the same proof. While we only need one of the methods in the proof of Theorem 8, there are generalizations of Theorem 8 from polynomials to different types of p-adic power series - the formal power series $\mathbf{Z}_{p}[[T]]$ and the restricted power series $\mathbf{Q}_{p}\langle T\rangle$ - where one method works and the other doesn't, so both are worthwhile. Gauss himself used the first method (on polynomials).
Remark 9. We can extend the ordinary absolute value on \mathbf{Q} to $\mathbf{Q}[T]$ in the same way as we $\operatorname{did}|\cdot|_{p}$ and the ordinary triangle inequality $|f+g| \leq|f|+|g|$ trivially holds, but behavior under multiplication is bad: $|T+1|=1$ but $\left|(T+1)^{n}\right|=\left|T^{n}+n T^{n-1}+\cdots+1\right| \geq n$, so $\left|(T+1)^{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.

To prove Theorem 1 we use the following result that shows how to systematically scale a polynomial in $\mathbf{Q}[T]$ to a primitive polynomial in $\mathbf{Z}[T]$ using all the Gauss norms on $\mathbf{Q}[T]$.
Lemma 10. For $f(T) \in \mathbf{Q}[T]$ set $A=\prod_{p}|f|_{p}$. Then $A f(T)$ is in $\mathbf{Z}[T]$ and is primitive.
The product over all p defining A makes sense since $|f|_{p}=1$ for all but finitely many p.
Proof. For each integer n, the fact that $\left|p^{n}\right|_{p}=1 / p^{n}$ and $\left|q^{n}\right|_{p}=1$ for primes $q \neq p$ tells us that $|A|_{p}=\left||f|_{p}\right|_{p}=1 /|f|_{p}$. Thus $|A f|_{p}=|A|_{p}|f|_{p}=1$ for all p, so $A f(T)$ is primitive in $\mathbf{Z}[T]$ by Theorem 7 .

Proof of Theorem 1. Let $A=\prod_{p}|f|_{p}, B=\prod_{p}|g|_{p}$, and $C=\prod_{p}|h|_{p}$. Since $|f|_{p}=$ $|g|_{p}|h|_{p}$ for all p, taking the product of both sides over all p implies $A=B C$.

By Lemma 10, the polynomials $F(T)=A f(T), G(T)=B g(T)$, and $H(T)=C h(T)$ are all in $\mathbf{Z}[T]$. From $f=g h$ we get $F(T) / A=(G(T) / B)(H(T) / C)=G(T) H(T) / B C=$ $G(T) H(T) / A$, so $F(T)=G(T) H(T)$. Thus

$$
f(T)=\frac{1}{A} F(T)=\frac{1}{A} G(T) H(T) .
$$

The coefficients of f are integers, so $1 /|f|_{p} \in \mathbf{Z}$ for all p and thus $1 / A \in \mathbf{Z}$. Therefore $(1 / A) G(T) \in \mathbf{Z}[T]$, so renaming $(1 / A) G(T)$ as $G(T)$ we are done.

Proof of Theorem 3. By (\Rightarrow) in Theorem $7,|f|_{p}=1$ and $|g|_{p}=1$ for each prime p. Thus $|f g|_{p}=|f|_{p}|g|_{p}=1$ for all p, so $f g$ is primitive by (\Leftarrow) in Theorem 7 .

Proof of Theorem 4. A monic in $\mathbf{Z}[T]$ is primitive, so $|f|_{p}=1$ for all p. Therefore $|g|_{p}|h|_{p}=1$. Since g and h are monic, $|g|_{p} \geq 1$ and $|h|_{p} \geq 1$, so the equation $|g|_{p}|h|_{p}=1$ implies $|g|_{p}=1$ and $|h|_{p}=1$ for all p. Thus g and h are in $\mathbf{Z}[T]$ by (\Leftarrow) in Theorem 7 .

References

[1] D. A. Cox, Galois Theory, 2nd ed., Wiley, 2012.
[2] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966.
[3] J. Rotman, Galois Theory, 2nd ed., Springer, 2013.

