
UNIVERSAL IDENTITIES, II: ⊗ AND ∧

KEITH CONRAD

1. Introduction

We will describe how algebraic identities involving operations of multilinear algebra – the
tensor product and exterior powers – can be proved by the method of universal identities.
Here is an example, showing how the coefficients in the characteristic polynomial of a linear
map are related to exterior powers of the linear map.

Theorem 1.1. Let R be a commutative ring and n be a positive integer. For any A ∈
Mn(R), write its characteristic polynomial as

det(TIn −A) = Tn + c1(A)Tn−1 + · · ·+ cn−1(A)T + cn(A) ∈ R[T ].

Then ck(A) = (−1)k Tr(∧k(A)).

Note the indexing: the coefficient of Tn−k is associated to the kth exterior power of A. In
the special cases k = 1 and k = n this recovers the more familiar result that c1(A) = −Tr(A)
and cn(A) = (−1)n det(A).

Here are two more theorems about multilinear operations on matrices.

Theorem 1.2. For A ∈ Mn(R) and B ∈ Mm(R),

Tr(A⊗B) = Tr(A) Tr(B) and det(A⊗B) = det(A)m det(B)n.

Note the exponent on detA is the size of B and the exponent on detB is the size of A.

Theorem 1.3 (Sylvester-Franke). For A ∈ Mn(R) and 1 ≤ k ≤ n,

det(∧k(A)) = (detA)(
n−1
k−1).

To prove these three theorems over all commutative rings R, it suffices to treat the case
when R = Z[X11, . . . , Xnn, Y11, . . . , Ymm], A = (Xij), and B = (Yst). Then (Xij) ⊗ (Yst),

and ∧k(Xij) are specific matrices over this ring, and their traces and determinants are
in Z[X11, . . . , Xnn, Y11, . . . , Ymm]. By the method of universal identities, the validity of the
theorems follows from the special case of these specific matrices over the specific polynomial
ring R, and this special case in turn follows from the special case of complex matrices, where
the theorems only need to be checked on an open set of matrices.

Let’s recall how to construct matrix representations for A⊗B and ∧k(A), where A : Rn →
Rn and B : Rm → Rm are R-linear. The map A ⊗ B is the linear operator on Rn ⊗R R

m

that sends v ⊗ w to Av ⊗ Bw, and ∧k(A) is the linear operator on Λk(Rn), for 1 ≤ k ≤ n,
which sends any k-fold elementary wedge product v1 ∧ · · · ∧ vk of elements of Rn to the
elementary wedge product A(v1) ∧ · · · ∧ A(vk). (We set ∧0(A) to be the identity map on
Λ0(Rn) = R.) Both Rn ⊗R R

m and Λk(Rn), for 0 ≤ k ≤ n, admit bases in a definite way
from the standard bases {e1, . . . , en} of Rn and {f1, . . . , fm} of Rm. The tensor product
Rn ⊗R R

m has the basis

e1 ⊗ f1, . . . , e1 ⊗ fm, . . . , en ⊗ f1, . . . , en ⊗ fm,
1



2 KEITH CONRAD

and Λk(Rn) has the basis {ei1 ∧ · · · ∧ eik} with indices in increasing order and arranged
lexicographically (for instance, Λ2(R3) has basis e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3). The R-linear
maps A ⊗ B and ∧k(A) become concrete matrices relative to these ordered bases. The
matrix for A⊗B in Mnm(R) is a partitioned matrix consisting of n2 different m×m blocks,
where the (i, j) block for 1 ≤ i, j ≤ n is aijB as aij runs over the matrix entries of A in their
natural arrangement. (This matrix for A ⊗ B is called the “Kronecker product.” Look it
up on Wikipedia for some examples.) The matrix entries for ∧k(A) involve determinants of
k×k submatrices for A but we won’t specify precisely where each subdeterminant appears.
What matters is that there are definite rules of computation after an ordering of the basis
is chosen.

2. The proofs

Proof. (of Theorem 1.1) Both ck(A) and (−1)k Tr(∧k(A)) are universal polynomials in the
matrix entries of A, so it suffices to verify their equality when A is a diagonalizable matrix
in Mn(C). Since the characteristic polynomial of a linear map is independent of the choice
of matrix representation, ck(A) is unchanged if we replace A by a conjugate, and Tr(∧k(A))
is also unchanged by this. Therefore we may take A to be a diagonal matrix, say with
diagonal entries λ1, . . . , λn. Then Aei = λiei where e1, . . . , en is the standard basis of Cn.
Since

χA(T ) = det(TIn −A) =

n∏
i=1

(T − λi),

the coefficient of Tn−k is

ck(A) = (−1)k
∑

1≤i1<···<ik≤n
λi1 · · ·λik .

At the same time, {ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n} is an eigenbasis for ∧k(A) acting
on Λk(Cn), where ei1 ∧ · · · ∧ eik has eigenvalue λi1 · · ·λik since

∧k(A)(ei1 ∧ · · · ∧ eik) = Aei1 ∧ · · · ∧Aeik = λi1ei1 ∧ · · · ∧ λikeik = λi1 · · ·λik(ei1 ∧ · · · ∧ eik),

so

Tr(∧k(A)) =
∑

1≤i1<···<ik≤n
λi1 · · ·λik .

Thus ck(A) = (−1)k Tr(∧k(A)). �

Proof. (of Theorem 1.2) The identity in matrix pairs (A,B) ∈ Mn(C) × Mn(C) will be
checked on pairs of diagonalizable matrices, which contains an open set of matrices. Letting
A and B be diagonalizable matrices with eigenbases e1, . . . , en and f1, . . . , fm, Aei = λiei
and Bfs = µsfs. Then the set {ei ⊗ fs} is a basis of Cn ⊗C Cm and is an eigenbasis for
A⊗B acting on Cn ⊗C Cm:

(A⊗B)(ei ⊗ fs) = (Aei)⊗ (Bfs) = λiei ⊗ µsfs = (λiµs)(ei ⊗ fs).

The trace and determinant are the sum and product of the eigenvalues (with multiplicity),
so

Tr(A⊗B) =
∑
i,s

λiµs =
∑
i

λi
∑
s

µs = Tr(A) Tr(B)
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and

det(A⊗B) =
∏
i,s

λiµs

=

n∏
i=1

m∏
s=1

λiµs

=
n∏

i=1

(
λmi

m∏
s=1

µs

)

=
n∏

i=1

(λmi (detB))

= (detB)n
n∏

i=1

λmi

= (detB)n(detA)m.

We’re done. �

Setting A = B, Tr(A⊗2) = (TrA)2 and det(A⊗2) = (detA)2n. More generally, by

induction Tr(A⊗k) = (TrA)k and det(A⊗k) = (detA)kn
k−1

.

Remark 2.1. If χA(T ) =
∏

i(T − λi) and χB(T ) =
∏

j(T − µj), then

χA⊗B(T ) =
∏
i,j

(T − λiµj).

Looking at coefficients on both sides recovers Theorem 1.2 for the case of diagonalizable
matrices.

Proof. (of Theorem 1.3) We may suppose A is a diagonalizable matrix in Mn(C) with
eigenbasis e1, . . . , en: Aei = λiei. Then a basis for ∧k(A) acting on Λk(Cn) is all k-fold
elementary wedge products ei1 ∧ · · · ∧ eik (1 ≤ i1 < · · · < ik ≤ n) and these are eigenvectors
for ∧k(A):

(2.1) ∧k (A)(ei1 ∧ · · · ∧ eik) = λi1 · · ·λik(ei1 ∧ · · · ∧ eik).

Thus

det(∧k(A)) =
∏

1≤i1<···<ik≤n
λi1 · · ·λik .

In this product, each term λi appears as often as it can occur in a k-tuple from {1, 2, . . . , n}.
The number of such terms is

(
n−1
k−1
)

(since we need to pick k − 1 other numbers besides i in

this range), so

det(∧k(A)) = (λ1 · · ·λn)(
n−1
k−1) = (detA)(

n−1
k−1).

�

We are not discussing symmetric powers, but the methods used on exterior powers can be
applied to them too. As an exercise, prove for A ∈ Mn(R) and k ≥ 1 that det(Symk(A)) =

(detA)(
n+k−1
k−1 ). For example, det(Sym2(A)) = (detA)n+1.
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3. The Consequences

Now we can draw an interesting conclusion about tensor and exterior powers of linear
maps.

Corollary 3.1. Let M be a finite free R-module of rank n ≥ 1 and ϕ : M →M be linear. Fix
a positive integer k. Then ϕ is an automorphism of M if and only if ϕ⊗k is an automorphism
of M⊗k and also if and only if ∧k(ϕ) is an automorphism of Λk(M), where 1 ≤ k ≤ n in
the case of exterior powers.

Proof. Since M is free, both M⊗k and Λk(M) are free. A linear operator on a finite free
R-module is an automorphism if and only if its determinant is in R×. By Theorems 1.2
and 1.3, ϕ⊗k and ∧k(ϕ) have determinants that are powers of the determinant of ϕ. An
element of R is a unit if and only if some power of it is a unit, so we’re done. �

Remark 3.2. That a linear operator on a finite free module is an automorphism if and
only if its determinant is a unit can be viewed as the special case k = n of Corollary 3.1 for
exterior powers, but we used that special case in the proof.

In the setting of vector spaces, here is an alternate proof of Corollary 3.1. Take V to be
a finite-dimensional vector space and ϕ : V → V to be linear. If ϕ is an automorphism of
V then ϕ⊗k and ∧k(ϕ) are automorphisms of V ⊗k and Λk(V ) (their inverses are the kth
tensor or exterior power of the inverse of ϕ). Conversely, suppose ϕ is not an automorphism
of V . Then ϕ is not one-to-one, so some v ∈ V with v 6= 0 satisfies ϕ(v) = 0. Extend v to a

basis v1, . . . , vn of V with v = v1. Then the elementary tensor v⊗k1 is a nonzero element of
V ⊗k and, if k ≤ n, the elementary wedge product v1∧v2∧· · ·∧vk is nonzero in Λk(V ). The

tensor v⊗k1 is killed by ϕ⊗k and this wedge product v1 ∧ v2 ∧ · · · ∧ vk is killed by ∧k(ϕ), so
ϕ⊗k and ∧k(ϕ) are not injective and thus are not automorphisms. This proof is not valid on
finite free modules over a commutative ring since a nonzero element of a finite free module
need not belong to a basis, unlike in the case of vector spaces.

Corollary 3.3. Let M and N be finite free R-modules of equal rank n and f : M → N be
a linear map.

(1) For each k ≥ 1, f is an isomorphism if and only if f⊗k : M⊗k → N⊗k is an
isomorphism.

(2) For an integer k with 1 ≤ k ≤ n, f is an isomorphism if and only if ∧k(f) : Λk(M)→
Λk(N) is an isomorphism.

(3) The map f is surjective if and only if f⊗k is surjective (some k ≥ 1) or ∧k(f) is
surjective (some 1 ≤ k ≤ n).

Proof. 1) The direction (⇒) is clear. Conversely, suppose some f⊗k is an isomorphism. (We
just assume this for one k.) We want to show f is an isomorphism.

The modules M and N are isomorphic since they are each isomorphic to Rn. Let ϕ : N →
M be an isomorphism and consider the composite map

M
f−−→ N

ϕ−−→M.

Since ϕ is an isomorphism, so is ϕ⊗k. Then (ϕ ◦ f)⊗k = ϕ⊗k ◦ f⊗k is an automorphism
of M⊗k. By Corollary 3.1, ϕ ◦ f is an automorphism of M , so f = ϕ−1 ◦ (ϕ ◦ f) is an
isomorphism.

2) This is similar to part 1.
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3) By the theorem of Strooker and Vasconcelos from the first handout on universal
identities, a linear map between finite free R-modules of equal rank is surjective if and only
if it is an isomorphism. Both f , f⊗k, and ∧k(f) are maps between finite free R-modules of
equal rank, so by parts 1 and 2 we’re done. �

Corollary 3.4. Let M ⊂ N be finite free R-modules of equal rank n and M 6= N . Let
i : M ↪→ N be the inclusion map. The maps i⊗k : M⊗k → N⊗k and ∧k(i) : Λk(M)→ Λk(N)
are not onto for any 1 ≤ k ≤ n.

Proof. The inclusion is not onto, so we may apply part c of Corollary 3.3. �

Appendix A. Identities with Resultants

For readers who know about resultants of polynomials, we prove some more universal
identities.

Theorem A.1. For A ∈ Mm(R) and B ∈ Mn(R), let f(T ) = det(TIm − A) and g(T ) =
det(TIn −B). Then det(A⊗ In − Im ⊗B) = Res(f, g) is the resultant of f and g.

Proof. Both sides are universal polynomials in the entries of A and B. Fix B ∈ Mn(C). It
suffices to check the identity on diagonal matrices A in Mm(C). Let A = diag(λ1, . . . , λm).
Then as Kronecker products (the block matrix representation of tensor products of matri-
ces),

A⊗ In − Im ⊗B =

 λ1In · · · O
...

. . .
...

O · · · λmIn

−
 B · · · O

...
. . .

...
O · · · B


=

 λ1In −B · · · O
...

. . .
...

O · · · λmIn −B

 ,

which is a block-diagonal matrix. Its determinant is
∏m

i=1 det(λiIn −B) = g(λ1) · · · g(λm),
which is Res(f, g) since f is monic. �

Theorem A.2. For A ∈ Mn(R) and g(T ) ∈ R[T ],

det(g(A)) = Res(χA(T ), g(T )),

where Res is the resultant of two polynomials in T .

Proof. Let A = (Xij) be a matrix with n2 indeterminate entries and let g(T ) = YdT
d +

Yd−1T
d−1 + · · · + Y1T + Y0 be a polynomial with indeterminate coefficients. Over the

particular ring Z[X11, . . . , Xnn, Y0, . . . , Yd], Theorem A.2 says

det(g((Xij))) = Res(det(TIn − (Xij)), g(T )),

which is a polynomial identity because the resultant of two polynomials is a polynomial
function of the coefficients of the two polynomials. To prove this identity, it suffices to
prove it with g(T ) fixed in C[T ] and then letting the matrix A = (xij) run over some set
containing an open set in Mn(C). This will imply the identity is true as a polynomial
equality and then it specializes to an identity in all commutative rings.

We may focus on the case when A ∈ Mn(C) is diagonalizable. Both sides of the identity
are insensitive to replacing A by a conjugate (e.g., on the left side g(UAU−1) = Ug(A)U−1
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and conjugate matrices have the same determinant, while on the right side χUAU−1(T ) =
χA(T )), so we can take A to be diagonal:

A =

 λ1 · · · 0
...

. . .
...

0 · · · λn

 .

Then

g(A) =

 g(λ1) · · · 0
...

. . .
...

0 · · · g(λn)

 ,

so

det(g(A)) = g(λ1) · · · g(λn).

The resultant Res(f(T ), g(T )) of two polynomials in given by an integral polynomial
in the coefficients of f and g. In the special case when f(T ) = c(T − r1) · · · (T − rn),
Res(f, g) = cdeg gg(r1) · · · g(rn).

Since χA(T ) = (T−λ1) · · · (T−λn) is monic, Res(χA, g) = g(λ1) · · · g(λn), so det(g(A)) =
Res(χA, g). �

The next theorem describes the characteristic polynomial of a tensor product of square
matrices in terms of a resultant built from the characteristic polynomials of the two matrices.

Theorem A.3. For A ∈ Mm(R) and B ∈ Mn(R),

det(TImn −A⊗B) = ResU (χA(U), χB(T/U)Un),

where ResU denotes the resultant of polynomials in U .

Since χB(X) is a (monic) polynomial of degree n, χB(T/U)Un is a polynomial in U even
though there is U in the denominator in χB(T/U).

Proof. Let (Xij) and (Yk`) be matrices with m2 and n2 indeterminate entries. When R =
Z[{Xij , Yk`}], a polynomial ring over Z in m2 + n2 indeterminates, the theorem says

(A.1) det(TImn − (Xij)⊗ (Yk`)) = ResU (χ(Xij)(U), χ(Yk`)(T/U)Un)

as a universal polynomial identity in Z[{Xij , Yk`}, T ], and such an equality would imply by
specialization the identity in the theorem in all commutative rings.

To prove (A.1) it suffices to prove it for all complex matrices A = (xij) and B = (yk`)
where A runs over a set containing an open set in Mm(C) and B runs over a set containing
an open set in Mn(C). We will let A run over the invertible diagonalizable matrices in
Mm(C) and B run over the diagonalizable matrices Mn(C), respectively. If A has eigenbasis
v1, . . . , vm in Cm with Avi = λivi and B has eigenbasis w1, . . . , wn in Cn with Bwk = µkwk,
then (A⊗ B)(vi ⊗ wk) = λiµk(vi ⊗ wk) in Cm ⊗Cn and {vi ⊗ wk} is a basis of Cm ⊗Cn,
so it’s an eigenbasis of A ⊗ B. The characteristic polynomial of a diagonalizable operator
is easy to write down in terms of its eigenvalues:

det(TImn −A⊗B) =
∏
i,k

(T − λiµk).
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That is the left side of (A.1) in this case. Since χA(U) is monic and its roots λi are nonzero
(A is invertible), by formulas for resultants at the end of the proof of Theorem A.2 the right
side of (A.1) is

ResU (χA(U), χB(T/U)Un) =
m∏
i=1

χB(T/λi)λ
n
i =

m∏
i=1

(
n∏

k=1

(
T

λi
− µk

))
λni =

∏
i,k

(T − λiµk),

so (A.1) is an equality at our choices of A and B. �

Remark A.4. The proofs of Theorems A.2 and A.3 glided over a technical point: the
resultant usually depends on the degrees of the two polynomials involved, so it doesn’t
always commute with specialization since specialization drops the degree of a polynomial
when the leading coefficient is specialized to 0. For example, Res(aT + b, cT + d) = ad− bc
when a and c are nonzero, while Res(aT + b, d) = d when a and d are nonzero. Note
(ad − bc)|c=0 = ad 6= d in general! This doesn’t bode well for deducing an identity about
resultants in all commutative rings by specialization from an identity involving resultants
with indeterminate coefficients, as we want to do. However, we are saved by the fact that
characteristic polynomials are monic and the resultant of two polynomials doesn’t depend
on the degrees of the polynomials when one of the polynomials is monic (so formation of
such a resultant commutes with specialization). For example, Res(T + b, cT + d) = d − bc
and Res(T + b, d) = d.
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