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Every linear polynomial with real coefficients has exactly one real root. From the qua-
dratic formula or the graph of a parabola, every quadratic polynomial with real coefficients
has at most two real roots. The number of roots might be less than two: x2 has only one
real root and x2 + 1 has no real roots.

Using algebra, rather than graphs or root formulas, the bound on the number of roots
of a polynomial of degree two can be extended to a bound for on the number of roots of a
polynomial of any degree with coefficients belonging to any field, not just the real numbers.

Theorem 1. Let F be a field and f(T ) be a non-constant polynomial with coefficients in
F , of degree d. Then f(T ) has at most d roots in F .

To prove Theorem 1, we will need a preliminary lemma connecting roots and linear
factors.

Lemma 2. Let f(T ) be a non-constant polynomial with coefficients in a field F . For a ∈ F ,
f(a) = 0 if and only if T − a is a factor of f(T ).

Proof. If T −a is a factor of f(T ), then f(T ) = (T −a)h(T ) for some polynomial h(T ), and
substituting a for T shows f(a) = 0.

Conversely, suppose f(a) = 0. Write the polynomial as

(1) f(T ) = cnT
n + cn−1T

n−1 + · · ·+ c1T + c0,

where cj ∈ F . Then

(2) 0 = cna
n + cn−1a

n−1 + · · ·+ c1a + c0.

Subtracting (2) from (1), the terms c0 cancel and we get

(3) f(T ) = cn(Tn − an) + cn−1(T
n−1 − an−1) + · · ·+ c1(T − a).

Since

T j − aj = (T − a)(T j−1 + aT j−2 + · · ·+ aiT j−1−i + · · ·+ aj−2T + aj−1),

each term on the right side of (3) has a factor of T − a. Factor this out of each term, and
we obtain f(T ) = (T −a)g(T ), where g(T ) is another polynomial with coefficients in F . �

Now we prove Theorem 1.

Proof. We induct on the degree d of f(T ). Note d ≥ 1.
A polynomial of degree 1 has the form f(T ) = aT + b, where a and b are in F and a 6= 0.

This has exactly one root in F , namely −b/a, and thus at most one root in F . That settles
the theorem for d = 1.

Now assume the theorem is true for all polynomials with coefficients in F of degree d.
We verify the theorem for all polynomials with coefficients in F of degree d + 1.

A polynomial of degree d + 1 is

(4) f(T ) = cd+1T
d+1 + cdT

d + · · ·+ c1T + c0,
1
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where cj ∈ F and cd+1 6= 0. If f(T ) has no roots in F , then we’re done, since 0 ≤ d + 1.
If f(T ) has a root in F , say r, then Lemma 2 tells us f(T ) = (T − r)g(T ), where g(T ) is
another polynomial with coefficients in F , of degree d (why degree d?). We can therefore
apply the inductive hypothesis to g(T ) and conclude that g(T ) has at most d roots in F .
For every a ∈ F we have f(a) = (a− r)g(a), and a product of numbers in F is 0 only when
one of the factors is 0, so any root of f(T ) in F is either r or is a root of g(T ). Thus, f(T )
has at most d + 1 roots in F . As f(T ) was an arbitrary polynomial of degree d + 1 with
coefficients in F , we are done with the inductive step. �

Remark 3. There were two cases considered in the inductive step: when f(T ) has a root
in F and when it does not. Certainly one of those cases must occur, but in any particular
example we don’t know which occurs without actually searching for roots. This is why the
theorem is not effective. It gives us an upper bound on the number of roots, but does not
give us any tools to decide if there is even one root in F for a particular polynomial.

Remark 4. Using modular arithmetic we can get examples of polynomials with more roots
than their degree. For example T 2 − 1 has four roots in Z/(8): 1, 3, 5, 7. This does not
contradict Theorem 1 because Z/(8) is not a field and is not contained in a field since it
has zero divisors, such as 2 and 4. The proof of Theorem 1 breaks down in this example
because T 2 − 1 = (T − 1)(T + 1) = (T − 1)g(T ) and if (a − 1)g(a) = 0 in Z/(8) it need
not be the case that a− 1 or g(a) is 0 in Z/(8): (3− 1)(3 + 1) = 0 in Z/(8) without either
factor being 0 in Z/(8).

As another example, 2T + 2 has degree 1 and more than 1 root in Z/(8): 3 and 7.
Therefore even the base case of the induction in Theorem 1 doesn’t work when we work in
Z/(8).


