TENSOR PRODUCTS II

KEITH CONRAD

1. INTRODUCTION

Continuing our study of tensor products, we will see how to combine two linear maps
M — M’ and N — N’ into a linear map M @ g N — M’ ®@pr N'. This leads to flat modules
and linear maps between base extensions. Then we will look at special features of tensor
products of vector spaces (including contraction), the tensor products of R-algebras, and
finally the tensor algebra of an R-module.

2. TENSOR PrRODUCTS OF LINEAR MAPS

If M 25 M’ and N L N’ are linear, then we get a linear map between the direct

sums, M & N oY, M’ @ N', defined by (¢ ®)(m,n) = (¢(m),1(n)). We want to define

a linear map M ®r N — M’ @ N’ such that m @ n — ¢(m) ® 1(n).
Start with the map M x N — M’ ®g N’ where (m,n) — ¢(m) ® 1(n). This is R-
bilinear, so the universal mapping property of the tensor product gives us an R-linear map

M ®r N LNy Y ®@pr N’ where (¢ ® ¥)(m ®@ n) = p(m) @ ¥(n), and more generally

(p@Y)(mi @ny+ -+ +mp@ng) = @(my1) @p(n1) + -+ p(myg) @ (ng).

We call ¢ ® 1) the tensor product of p and v, but be careful to appreciate that ¢ ® ¢ is not
denoting an elementary tensor. This is just notation for a new linear map on M ®r N.

When M 25 M’ is linear, the linear maps N @ M SELL N N®@grM or M®@r N AL
M’ ®p N are called tensoring with N. The map on N is the identity, so (1 ® ¢)(n ® m) =
n®p(m) and (p®1)(m®n) = p(m) ®n. This construction will be particularly important
for base extensions in Section 4.

Example 2.1. Tensoring inclusion ¢Z —— Z with Z/bZ is aZ ®z Z/VZ L, 7w, Z/vZ,
where (1 ® 1)(az ® y mod b) = ax ® y mod b. Since Z ®z Z/bZ = Z/bZ by multiplication,
we can regard i ® 1 as a function aZ ®z Z/bZ — Z/bZ where ax ® y mod b — azxy mod b.
Its image is {az mod b : z € Z/bZ}, which is dZ/bZ where d = (a,b); this is 0 if b | @ and is
Z/bZ if (a,b) = 1.

Example 2.2. Let A = (2%) and 4’ = (‘éf Z’,) in Ma(R). Then A and A’ are both linear
maps R? — R?, so A® A’ is a linear map from (R?)®? = R?®px R? back to itself. Writing e;
and es for the standard basis vectors of R2, let’s compute the matrix for A ® A’ on (R?)%?
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with respect to the basis {e] ® e1,€1 ® e2,e2 ® e1,e3 ® ea}. By definition,

(A A)(e1®e1) = Aeg® Aey

(ae1 + cez) @ (d'e; + des)

aa’el ® e+ ac’el ® eo + ca'eg R e+ cc'eg & eo,
(A A)(e1 ®ez) = Aeg® Aleg

(ae1 + cez) @ (bep + d'es)

cb'el ® e+ ad'el X eg + Cblez ® e + Cdlez X e,

and similarly

(A A(ea®e1) = ba'er®@e; +ble; ®ey+da'es ® e + dces ® eo,
(A A)(ea@ez) = bbe;®e; +bd'e; ®ex+ dbes ® ey +dd'ex @ es.
Therefore the matrix for A ® A’ is
aa’ ab ba' bV
ac ad b bd ( aA’ | bA’ )

ca' cb da dV |\ cA'|dA’
cd cd dd dd

So Tr(A® A') =a(d +d)+dd +d)=(a+d)(d +d)=(Tr A)(Tr A"), and det(A @ A")
looks painful to compute from the matrix. We’ll do this later, in Example 2.7, in an almost
painless way.

If, more generally, A € M,,(R) and A" € M,»(R) then the matrix for A ® A’ with respect
to the standard basis for R" @z R" is the block matrix (a;;A’) where A = (a;;). This
nn' x nn' matrix is called the Kronecker product of A and A’, and is not symmetric in the
roles of A and A’ in general (just as A® A’ # A’ ® A in general). In particular, I, ® A’ has
block matrix representation (d;;A"), whose determinant is (det A")™.

The construction of tensor products (Kronecker products) of matrices has the following
application to finding polynomials with particular roots.

Theorem 2.3. Let K be a field and suppose A € M,,,(K) and B € M,,(K) have eigenvalues
Aand pin K. Then A® I, + I, ® B has eigenvalue A+ p and A ® B has eigenvalue Ap.

Proof. We have Av = Av and Bw = pw for some v € K™ and w € K™. Then

(A, +1,®B)(vew) = Av®@w+v® Bw
= MWW+ vR pw
= (e ew)

and

(A® B)(v®@w) = Av ® Bw = A @ pw = Au(v @ w),
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matrix with eigenvalue V2443 is

00 2 0 0 3 0 0
0 0 0 2 1 0 0 O
AL +IL®B = 100 0 + 00 0 3
01 0 0 0 010
03 2 0
1002
B 1 0 0 3 |’
01 10

whose characteristic polynomial is 7% — 1072 4+ 1. So this is a polynomial with v/2 + /3 as
a root.

Although we stressed that ¢ ® 1 is not an elementary tensor, but rather is the notation
for a linear map, ¢ and 1 belong to the R-modules Hompg (M, M’) and Hompg(N, N’), so
one could ask if the actual elementary tensor ¢ ® ¥ in Homg(M, M') @ p Hompg (N, N') is
related to the linear map p ® ¢v: M g N — M' @z N'.

Theorem 2.5. There is a linear map
HomR(M, M/) QR HOInR(N, N’) — HOHIR(M ®r N, M’ QR N/)

that sends the elementary tensor ¢ ® 1 to the linear map ¢ ® 1p. When M, M', N, and N’
are finite free, this is an isomorphism.

Proof. We adopt the temporary notation T'(¢,) for the linear map we have previously
written as ¢ ® 1), so we can use ¢ ® Y to mean an elementary tensor in the tensor product
of Hom-modules. So T'(p,9): M ®g N — M’ ®p N’ is the linear map sending every m @ n
to p(m) @ ¥(n).

Define Homp(M, M') x Homp (N, N') = Homg(M @r N, M' @ N') by (¢, V) — T(p, ).
This is R-bilinear. For example, to show T'(rp, 1) = rT(¢, 1), both sides are linear maps
so to prove they are equal it suffices to check they are equal at the elementary tensors in
M ®gr N:

T(re,¢)(m@mn) = (re)(m) @ p(n) = re(m) @ 9(n) = r(p(m) @ ¢(n)) = rT(p, ) (m @ n).

The other bilinearity conditions are left to the reader.
From the universal mapping property of tensor products, there is a unique R-linear map
Homp (M, M') ® g Hompg(N, N') = Homp(M ®@r N, M’ @ g N') where ¢ @ ¢ — T(p, ).
Suppose M, M’, N, and N’ are all finite free R-modules. Let them have respective bases
{e:}, {el}, {{]}, and {f},}. Then Hompg (M, M’) and Hompg(N, N') are both free with bases
{Ey;} and {Ej/;}, where Ey;: M — M’ is the linear map sending e; to e}, and is 0 at other
basis vectors of M, and Ejrj: N — N’ is defined similarly. (The matrix representation

of E;; with respect to the chosen bases of M and M’ has a 1 in the (i/,4) position and
0 elsewhere, thus justifying the notation.) A basis of Hompg (M, M') ® g Hompg (N, N') is



4 KEITH CONRAD
{Ey; ® Ej/j} and T(Ey; ® Ej/j): M ®pr N — M' ®@g N’ has the effect

T(Ei; @ Epj)eu® f,) = Eyien) ® Ejpi(f,)
= 5,“-6;-/ & 6V]f],/

_ e;,®fj’-,7 if u=1and v =j,
0, otherwise,

so T(Ey;®Ej ;) sends €;® f; to eé,@fj’., and sends other members of the basis of M ®g N to 0.
That means the linear map Hompg(M, M') ® g Hompg(N, N') — Homgp(M @p N, M' @ g N')
sends a basis to a basis, so it is an isomorphism when the modules are finite free. ]

The upshot of Theorem 2.5 is that Hompg(M, M’) ® g Hompg(N, N') naturally acts as
linear maps M @ g N — M’ ®r N’ and it turns the elementary tensor ¢ ® ) into the linear
map we’'ve been writing as ¢ ® ¥. This justifies our use of the notation ¢ ® v for the linear
map, but it should be kept in mind that we will continue to write ¢ ® 9 for the linear map
itself (on M ®pr N) and not for an elementary tensor in a tensor product of Hom-modules.

Properties of tensor products of modules carry over to properties of tensor products of
linear maps, by checking equality on all tensors. For example, if ¢1: M1 — Ny, po: Mo —
Ny, and p3: M3 — N3 are linear maps, we have ¢1 @ (92 @ ¢3) = (p1 ® p2) ® (P1 @ ¥3)
and (p1 ® v2) @ 3 = 1 ® (P2 ® p3), in the sense that the diagrams

P10(p2Dp3)

My ®r (Mz & M3)

|

(My ®@r M3) © (My ®p M3)

N1 ®p (N2 © N3)

|

Qp2)B(p1®
(P1®@p2)B(P1®p3) (N1 ®R Na) ® (N1 @ N3)

and

) P10(P2®p3)
_— >

M, ®r (My ®pg M3 N1 ®g (N2 ®r N3)

| |

(M ®r M2) @ M3 (N1 ®g N2) ®g N3

commute, with the vertical maps being the canonical isomorphisms.
The properties of the next theorem are called the functoriality of the tensor product of
linear maps.

(P1®p2)®p3

Theorem 2.6. For R-modules M and N, idy ®idy = idyg,n. For linear maps M RN
M, M 2 M", N L5 N', and N 2= N",
(@) olp®y) = (o op)® ¥ o)
as linear maps from M @r N to M" @ N".
Proof. The function idy; ® idy is a linear map from M ®pzr N to itself that fixes every
elementary tensor, so it fixes all tensors.
Since (¢’ @) o (¢ @) and (¢’ 0 p) ® (¢’ 0 1)) are linear maps, to prove their equality it

suffices to check they have the same value at any elementary tensor m ® n, at which they
both have the value ¢'(p(m)) @ /(1 (n)). O
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Example 2.7. The composition rule for tensor products of linear maps helps us compute
determinants of tensor products of linear operators. Let M and N be finite free R-modules

of respective ranks k and £. For linear operators M s Mand N L N, we will compute
det(¢ ® 1) by breaking up ¢ ® v into a composite of two maps M @®p N — M &pr N:
e @1 = (p®idy) o (idy @),

so the multiplicativity of the determinant implies det(¢ ® 1)) = det(p ® idy) det(idys @)
and we are reduced to the case when one of the “factors” is an identity map. Moreover, the
isomorphism M ®r N — N ®r M where m ® n — n ® m converts ¢ ® idy into idy ®¢, so
det(p ® idy) = det(idy ®¢), so

det(p ® ) = det(idy ®@¢) det(idpsr ®1)).
What are the determinants on the right side? Pick bases eq,..., e, of M and €f,...,€; of
N. We will use the k¢ elementary tensors e; ® € as a bases of M ®p N. Let [¢] be the
matrix of ¢ in the ordered basis ey, ..., ex. Since (p®@idn)(e; @ €)= p(e;) @€}, let’s order
the basis of M ®r N as
61®6/1,...,6k®6/1,...,61®€Z,...,6k®62.

The k¢ x kf matrix for ¢ ® idy in this ordered basis is the block diagonal matrix

0 lgl -+ O
0 0 -~ [
whose determinant is (det @)
Thus
(2.1) det(p ® 1h) = (det @)*(det ¥)¥.

Note £ is the rank of the module on which v is defined and k is the rank of the module on
which ¢ is defined. In particular, in Example 2.2 we have det(4A ® A’) = (det A)?(det A")2.

Let’s review the idea in this proof. Since N =2 Rf, M @p N =2 M ®p R* = M®¢. Under
such an isomorphism, ¢ ® idy becomes the ¢-fold direct sum ¢ @ - - - ® ¢, which has a block
diagonal matrix representation in a suitable basis. So its determinant is (det )*.

Example 2.8. Taking M = N and ¢ = v, the tensor square ¢®2 has determinant (det ¢)2*.

Corollary 2.9. Let M be a free module of rank k > 1 and ¢: M — M be a linear map.
For every i > 1, det(¢p®%) = (det (p)ik“l_

Proof. Use induction and associativity of the tensor product of linear maps. ([l

Remark 2.10. Equation (2.1) in the setting of vector spaces and matrices says det(A®B) =
(det A)*(det B)¥, where A is k x k, B is £ x £, and A® B = (a;; B) is the matrix incarnation
of a tensor product of linear maps, called the Kronecker product of A and B at the end
of Example 2.2. While the label “Kronecker product” for the matrix A ® B is completely
standard, it is not historically accurate. It is based on Hensel’s attribution of the formula
for det(A ® B) to Kronecker, but the formula is due to Zehfuss. See [2].

Let’s see how the tensor product of linear maps behaves for isomorphisms, surjections,
and injections.
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Theorem 2.11. If ¢: M — M’ and ¢: N — N’ are isomorphisms then ¢ ® 1 is an
isomorphism.

Proof. The composite of ¢ ® 9 with ¢! ® 1)~ in both orders is the identity. U
Theorem 2.12. If o: M — M’ and ¢: N — N’ are surjective then ¢ ® 1) is surjective.

Proof. Since ¢ ® 1 is linear, to show it is onto it suffices to show every elementary tensor in
M’'®pr N’ is in the image. For such an elementary tensor m’®n’, we can write m’ = p(m) and
n’ = 1(n) since ¢ and ¥ are onto. Therefore m’ @ n' = p(m)RY(n) = (¢ Y)(Mm@n). O

It is a fundamental feature of tensor products that if ¢ and 1 are both injective then
p ® 1 might not be injective. This can occur even if one of ¢ or ¢ is the identity function.

Example 2.13. Taking R = Z, let a: Z/pZ — Z/p?Z be multiplication by p: a(z) = pz.
This is injective, and if we tensor with Z/pZ we get the linear map 1@ «a: Z/pZ Rz Z/pZ —
Z/pZ 27 Z./p*Z with the effect a @ 2 — a @ pr = pa ® = 0, so 1 ® « is identically 0 and
its domain is Z/pZ ®z Z/pZ = Z/pZ # 0, so 1 ® « is not injective.

This provides an example where the natural linear map

HOIHR(M, M’) KRR HOHIR(N, N’) — HOInR(M ®r N, M’ QR N’)
in Theorem 2.5 is not an isomorphism; R =Z, M = M’ = N = Z/pZ, and N’ = Z/p*Z.

Because the tensor product of linear maps does not generally preserve injectivity, a tensor
has to be understood in context: it is a tensor in a specific tensor product M ®r N. If
M c M'" and N C N, it is generally false that M ® N can be thought of as a submodule
of M’ ® g N’ since the natural map M ® g N — M’ ®g N’ might not be injective. We might
say it this way: a tensor product of submodules need not be a submodule.

Example 2.14. Since pZ = Z as abelian groups, by pn — n, we have Z/pZ @z pZ =
Z/pZ @7 Z = Z/pZ as abelian groups by a ® pn +— a ® n — na mod p. Therefore 1 ® p in
Z/pZ ®7z pZ is nonzero, since the isomorphism identifies it with 1 in Z/pZ. However, 1 ® p
inZ/pZ®z7Zis 0, since 1®@p=p®1 =0®1 = 0. (This calculation with 1® p doesn’t work
in Z/pZ ®z pZ since we can’t bring p to the left side of ® and leave 1 behind, as 1 & pZ.)

It might seem weird that 1® p is nonzero in Z/pZ ®yz pZ while 1®p is zero in the “larger”
abelian group Z/pZ ®yz Z! The reason there isn’t a contradiction is that Z/pZ ®z pZ is not
really a subgroup of Z/pZ ®z Z even though pZ is a subgroup of Z. The inclusion mapping
i: pZ — Z gives us a natural mapping 1 ® i: Z/pZ ®z pZ — Z/pZ ®z Z, with the effect
a® pn — a ® pn, but this is not an embedding. In fact its image is 0: in Z/pZ ®z Z,
a®@pn =pa®n =0®n = 0. The moral is that an elementary tensor a ® pn means
something different in Z/pZ ®yz pZ and in Z/pZ @z Z.

This example also shows the image of M ® p N % M’ ®pr N’ need not be isomorphic
to o(M) ®pg ¥(N), since 1 ® ¢ has image 0 and Z/pZ ®yz i(pZ) = Z/pZ Q7 Z = Z/pZ.

Example 2.15. While Z/pZ ®z Z = Z/pZ, if we enlarge the second tensor factor Z to Q
we get a huge collapse: Z/pZ ®z Q =0since a®@r =a®p(r/p) =pa@r/p=0x7r/p=0.
In particular, 1 ® 1 is nonzero in Z/pZ ®z Z but 1 ® 1 =0 in Z/pZ ®@z Q.

In terms of tensor products of linear mappings, this example says that tensoring the
inclusion i: Z — Q with Z/pZ gives us a Z-linear map 1 ® i: Z/pZ ®z Z — Z/pZ @7 Q
that is not injective: the domain is isomorphic to Z/pZ and the target is 0.
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Example 2.16. Here is an example of a linear map f: M — N that is injective and its
tensor square f®2: M®? — N®2 is not injective.
Let R = A[X,Y] with A a nonzero commutative ring and I = (X,Y). In R®?, we have

(2.2) XY =XY(1®1l) and YO X =YX(1®1)=XY(1®1),

s0 X®Y =Y ®X. We will now show that in 192, X®Y # Y ®X. (The calculation in (2.2)
makes no sense in 1%? since 1 is not an element of I.) To show two tensors are not equal, the
best approach is to construct a linear map from the tensor product space that has different
values at the two tensors. The function I x I — A given by (f,g) — fx(0,0)gy (0,0), where
fx and gy are partial derivatives of f and g with respect to X and Y, is R-bilinear. (Treat
the target A as an R-module through multiplication by the constant term of polynomials in
R, or just view A as R/I with ordinary multiplication by R.) Thus there is an R-linear map
I®? — A sending any elementary tensor f ®g to fx(0,0)gy (0,0). In particular, X @ Y + 1
andY ®X = 0,50 X®Y #Y ® X in %2,

It might seem weird that X ® Y and Y ® X are equal in R®? but are not equal in 1%?,
even though I C R. The point is that we have to be careful when we want to think about
atensort € I ®r I as a tensor in R®p R. Letting ¢: I — R be the inclusion map, thinking
about t in R®? really means looking at i®2(t), where i®?: I®?2 — R®2. For the tensor
t=X®Y -Y ®X in I®? we computed above that ¢t # 0 but i®?(¢) = 0, so i®? is not
injective even though i is injective. In other words, the natural way to think of I ®g [
“inside” R ®pg R is actually not an embedding. For polynomials f and ¢ in I, you have to
distinguish between the tensor f ® g in I ®g I and the tensor f ® g in R ®r R.

Generalizing this, let R = A[Xy,...,X,] where n > 2 and I = (Xy,...,X,,). The
inclusion i: I < R is injective but the nth tensor power (as R-modules) i®™: [®" — R®"
is not injective because the tensor

t:= Z (signU)XU(l) R ® Xa(n) € I(Xm
O'ESTL
gets sent to Y . (signo)X;--- Xp(1®--- @ 1) in R®", which is 0, but ¢ is not 0 in
I®™ because there is an R-linear map I®™ — A sending ¢ to 1: use a product of partial
derivatives at (0,0,...,0), as in the n = 2 case.

Remark 2.17. The ideal I = (X,Y) in R = A[X,Y] from Example 2.16 has another
interesting feature when A is a domain: it is a torsion-free R-module but I®? is not:
XX@Y)=X@XY=Y(X®X)and X(Y®X)=XY ®X =Y (X ®X), soin I®? we
have X(X @Y Y ®X)=0,but X®Y —Y ® X # 0. Similarly, Y(X ®Y - Y ® X) = 0.
Therefore a tensor product of torsion-free modules (even over a domain) need not be torsion-
free.

While we have just seen a tensor power of an injective linear map need not be injective,
here is a condition where injectivity holds.

Theorem 2.18. Let ¢: M — N be injective and o(M) be a direct summand of N. For
k>0, %k MO - NOF js injective and the image is a direct summand of N©.

Proof. Write N = (M) & P. Let m: N — M by ©(p(m) + p) = m, so « is linear and
mo@=idy. Then ¢®F: M®* — N®F and 7®*: N®F _ M®F are linear maps and

78 0 p®F = (710 )% = id?\%’c = id ek,
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so ©®F has a left inverse. That implies ¢®¥ is injective and M®¥ is isomorphic to a direct
summand of N®* by criteria for when a short exact sequence of modules splits. O

We can apply this to vector spaces: if V' is a vector space and W is a subspace, there
is a direct sum decomposition V=W @ U (U is non-canonical), so tensor powers of the
inclusion W — V are injective linear maps W®F — V &k,

Other criteria for a tensor power of an injective linear map to be injective will be met in
Corollary 3.13 and Theorem 4.9.

We will now compute the kernel of M g N LNV ®pr N’ in terms of the kernels of
o and v, assuming ¢ and 1 are onto.

Theorem 2.19. Let M 2 M’ and N -+ N’ be R-linear and surjective. The kernel

of M @r N LN VE ®pr N’ is the submodule of M @z N spanned by all m ® n where
w(m) =0 or(n) =0. That is, intuitively

ker(p @ 1)) = (ker p) @r N + M ®p (ker 1)),
while rigorously in terms of the inclusion maps ker s M and ker v AN N,
ker(p ® 9) = (i @ 1)((ker ¢) ®r N) + (1 ® j)(M ®p (ker ¢))).

The reason (ker ) @ g N +M @ (ker ¢) is only an intuitive formula for the kernel of ¢ ®1)
is that, strictly speaking, these tensor product modules are not submodules of M ®r N.
Only after applying ¢ ® 1 and 1 ® j to them — and these might not be injective — do those
modules become submodules of M ®gr N.

Proof. Both (i®1)((ker ¢)®gN) and (1®j)(M @r (ker ¢)) are killed by o ®1: if m € ker ¢
and n € N then (¢ @ ¥)((i ® )(m®@n)) = (¢ @¢Y)(m@n) = p(m) @ Y(n) = 0 since!
@(m) = 0. Similarly (1® j)(m ®n) is killed by ¢ ® ¢ if m € M and n € ker. Set

U= (i®1)((kerp) @r N) + (1 ® j)(M @r (kerv)),
so U C ker(p ® 1), which means ¢ ® 1 induces a linear map
®: (M ®pN)/U - M @5 N’

where ®(m @ nmod U) = (¢ @ ¥)(m ®@n) = p(m) @ ¥(n). We will now write down an
inverse map, which proves @ is injective, so the kernel of p ® ¢ is U.

Because ¢ and v are assumed to be onto, every elementary tensor in M’ ® g N’ has the
form ¢(m) ® 1(n). Knowing ¢(m) and 1 (n) only determines m and n up to addition by
elements of ker ¢ and kerv. For m' € ker p and n’ € ker,

(m+m)@n+n)=men+m'@n+men +m'@n’ emen+U,

so the function M’ x N — (M ®@p N)/U defined by (¢(m), % (n)) — m ®@ n mod U is well-
defined. It is R-bilinear, so we have an R-linear map V: M’ @z N’ — (M ®p N)/U where
U(p(m) @1Y(n)) =m®@n mod U on elementary tensors.

Easily the linear maps ® oW and Vo fix spanning sets, so they are both the identity. [

Remark 2.20. If we remove the assumption that ¢ and v are onto, Theorem 2.19 does not
correctly compute the kernel. For example, if ¢ and v are both injective then the formula
for the kernel in Theorem 2.19 is 0, and we know ¢ ® 1 need not be injective.

IThe first m ® n is in (ker ¢) ® g N, while the second m ® n is in M @ N.
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Unlike the kernel computation in Theorem 2.19, it is not easy to describe the torsion
submodule of a tensor product in terms of the torsion submodules of the original modules.
While (M ®@p N )tor contains (i@1)( Moy @R N)+(1®7) (M @ Nior ), with i: Mo, — M and
J: Nior — N being the inclusions, it is not true that this is all of (M ®g N )tor, since M @ g N
can have nonzero torsion when M and N are torsion-free (so Mo, = 0 and Nyor = 0). We
saw this at the end of Example 2.16.

Corollary 2.21. If M 25 M’ is an isomorphism of R-modules and N N s surjec-
tive, then the linear map M ®@r N LNy Y ®@gr N’ has kernel (1®7)(M ®p (ker 1)), where
ker v Iy N is the inclusion.

Proof. This is immediate from Theorem 2.19 since ker ¢ = 0. g

Corollary 2.22. Let f: R — S be a homomorphism of commutative rings and M C N as

R-modules, with M — N the inclusion map. The following are equivalent:

(1) S®r M 2 S@p N is onto.

(2) S®@p (N/M) =0.

Proof. Let N == N/M be the reduction map, so we have the sequence S ®p M 1%,

Sor N =274 Sop (N/M). The map 1 ® 7 is onto, and kerm = M, so ker(1 ® m) =
(1®1i)(S ®pr M). Therefore 1 ® i is onto if and only if ker(1 ® 7) = S ®g N if and only if
1®m =0, and since 1 ® 7 is onto we have 1 ® 7 = 0 if and only if S®gr (N/M)=0. O
Example 2.23. If M C N and N is finitely generated, we show M = N if and only if the
natural map R/m ®@p M e, R/m ®p N is onto for all maximal ideals m in R, where
M -“5 N is the inclusion map. The “only if” direction is clear. In the other direction, if
R/m®r M LU R/m®pg N is onto then R/m ®pg (N/M) = 0 by Corollary 2.22. Since N
is finitely generated, so is N/M, and we are reduced to showing R/m ®pg (N/M) = 0 for all
maximal ideals m if and only if N/M = 0. When P is a finitely generated module, P = 0

if and only if P/mP = 0 for all maximal ideals®? m in R, so we can apply this to P = N/M
since P/mP =~ R/m ®p P.

Corollary 2.24. Let f: R — S be a homomorphism of commutative rings and I be an
ideal in R[Xy,...,X,]. Write I-S[Xq,...,X,] for the ideal generated by the image of I in
S[X1,...,X,]. Then

S @n RIX1, ..., Xl /T 2 S[X1,..., X, /(T S[X0,-.., X)),
as S-modules by s ® h mod I — sh mod I - S[X1,...,X,].

Proof. The identity S — S and the natural reduction R[X3,...,X,] - R[X1,...,X,]/]
are both onto, so the tensor product of these R-linear maps is an R-linear surjection

and the kernel is (1 ® j)(S ®g I) by Theorem 2.19, where j: I — R[Xy,...,X,] is the
inclusion. Under the natural R-module isomorphism

(2.4) S @r RIX1,. ... Xn] 2 S[X1,. ... X,
2P/mP =0= P =mP = P, =mP, = Pn, =0 by Nakayama’s lemma. From P, = 0 for all maximal

ideals m, P = 0: for all z € P, z = 0 in Py implies az = 0 in P for some a € R — m. Thus Anng(z) is not
in any maximal ideal of R, so Anng(z) = R and thus x =1-x = 0.
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(1®7)(S ®@gI) on the left side corresponds to I - S[X7,...,X,] on the right side, so (2.3)
and (2.4) say

S[le' . aXn]/(I S[Xb' . aXn]) = S®r (R[X17 7Xn]/I)
as R-modules. The left side is naturally an S-module and the right side is too using extension
of scalars. It is left to the reader to check the isomorphism is S-linear. O
Example 2.25. For h(X) € Z[X], Q®z Z[X]/(h(X)) = Q[X]/(h(X)) as Q-vector spaces

and Z/mZ @z Z[X]/ (X)) = (Z/mZ)[X]/(h(X)) as Z/mZ-modules where m > 1.

3. FLAT MODULES

Because a tensor product of injective linear maps might not be injective, it is important
to give a name to those R-modules N that always preserve injectivity, in the sense that
M 2= M’ being injective implies N @ M B2, N r M’ is injective. (Notice the map
on N is the identity.)

Definition 3.1. An R-module N is called flat if for all injective linear maps M —— M’
the linear map N ®p M mi) N ®g M’ is injective.

The concept of a flat module is pointless unless one has some good examples. The next
two theorems provide some.

Theorem 3.2. Any free R-module F is flat: if the linear map @: M — M’ is injective,
then 1® p: F@r M — F ®@r M’ is injective.

Proof. When F' = 0 it is clear, so take F' # 0 with basis {e;};c;. From our previous
development of the tensor product, every element of F'®p M can be written as >, e; ® m;
for a unique choice of m; € M, and similarly for F' @z M’.

For t € ker(1 ® ¢), we can write t =), e; ® m; with m; € M. Then

0=(12e)t) =) e®p(m),

7

in FF®g M’', which forces each ¢(m;) to be 0. So every m; is 0, since ¢ is injective, and we
gett=>,®0=0. O

Note that in Theorem 3.2 we did not need to assume F' has a finite basis.
Theorem 3.3. Let R be a domain and K be its fraction field. As an R-module, K is flat.

This is not a special case of the previous theorem: if K were a free R-module then®
K = R, so whenever R is a domain that is not a field (e.g., R = Z) the fraction field of R
is a flat R-module that is not a free R-module.

Proof. Let M 25 M’ be an injective linear map of R-modules. Every tensor in K Q@ M is
elementary (use common denominators in K) and an elementary tensor in K ®p M is 0 if
and only if its first factor is 0 or its second factor is torsion. (Here we are using properties
of K @ M proved in part 1.)

3Any two nonzero elements of K are R-linearly dependent, so if K were a free R-module then it would
have a basis of size 1: K = Rz for some 2 € K. Therefore 2 = rz for some r € R, so © = r € R, which
implies K C R, so K = R.
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Supposing (1 ® ¢)(t) = 0, we may write t = x ®m, so 0 = (1 ® p)(t) = = ® p(m).
Therefore x = 0 in K or ¢(m) € M{,,. If p(m) € M., then r¢(m) = 0 for some nonzero
r € R, so o(rm) =0, so rm =0 in M (¢ is injective), which means m € M. Thus z =0
orm € Mior,s0t =2z ®m = 0. ]

If M is a submodule of the R-module M’ then Theorem 3.3 says we can consider K ® g M
as a subspace of K ®p M’ since the natural map K ® g M — K ®p M’ is injective. (See
diagram below.) Notice this works even if M or M’ has torsion; although the natural maps
M — K®rM and M' —r K ®g M’ might not be injective, the map K @ g M — K @r M’
is injective.

M

| |

K®rM“—— K @r M’
1®¢

Example 3.4. The natural inclusion Z < Z/3Z @ Z is Z-linear and injective. Applying
Q®z to both sides and using properties of tensor products turns this into the identity map
Q — Q, which is also injective.

Remark 3.5. Theorem 3.3 generalizes: for any commutative ring R and multiplicative set
D in R, the localization Rp is a flat R-module.

Theorem 3.6. If M is a flat R-module and I is an ideal in R then I ® g M = IM by
1R Mm —im.

Proof. The inclusion I — R is injective. Applying ® g M to this makes an injective R-linear
map I®r M — R®pr M since M is flat, and composing with the isomorphism R®p M = M
where r ® m +— rm makes the injective map I ® g M — M where i ® m > ¢m. The image
is IM,so I ®r M = IM as R-modules with the desired effect on elementary tensors. [J

To say an R-module N is not flat means there is some example of an injective linear map
. . 1 . .. .
M -2 M’ whose induced linear map N ®r M LN Y ®pgr M’ is not injective.

Example 3.7. For a nonzero torsion abelian group A, the natural map Z — Q is injective
but if we apply ARz we get the map A — 0, which is not injective, so A is not a flat
Z-module. This includes nonzero finite abelian groups and the infinite abelian group Q/Z.

Remark 3.8. Since Q/Z is not flat as a Z-module, for a homomorphism of abelian groups

G L G’ the kernel of Q/Z®z G e, Q/Z ®7 G’ need not be Q/Z @ ker f but could be
larger. Therefore it is not easy to determine the kernel of a group homomorphism after base
extension by Q/Z. Failure to take this into account created a gap in a proof of a widely
used theorem in knot theory. See [1, p. 927].

Example 3.9. If R is a domain with fraction field K, any nonzero torsion R-module T’
(meaning every element of T is killed by a nonzero element of R) is not a flat R-module
since tensoring the inclusion R — K with T produces the R-linear map T — 0, which is
not injective. In particular, the quotient module K/R is not a flat R-module. The previous
example is the special case R = Z: Q/Z is not a flat Z-module.
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Theorem 3.10. If N is a flat R-module and M 25 M’ is R-linear then the kernel of

N r M ml) N ®@r M’ is N ®g ker @, viewed as a submodule of N @ g M in a natural
way.

Proof. The diagram

(M)
mn—w(y \
M M’

commutes, where ¢ is the inclusion. Tensoring with N produces a commutative diagram

N ®pr p(M

m®m—>m®¢(/ \

N®RM N®RM/

The map 1 ® ¢ is injective since 7 is injective and N is flat. Therefore the two maps out
of N ®g M above have the same kernel. The kernel of N ® g M — N ®pr (M) can be
computed by Corollary 2.21 to be the natural image of N ® ker ¢ inside N ® p M, and we
can identify the image with N ®p ker ¢ since N is flat. O

Theorem 3.11. A tensor product of two flat modules is flat.

Proof. Let N and N’ be flat. For any injective linear map M —2 M’, we want to show the
induced linear map (N @r N') @ p M LN (N ®@g N') @ M’ is injective.

Since N’ is flat, N' ® g M BELLNG Y ®pgr M' is injective. Tensoring now with N, N ®g
(N'"®gr M) 1elee) ®r (N'®@gr M') is injective since N is flat. The diagram

1®(1
N &r (N 0g MY~ N g (N & M)

| |

1®
(N®@rN')®r M f ~ (N@rN')®M

commutes, where the vertical maps are the natural isomorphisms, so the bottom map is
injective. Thus N @i N’ is flat. O

Theorem 3.12. Let M 25 M’ and N - N’ be injective linear maps. If the four

modules are all flat then M @ g N ——— LNy Vi ®pr N' is injective. More precisely, if M and
N’ are flat, or M' and N are flat, then © ® v is injective.

The precise hypotheses (M and N’ flat, or M’ and N flat) can be remembered using
dotted lines in the diagram below; if both modules connected by one of the dotted lines are
flat, then ¢ ® 7 is injective.

M—2 M
N /
N
7\
AN

Ve
N—— N’
()
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Proof. The trick is to break up the linear map ¢ ® 1 into a composite of linear maps ¢ ® 1
and 1 ® ¢ in the following commutative diagram.
M R N’

/\

M®rN M' ®r N’

Both ¢ ® 1 and 1 ® ¢ are injective since N’ and M are flat, so their composite ¢ ® 1
is injective. Alternatively, we can write ¢ ® 1) as a composite fitting in the commutative
diagram

M’ ®R

/\

M®R M/(X)RN/

and the two diagonal maps are injective from flatness of N and M’, so ¢ ®1) is injective. [

Corollary 3.13. Let My, ..., My, N1,..., Ni be flat R-modules and @;: M; — N; be injec-
tive linear maps. Then the linear map

P11 Qi M1 Qp--Qr M, =+ N1 ® -+ ® Ny,

is injective. In particular, if o: M — N 1is an injective linear map of flat modules then the
tensor powers p®%: M®*F — Nk gre injective for all k > 1.

Proof. We argue by induction on k. For k = 1 there is nothing to show. Suppose k£ > 2 and
1 ® - ® @r_1 is injective. Then break up ¢1 ® - - - ® ¢y into the composite

(N1 ®R - ®@r Ng—1) ®r M,

(P1®-@pr_1)®1 %

My ®r -+ ®p M1 ®@r Mg, oo N1 ®g - ®r Ng.

The first diagonal map is injective because M) is flat, and the second diagonal map is
injective because N1 ®p - -+ ®r Ng_1 is flat (Theorem 3.11 and induction). O

Corollary 3.14. If M and N are free R-modules and ¢: M — N is an injective linear
map, any tensor power ¢®F: M®* — N®F s injective.

Proof. Free modules are flat by Theorem 3.2. O

Note the free modules in Corollary 3.14 are completely arbitrary. We make no assump-
tions about finite bases.

Corollary 3.14 is not a special case of Theorem 2.18 because a free submodule of a free
module need not be a direct summand (e.g., 2Z is not a direct summand of Z).

Corollary 3.15. If M is a free module and {m1,...,mq} is a finite linearly independent
subset then for any k < d the d* elementary tensors

(3.1) mi, @ -+ @my, where iy, ... i €{1,2,...,d}

are linearly independent in M®F.
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Proof. There is an embedding R? < M by Ele rie; — Z?zl rim;. Since R and M are
free, the kth tensor power (RY)®* — M®F is injective. This map sends the basis

ei1®...®eik

of (RH)®*, where i1,...,i, € {1,2,...,d}, to the elementary tensors in (3.1), so they are
linearly independent in M®* O

Corollary 3.15 is not saying the elementary tensors in (3.1) can be extended to a basis of
M®F just as mq, ..., mg usually can’t be extended to a basis of M.

4. TENSOR PrRODUCTS OF LINEAR MAPS AND BASE EXTENSION

Fix a ring homomorphism R —f—> S. Every S-module becomes an R-module by restriction
of scalars, and every R-module M has a base extension S ®r M, which is an S-module. In
part I we saw S ® g M has a universal mapping property among all S-modules: an R-linear
map from M to any S-module “extends” uniquely to an S-linear map from S ® g M to the
S-module. We discuss in this section an arguably more important role for base extension:

it turns an R-linear map M — 5 M’ between two R-modules into an S-linear map between

S-modules. Tensoring M —— M’ with S gives us an R-linear map S ®p M %%, 59 rM’
that is in fact S-linear: (1 ® ¢)(st) = s(1 ® ¢)(t) for all s € S and t € S ®r M. Since
both sides are additive in ¢, to prove 1 ® ¢ is S-linear it suffices to consider the case when
t = s/ ® m is an elementary tensor. Then

1@ e)(s(sf @m)) = (1@ p)(ss' @m) =355 @ p(m) =s(s' @ p(m)) = s(1 @ ¢)(s' @m).

We will write the base extended linear map 1®¢ as ¢g to make the S-dependence clearer,
SO

0s: S@r M — S®p M' by ps(s@m) = s® @(m).

Since 1 ®@ idys = idgg,m and (1@ p)o (1@ ¢') = 1@ (p o ¢'), we have (idy)s = idsg M
and (po¢')g = pgo¢. That means the process of creating S-modules and S-linear maps
out of R-modules and R-linear maps is functorial.

If an R-linear map M 5 M'is an isomorphism or is surjective then so is S®r M ELLEN
S ®r M’ (Theorems 2.11 and 2.12). But if ¢ is injective then pg need not be injective.
(Examples 2.13, 2.14, and 2.15, which all have S as a field).

~Y

Theorem 4.1. Let R be a nonzero commutative ring. If R™ = R™ as R-modules then
m = n. If there is a linear surjection R™ — R™ then m > n.

~

Proof. Pick a maximal ideal m in R. Tensoring R-linear maps R™ = R"™ or R™ —» R"
with R/m produces R/m-linear maps (R/m)™ = (R/m)" or (R/m)™ — (R/m)". Taking
dimensions over the field R/m implies m = n or m > n, respectively. U

We can’t extend this method of proof to show a linear injection R™ — R™ forces m < n
because injectivity is not generally preserved under base extension. We will return to this
later when we meet exterior powers.

Theorem 4.2. Let R be a PID and M be a finitely generated R-module. Writing
M=R'®R/(a))® - ®R/(ay),

where ay | -+ - | ag, the integer d equals dimg (K ®pr M), where K is the fraction field of R.
Therefore d is uniquely determined by M .
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Proof. Tensoring the displayed R-module isomorphism by K gives a K-vector space iso-
morphism K @ M = K9 since K ®g (R/(a;)) = 0. Thus d = dimg (K ®g M). O

Example 4.3. Let A = (2%) € My(R). Regarding A as a linear map R? — R?, its base
extension Ag: S ®p R?2 — S ®p R? is S-linear and S ®p R? = 52 as S-modules.
Let {e1,e2} be the standard basis of R?. An S-basis for S®@g R? is {1®e1,1®es}. Using

this basis, we can compute a matrix for Ag:

As(l®e;) =10 Aler) =1® (aer + cea) =a(l@er) +c(1 @ e2)
and

As(1®er) =1® Ales) =1 ® (bey +dez) =b(1®e1) + d(1 @ es).
Therefore the matrix for Ag is (¢ 2) € My(S). (Strictly speaking, we should have entries
f(a), f(b), and so on.)

The next theorem says base extension doesn’t change matrix representations, as in the
previous example.

Theorem 4.4. Let M and M’ be nonzero finite-free R-modules and M 25 M be an
R-linear map. For any bases {e;} and {€,} of M and M’, the matriz for the S-linear map

S@prM 255 S@p M with respect to the bases {1 ®e;} and {1® ¢} equals the matriz for
@ with respect to {e;} and {e}}.

Proof. Say ¢p(ej) = >, aije;, so the matrix of ¢ is (a;;). Then
ps(l®ej) =1® gp(ej) =1® Zaijei = Zaij(l ® e;),
i i

so the matrix of pg is also (a;j). O

Example 4.5. Any n x n real matrix acts on R"”, and its base extension to C acts on
C ®r R” =2 C" as the same matrix. An n x n integral matrix acts on Z" and its base
extension to Z/mZ acts on Z/mZ ®z Z" = (Z/mZ)" as the same matrix reduced mod m.

Theorem 4.6. Let M and M’ be R-modules. There is a unique S-linear map
S Qg HOH]R(M, M/) — HOH]S(S RQrM,S ®g M/)

sending s ®@ ¢ to the function spg: t — spg(t) and it is an isomorphism if M and M’ are
finite free R-modules. In particular, there is a unique S-linear map

S®p (MYE) — (S®p M)Vs

where s ® v — spg on elementary tensors, and it is an isomorphism if M is a finite-free
R-module.

The point of this theorem in the finite-free case is that it says base extension on linear
maps accounts (through S-linear combinations) for all S-linear maps between base extended
R-modules. This doesn’t mean every S-linear map s a base extension, which would be like
saying every tensor is an elementary tensor rather than just a sum of them.

Proof. The function S x Hompg(M, M') — Homg(S ®@r M, S @r M') where (s, p) — spg is
R-bilinear (check!), so there is a unique R-linear map

S @r Homp(M, M) -2 Homg(S ®r M, S @5 M)
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such that L(s®¢p) = s¢g. The map L is S-linear (check!). If M’ = R and we identify S®@r R
with S as S-modules by multiplication, then L becomes an S-linear map S @ (MVE) —
(S ®@r M)Vs.

Now suppose M and M’ are both finite free. We want to show L is an isomorphism. If
M or M’ is 0 it is clear, so we may take them both to be nonzero with respective R-bases
{ei} and {€’}, say. Then S-bases of S®@r M and S ®@r M’ are {1®e;} and {1 ®€’}. An
R-basis of Homp(M, M’) is the functions ¢;; sending e; to e;- and other basis vectors e of
M to 0. An S-basis of S ®r Homp(M, M’) is the tensors {1 ® ¢;;}, and

LO®py)(1®e) = (piy)s(1®@e) = (1@ pi;)(1®e) =1@ pii(e) =1® €]
while L(1 ® ¢;;)(1 ® ex) = 0 for k # i. That means L sends a basis to a basis, so L is an
isomorphism. O
Example 4.7. Taking R = R, S = C, M = R", and M’ = R™, the theorem says
C ®r My, n(R) = M, ,(C) as complex vector spaces by sending the elementary tensor
z®@Afor z € Cand A € M,, ,(R) to the matrix zA. In particular, C@r M, (R) = M, (C).

Example 4.8. Let R = Z/p?Z and S = R/pR as rings. Then S is an R-module by using

the natural reduction map R — S. Let M be the R-module S (an additive group of order

p). Then S ®g M = S ®r S is isomorphic as an S-module to S.* The natural linear map
S®r MYE — (S®@r M)V

has image 0, but the right side as an S-module is isomorphic to Homg(S,S) = S, so the

above mapping is not an isomorphism.

In Corollary 3.14 we saw the tensor powers of an injective linear map between free
modules over any commutative ring are all injective. Using base extension, we can drop the
requirement that the target module be free provided we are working over a domain.

Theorem 4.9. Let R be a domain and p: M — N be an injective linear map where M is
free. Then @®F: M®k — N®* is injective for any k > 1.

Proof. We have a commutative diagram

M®k pek N®k
e
K ®p MOk G K ®p NOk
|

where the top vertical maps are the natural ones (¢ — 1 ® ¢) and the bottom vertical maps
are the base extension isomorphisms. (Tensor powers along the bottom are over K while
those on the first and second rows are over R.) From commutativity, to show ¢®* along
the top is injective it suffices to show the composite map along the left side and the bottom

is injective. The K-linear map map K ®r M LN ®pr N is injective since K is a
flat R-module, and therefore the map along the bottom is injective (tensor products of

4More generally, R/I ®r R/I = R/I as R-modules and then also as R/I-modules where R/I scales
elementary tensors z ® y in R/I ® g R/I on the left (a(z ® y) = ax Q y).
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injective linear maps of vector spaces are injective). The bottom vertical map on the left
is an isomorphism. The top vertical map on the left is injective since M®* is free and thus
torsion-free (R is a domain). O

This theorem may not be true if M isn’t free. Look at Example 2.16.

5. VECTOR SPACES

Because all (nonzero) vector spaces have bases, the results we have discussed for modules
assume a simpler form when we are working with vector spaces. We will review what we
have done in the setting of vector spaces and then discuss some further special properties
of this case.

Let K be a field. Tensor products of K-vector spaces involve no unexpected collapsing: if
V and W are nonzero K-vector spaces then V®x W is nonzero and in fact dimg (Vg W) =

dimg (V) dimg (W) in the sense of cardinal numbers.

For any K-linear maps V 2V and W i) W', we have the tensor product linear

map V ®@g W 2V V' @k W that sends v ® w to ©(v) ® Y(w). When V -2 V' and

W L W are isomorphisms or surjective, so is V @x W N v ik W' (Theorems
2.11 and 2.12). Moreover, because all K-vector spaces are free a tensor product of injective
K-linear maps is injective (Theorem 3.2).

Example 5.1. If V 2 W is an injective K-linear map and U is any K-vector space, the
K-linear map U Qg V & U @k W is injective.

[139))

Example 5.2. A tensor product of subspaces “is” a subspace: if V .C V' and W C W’ the
natural linear map V @x W — V' @ W’ is injective.

Because of this last example, we can treat a tensor product of subspaces as a subspace

of the tensor product. For example, if V -2 V’ and W ¥ W' are linear then o(V)yc VvV’
and (W) C W', so we can regard (V) @k (W) as a subspace of V' @ g W', which we
couldn’t do with modules in general. The following result gives us some practice with this
viewpoint.

Theorem 5.3. Let V C V' and W C W' where V' and W' are nonzero. Then V Qi W =
V'@g W'if and only if V=V and W = W',

Proof. Since V @k W is inside both V ®@x W’ and V' @ g W, which are inside V' @ W,
by reasons of symmetry it suffices to assume V C V' and show V @x W' C V' @x W'.
Since V is a proper subspace of V', there is a linear functional ¢: V' — K that vanishes
on V and is not identically 0 on V', so ¢(v()) =1 for some v} € V. Pick nonzero ¢ € W'Y,
and say ¢ (w() = 1. Then the linear function V' @ x W’ — K where v/ @ v’ — ¢ (v")y(w')
vanishes on all of V . @x W' by checking on elementary tensors but its value on v @ wy, is
1. Therefore v, @ w) €V @xg W, so Vg W C V' @k W'. O

When V and W are finite-dimensional, the K-linear map
(5.1) Homg (V, V') @ x Homg (W, W') — Homg (V @k W, V' @k W)

sending the elementary tensor ¢ ® v to the linear map denoted ¢ ® 1 is an isomorphism
(Theorem 2.5). So the two possible meanings of p®1) (elementary tensor in a tensor product
of Hom-spaces or linear map on a tensor product of vector spaces) really match up. Taking
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V' =K and W = K in (5.1) and identifying K ® ¢ K with K by multiplication, (5.1) says
VYV org WY = (Vg W)V using the obvious way of making a tensor ¢ ® 9 in V¥ @ WV
act on V ®@x W, namely through multiplication of the values: (¢ ® ¥)(v ® w) = p(v)P(w).
By induction on the numbers of terms,

VYV og - Vil 2V k- Qk Vi)Y

when the V;’s are finite-dimensional. Here an elementary tensor o1 ® -+ ® ¢, € ®f:1 VY
acts on an elementary tensor v; ® -+ - @ vg € ®f:1 V; with value ¢1(v1) -+ pr(vg) € K. In
particular,

(V\/)®k o~ (V®k)v
when V is finite-dimensional.

Let’s turn now to base extensions to larger fields. When L/K is any field extension,” base
extension turns K-vector spaces into L-vector spaces (V ~» L @ V) and K-linear maps
into L-linear maps (¢ ~ ¢ := 1 ® ¢). Provided V and W are finite-dimensional over K,
base extension of linear maps V' — W accounts for all the linear maps between L Qp V'
and L ® W using L-linear combinations, in the sense that the natural L-linear map

(52) L ®K HOIHK(V,W) gHOHIL(L RV, L QK W)

is an isomorphism (Theorem 4.6). When we choose K-bases for V' and W and use the
corresponding L-bases for L @ ¢ V and L ® W, the matrix representations of a K-linear
map V — W and its base extension by L are the same (Theorem 4.4). Taking W = K, the
natural L-linear map

(5.3) LogV'Y=(LegV)"

is an isomorphism for finite-dimensional V', using K-duals on the left and L-duals on the
right.©

Remark 5.4. We don’t really need L to be a field; K-vector spaces are free and therefore
their base extensions to modules over any commutative ring containing K will be free
as modules over the larger ring. For example, the characteristic polynomial of a linear
operator V —25 V could be defined in a coordinate-free way using base extension of V' from
K to KI[T]: the characteristic polynomial of ¢ is the determinant of the linear operator
T ® idy —PK[T): KT|®g V — K[T] ®k V since det(T ® idy _QOK[T]) = det(TI, — A),
where A is a matrix representation of .

We will make no finite-dimensionality assumptions in the rest of this section.
The next theorem tells us the image and kernel of a tensor product of linear maps of
vector spaces, with no surjectivity hypotheses as in Theorem 2.19.

Theorem 5.5. Let V; ELANN Wi and Vs BLEEN Wy be linear. Then
ker(p1 ® p2) = ker 1 @ Vo + V1 @k ker o,  Im(p1 ® @2) = 01(V1) @K @2(V2).

In particular, if Vi and Vo are nonzero then p1 ® @a s injective if and only if o1 and @9
are injective, and if W1 and Wa are nonzero then 1 ® o is surjective if and only if o1 and
(2 are surjective.

SWe allow infinite or even non-algebraic extensions, such as R/Q.
6If we drop finite-dimensionality assumptions, (5.1), (5.2), and (5.3) are all still injective but generally
not surjective.
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Here we are taking advantage of the fact that in vector spaces a tensor product of sub-
spaces is naturally a subspace of the tensor product: ker ¢; @k Vo can be identified with
its image in Vi @ V4 and ¢1(V1) @k ¢2(V2) can be identified with its image in W; @ g Wy
under the natural maps. Theorem 2.19 for modules has weaker conclusions (e.g., injectivity
of v1 ® @o doesn’t imply injectivity of p; and ¢2).

Proof. First we handle the image of 1 ® @o. The diagrams
901 Vl (,02 V2

V1 H@V \ UQHWV \

commute, with ¢; and 49 belng injections, so the composite dlagram

01(V1) @k p2(Va)

V1 QU1 UW %\

Vi®g Vs Wi @g Wa
P1®p2

commutes. As i1 ® 19 is injective, both maps out of V; ® Vo have the same kernel. The
kernel of the map V1 @k Vo — 1(V1) ®K ¢2(V2) can be computed by Theorem 2.19 to be
ker o1 ® i Vo + V1 ® i ker (o, where we identify tensor products of subspaces with a subspace
of the tensor product.

If 1 ® g is injective then its kernel is 0, so 0 = ker o1 ®x Vo + V] Qi ker o from the
kernel formula. Therefore the subspaces ker o1 @k Vo and V) ®k ker o both vanish, so
ker ¢ and ker ¢ must vanish (because Vo and V) are nonzero, respectively). Conversely,
if ¢1 and 9 are injective then we already knew @1 ® 9 is injective, but the formula for
ker(¢1 ® p2) also shows us this kernel is 0.

If o1 ® 9 is surjective then the formula for its image shows 1 (V1) ® g p2(Va) = W1 g Wa,
so ¢1(V1) = Wp and @o(Va) = Wa by Theorem 5.3 (here we need Wi and W nonzero).
Conversely, if ¢1 and ¢y are surjective then so is @1 ® @2 because that’s true for all modules.

O

Corollary 5.6. Let V C V' and W C W’. Then
(Vo WH/(Veog W +V' @k W)= (V' )V) @k (W' /W).

2

Proof. Tensor the natural projections V! = V'/V and W’ 2= W’/W to get a linear
map V' @x W' 22 (V//V) @ (W'/W) that is onto with ker(m ® mo) = V @x W’ +
V' @k W by Theorem 5.5. O

Remark 5.7. It is false that (V' @xg W)/ (Vo W) = (V' /V) @k (W'/W). The subspace
V ®x W is generally too small” to be the kernel. This is a distinction between tensor
products and direct sums (where (V'@ W")/(Vae W)= (V'/V)® (W'/W)).

Corollary 5.8. Let V 5 W be a linear map and U be a K-vector space. The linear map
UerV LN QK W has kernel and image

(5.4) ker(1® @) =U ®@x kerp and Im(1® ) = U @5 (V).

TException: V' =V or W =0, and W = W or V = 0.
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In particular, for nonzero U the map ¢ is injective or surjective if and only if 1 ® ¢ has
that property.

Proof. This is immediate from Theorem 5.5 since we’re using the identity map on U. [

Example 5.9. Let V —~5 W be a linear map and L/K be a field extension. The base
extension L ®x V Ly L@ x W has kernel and image

ker(pr) = L@k kerp, Im(e¢r) =L @k Im(yp).
The map ¢ is injective if and only if ¢y is injective and ¢ is surjective if and only if ¢y, is
surjective.

Let’s formulate this in the language of matrices. If V' and W are finite-dimensional then
 can be written as a matrix with entries in K once we pick bases of V and W. Then
1, has the same matrix representation relative to the corresponding bases of L ® ¢ V' and
L ®g W. Since the base extension of a free module to another ring doesn’t change the size
of a basis, dimy,(L ® g Im(¢)) = dimg Im(p) and dimy,(L ® g ker(p)) = dimg ker(p). That
means @ and ¢, have the same rank and the same nullity: the rank and nullity of a matrix
in M, xn(K) do not change when it is viewed in M, x, (L) for any field extension L/K.

In the rest of this section we will look at tensor products of many vector spaces at once.
Lemma 5.10. For v € V with v # 0, there is ¢ € V'V such that p(v) = 1.

Proof. The set {v} is linearly independent, so it extends to a basis {v; };er of V. Let v = v;,
in this indexing. Define ¢p: V — K by

(2 (Z Ci'[)i) = Cjy-
Then ¢ € VY and ¢(v) = p(v;,) = 1. O

Theorem 5.11. Let Vi,..., Vi be K-vector spaces and v; € V;. Then v1 ® --- Qv = 0 in
V1 ®k - Qg Vi if and only if some v; is 0.

Proof. The direction (<) is clear. To prove (=), we show the contrapositive: if every v;
is nonzero then v1 ® -+ ® v, # 0. By Lemma 5.10, for i = 1,...,k there is ¢; € V;¥ with
vi(v;)) = 1. Then p; ® -+ ® @y, is a linear map V] Q -+ g Vi — K having the effect

V1@ @k = pr(v) - pr(vg) =1 #0,
so v ® - @ # 0. ]

Corollary 5.12. Let @;: V; — W; be linear maps between K -vector spaces for 1 < i < k.
Then the linear map o1 ® -+ R p: V1 Q- Qg Vie =& W1 QK - -+ Qr Wi is O if and only
if some ; is O.

Proof. For (<), if some ¢; is O then (¢1®- - - ® @) (11 ®- - Qug) = @1(v1)®- - @@r(vg) =0
since ¢;(v;) = 0. Therefore p; ® - - - ® ¢}, vanishes on all elementary tensors, so it vanishes
on Vi ®k - Qg Vi, 80 01 ® -+ ® g, = O.

To prove (=), we show the contrapositive: if every ¢; is nonzero then ¢ ® -+ - ® ¢ # O.
Since ¢; # O, we can find some v; in V; with ¢;(v;) # 0 in W;. Then ¢; ® -+ ® @y sends
V1 QU t0 p1(v1)®- Ry (vg). Since each ¢;(v;) is nonzero in Wj, the elementary tensor
01(v1) ® - -+ @ pg(vg) is nonzero in W1 @ - - - @ Wy by Theorem 5.11. Thus ¢1 ® -+ - ® @,
takes a nonzero value, so it is not the zero map. ]



TENSOR PRODUCTS II 21

Corollary 5.13. If R is a domain and M and N are R-modules, for non-torsion x in M
and y in N, x ® y is non-torsion in M ®pr N.

Proof. Let K be the fraction field of R. The torsion elements of M ®pr N are precisely the
elements that go to 0 under the map M @ g N - K ®p (M ®p N) sending t to 1 @ t. We
want to show 1 ® (z ® y) # 0.

The natural K-vector space isomorphism K ®r (M ®r N) = (K @ M) @k (K @r N)
identifies 1 ® (z ® y) with (1 ® ) ® (1 ® y). Since z and y are non-torsion in M and
N, 1@z #0in K®r M and 1 ®y # 0 in K ®z N. An elementary tensor of nonzero
vectors in two K-vector spaces is nonzero (Theorem 5.11), so (1 ® z) ® (1 ® y) # 0 in
(K®r M) ®k (K ®p N). Therefore 1 ® (z®y) #0in K g (M ®g N), which is what we
wanted to show. 0

Remark 5.14. If M and N are torsion-free, Corollary 5.13 is not saying M ®pr N is
torsion-free. It only says all (nonzero) elementary tensors have no torsion. There could be
non-elementary tensors with torsion, as we saw at the end of Example 2.16.

In Theorem 5.11 we saw an elementary tensor in a tensor product of vector spaces is
0 only under the obvious condition that one of the vectors appearing in the tensor is 0.
We now show two nonzero elementary tensors in vector spaces are equal only under the
“obvious” circumstances.

Theorem 5.15. Let Vi,...,Vj be K-vector spaces. Pick pairs of nonzero vectors v, v} in
Vi fori=1,....k. Thenv1 ®- - - Qug :vi®-~®v;c in Vi Rk - Qr Vi if and only if there
are nonzero constants ci,...,ct tn K such that v; = civg and c1---¢c = 1.

Proof. If v; = ¢;v} for all 4 and ¢;---¢;p = 1 then v1 ® -+ Qv = c1v] @ -+ @ ¢y}, =
(Cl"‘Ck)Ui®"'®U;g:Ui®“'®v;g-

Now we want to go the other way. It is clear for £k = 1, so we may take k > 2.

By Theorem 5.11, v1 ®- - -®wy, is not 0 since each v; is not 0. Fix ¢; € ViV forl1 <i<k-1
such that o;(v;) = 1. (Such ¢; exist since vy, ...,vp_1 are nonzero vectors.) For arbitrary
peV  lethy, =01 @ @ pp_1 @, 50 hy(v1 ® - @ vg_1 Q@ vg) = @(vg). Also

ho(V1 @+ @ V1 ® V) = hyp (V) @+ @V ® V) = P1(v]) -+ -1 (V1) P (V) = P(crv}),
where ¢ 1= ¢1(v]) -+ pr—1(v)_;) € K. So we have
(oK) = plervi)

for arbitrary ¢ € V,’. Therefore p(v, — cxvy,) = 0 for all ¢ € VY, so vy — cxvj, = 0, which
says vy = CU).

In the same way, for every i = 1,2,...,k there is ¢; in K such that v; = ¢;v,. Then
/Ul®. . .®/Uk = clvi@. . ‘®C[€'U]/€ = (cl .. Ck)(vi@ . ®v;€) Since vl®. . '®Uk = ’U/1® . ®’U;€ 7é O,
we get ¢ - ¢ = 1. O

Theorem 5.15 has an interesting interpretation in terms of subspaces. An elementary
tensor v; ® - - - ® vg, does not determine all the individual vectors v;, since they can each be
scaled by a nonzero element ¢; of K without changing v ® - -+ ® v as long as the product
of the ¢;’s is 1. That’s the easier direction of Theorem 5.15. What the harder direction
of Theorem 5.15 tells us is that such scaling is the only way we can change the v;’s while
keeping the elementary tensor v; ® - - - ® v unchanged. In other words, v; ® - - ® vy, does
not determine the v;’s but it does determine the 1-dimensional subspaces Kwv; in V;. And
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since scaling v; ® - - - ® vy, is the same as scaling one of the v;’s (any of them), the subspace
K(v; ® -+ - ® vg) determines the subspaces Kv; (the converse is much easier).

In quantum mechanics, the quantum states of a system are described by the nonzero
vectors in a complex Hilbert space H where a (nonzero) scalar multiple of a vector in
H determines the same quantum state as the original vector (this condition is motivated
by physics), so the states of a quantum system can be described by the 1-dimensional
subspaces of H instead of by the individual (nonzero) elements of H.® When two quantum
systems with corresponding Hilbert spaces Hi and Hy are combined, the Hilbert space
for the combined system is the (completed) tensor product H; ®c Ha. In Hy ®c Ha, a 1-
dimensional subspace C(v1 ®v2) spanned by an elementary tensor determines the individual
subspaces Cv; and Cvy of Hy and Hs by Theorem 5.15, but most 1-dimensional subspaces of
Hy,®c Ho are not spanned by an elementary tensor and thus do not “come from” particular
1-dimensional subspaces of H; and Hs. The non-elementary tensors in H; ®c Ho describe
states that are called “entangled” and Schrédinger [4, p. 555] called this phenomenon “the
characteristic trait of quantum mechanics, the one that enforces its entire departure from
classical lines of thought [...] the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts.” He did not use the terminology of
tensor products, but you can see it at work in what he did say [4, p. 556], where his Hilbert
spaces are L2-spaces of functions on some R": “Let x and y stand for all the coordinates of
the first and second systems respectively and ¥(z,y) [stand for the| state of the composed
system [...]. What constitutes the entanglement is that ¥ is not a product of a function of
x and a function of y.” That is analogous to most elements of R[z, y] not being of the form
f(2)g(y), e.g., ¥y — xy? + 7 is an “entangled” polynomial.

Here is the analogue of Theorem 5.15 for linear maps (compare to Corollary 5.12).

Theorem 5.16. Let @;: V; — W; and ¢,: V; — W; be nonzero linear maps between K -
vector spaces for 1 < i < k. Then o1 @ - @ ¢ = ¢} @ --- ® ¢}, as linear maps Vi
Qg Vi = Wi @K -+ @k Wy if and only if there are c1,. .., cx in K such that ¢; = ¢;)}
and cico---cp = 1.

Proof. Since each ¢;: V; — W; is not identically 0, for ¢ = 1,...,k — 1 there is v; € V; such
that ¢;(v;) # 0 in W;. Then there is f; € W, such that f;(¢i(v;)) = 1.
Pick anyv € Vy and f e W). Set hy = f1 @@ fru1 @ f € (W1 Qg -+ - @k Wi)Y where
hy(wy ® - @wi—1 @ wy) = fr(wy) - fe—1(wr—1)f(w).
Then
hi((p1 @ @ -1 @ pg) (V1 @ -+ @ vg—1 ®)) = fi(p1(v1)) - fe-1(pr—1(vk-1)) f(Pr(v)),
and since f;(p;(v;)) =1 for i # k, the value is f(pg(v)). Also

hi((P1® @) 1 @) (11 @+ ® U1 ®v)) = fr(h (1)) frem1(h—1 (ve-1)) £ (1 (0)).
Set ¢ = fi(@i(v1)) - fo—1(@)_q1(vk—1)), so the value is ¢, f(¢},(v)) = f(crp(v)). Since
fler(v) = flewpr(v).

This holds for all f € W)/, so ¢r(v) = cxp)(v). This holds for all v € Vi, so ¢ = ¢y}, as

linear maps Vi — Wi.

8A nonzero vector in H, viewed as a quantum state, is often scaled to have length 1, but this still allows
ambiguity up to scaling by a complex number e of absolute value 1, with 6 called a phase-factor.
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In a similar way, there is ¢; € K such that ¢; = ¢;¢} for all 4, so
P1®®pp = (cap)) ® - @ (crepk)
(cl...ck)gpll®...®g0;€
= (e e)p1® - ® g,

Socy---c = 1since 1 Q- R g # O. O

Remark 5.17. When the V;’s and W,’s are finite-dimensional, the tensor product of linear
maps between them can be identified with elementary tensors in the tensor product of
the vector spaces of linear maps (Theorem 2.5), so in this special case Theorem 5.16 is a
special case of Theorem 5.15. Theorem 5.16 does not assume the vector spaces are finite-
dimensional.

When we have k copies of a vector space V', any permutation o € S acts on the direct
sum V& by permuting the coordinates:

(211, ey Uk) — (Ugfl(l), R ,U071(k)).
The inverse on o is needed to get a genuine left group action (Check!). Here is a similar

action of S; on the kth tensor power.

Corollary 5.18. For o € S}, there is a linear map Py: V& — VO such that
V1 Q- QU Vg=1(1) Q- ® Vo—1(k)

on elementary tensors. Then P, o P, = P, for o and T in Sp.?

When dimg (V') > 1, P, = P; if and only if o = 7. In particular, P, is the identity map
if and only if o is the identity permutation.
Proof. The function V x --- x V — V®* given by

(’Ul, R ,’Uk) = Ug-1(1) R & Vo=1(k)

is multilinear, so the universal mapping property of tensor products gives us a linear map
P, with the indicated effect on elementary tensors. It is clear that P; is the identity map.
For any ¢ and 7 in Sg, P, o P = P, by checking equality of both sides at all elementary
tensors in V®%. Therefore the injectivity of o — P, is reduced to showing if P, is the

identity map on V®* then o is the identity permutation.
We prove the contrapositive. Suppose o is not the identity permutation, so o(i) = j # i

for some ¢ and j. Choose vy,...,v; € V all nonzero such that v; and v; are not on the
same line. (Here we use dimg V' > 1.) If P,(v1 ® -+ - @ vg) = v1 ® - - - ® vy, then v; € Kv; by
Theorem 5.15, which is not so. O

The linear maps P, provide an action of Sy, on V®* by linear transformations. We usually
write o (t) for P,(t). Not only does S acts on V¥ but also the group GL(V) acts on V®*
via tensor powers of linear maps:

g1 ® -+ @ wg) ::9®k(vl®“‘®vk)ng1®---®gvk

on elementary tensors. These actions of the groups S;, and GL(V) on V®* commute with
each other: P,(g(t)) = g(P,(t)) for all t € V®F. To verify that, since both sides are additive
in t, it suffices to check it on elementary tensors, which is left to the reader. This commuting
action of Sy and GL(V) on V®* leads to Schur-Weyl duality in representation theory.

91f we used Vg(i) instead of v,-1(;) in the definition of P, then we’d have Py o Pr = Pr,.
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A tensor t € V®F gatisfying P,(t) = t for all 0 € S, are called symmetric, and if
P,(t) = (signo)t for all o € Sy, we call t anti-symmetric or skew-symmetric. An example of
a symmetric tensor in V¥ is 3o P,(t) for any t € V. For elementary t, this sum is

Z Py (v1®12Q- - -Quy) = Z Vg=1(1) @Vp—1(2) @ - QUp—1() = Z Ve (1) DV (2) D+ * V() -
€Sy o€S) €Sk

An example of an anti-symmetric tensor in V®F is Zaesk (sign U)Ua(l) ® Vg(2) @+ @ Vg(k)-
Both symmetric and anti-symmetric tensors occur in physics. See Table 1.

Area Name of Tensor Symmetry
Mechanics Stress Symmetric
Strain Symmetric
Elasticity Symmetric
Moment of Inertia Symmetric

Electromagnetism | Electromagnetic | Anti-symmetric
Polarization Symmetric
Relativity Metric Symmetric
Stress-Energy Symmetric

TABLE 1. Some tensors in physics.

The set of all symmetric tensors and the set of all anti-symmetric tensors in V®* each
form subspaces. If K does not have characteristic 2, every tensor in V®? is a unique sum
of a symmetric and anti-symmetric tensor:

t 4+ Pyoy(t)  t— Pryoy(t
. ;12)()+ ;12)().

(The map P(12) is the flip automorphism of V@2 sending v ® w to w ® v.) Concretely, if
{e1,...,en} is a basis of V then each tensor in V®2 has the form >ijCijéi ® e, and it’s
symmetric if and only if ¢;; = ¢j; for all ¢ and j, while it’s anti-symmetric if and only if
cij = —cj; for all 7 and j (in particular, ¢; = 0 for all 7).

For k > 2, the symmetric and anti-symmetric tensors in V®* do not span the whole space.
There are additional subspaces of tensors in V®* connected to the representation theory of
the group GL(V). The appearance of representations of GL(V') inside tensor powers of V
is an important role for tensor powers in algebra.

6. TENSOR CONTRACTION

Continuing the theme of the previous section, let V' be a finite-dimensional vector space
over a field K. The evaluation pairing V x VV — K, where (v, p) — ¢(v), is K-bilinear and
thus induces a K-linear map c: V@ VY — K called a contraction'®, where c(v® ) = ¢(v).
This map is independent of the choice of a basis, but it’s worth seeing how this looks in a
basis. We adopt the notation of physicists and geometers for bases and coefficients in V' and
V'V, as in the section about tensors in physics in the first handout about tensor products:
for a basis {e1,...,e,} of V, let {e!,...,e"} be its dual basis in V'V, with elements of V'
written as Y, v'e; and elements of V¥ written as Y, v;e’. (Here v',v; € K.) The space

10Here and elsewhere in this section, tensor products are always over K: ® = Q.
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V @ VV has basis {e; ® e }”- and c(e; @ ¢/) = ¢/ (e;) = §;5. For v.e V and w € VY, write
v=> v and w = > wje , where v',w; € K. Then

(6.1) c(vew)= Z viw;el (e;) = Z viw;.

%, 7

The final sum is independent of the basis used on V', since contraction comes from evaluating
VY on V and that does not depend on a choice of basis.
From the first tensor product handout, V @ VV = Homg (V, V) by

V&= [w = p(w)]

on elementary tensors. This isomorphism converts contraction on V ® V" into a linear map
Hompg (V,V) — K that turns out to be the trace. Why? A tensor in V ® V'V can be written
uniquely as a linear combination _, ; T]’el ® /. The isomorphism V ® VV = Homg (V, V)
sends Z Tlez ® e’ to the linear operator V' — V that maps each e, to D0 T’eﬂ (ex)e; =
> T kel > Tie;, so this linear operator V — V has matrix representatlon (T;) with
respect to the basis {e;}. The contraction of 3, ; Jel®ej is (X2 Tlez®ej) =i T;&ij =
>; T}, which is exactly the trace of the matrix (T]’)

Contraction V ® VV — K generalizes to maps V& @ (V)@ - yok-1) g (yV)el-1)
for k > 1 and ¢ > 1 (recall V¥¥ = K and (VV)®? = K) that are linear and also called
contractions, as follows. For r € {1,...,k} and s € {1,...,/¢}, the associated contraction
ers: VER @ (V)8 5 yOk=1) g (VV)®(E=1) evaluates the rth tensorand in V®* in the sth
tensorand in (VV)®* leaving other tensorands untouched: on elementary tensors,

Crs(VI® - QUERP1®--- By = c(vr®¢s)®vi®®gpj
T j#s
= @s(0r) Qui® Qs
i#£r j#s
How does ¢, s look in a basis? For a basis {e1,...,e,} of V and dual basis {e!, ..., e"} of

V'V, a basis of VE* @ (VV)® is the n*+¢ elementary tensors ¢;, ®--- ®e;, @ 1 @ -+ @ e,
and

§ : 1.0k ) Jl ... Je | — E E CREIIRET . Jb
Cr,s TJl Jeell@ ® e et ¥ ®e - le Mg ®ela®®e ’

U1,eelk e m=1 a#r b#s
J1yesde ir,jsmissing

where the m appears in the rth slot of the superscript and the sth slot of the subscript of
the coefficient on the right. The outer sum on the right initially runs over all sets of indices
and the coefficient is multiplied by the numerical factor e’ (e;, ), which is nonzero only for
is = i, (call this common value m, and its runs from 1 to n), when the factor is 1.

The contraction ¢, s depends on its domain V& @ (VV)®* not just r and s (which are at
most k and /£, respectively). For example, on V2@ VY and V2 @ (VV)®2, the contraction
c2,1 on elementary tensors is v ® w ® ¢ — p(w)v and vV @ W ® Y @ P = p(w)v ® 1. Using
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bases, the contraction ca; on V&2 @ VV is

(6.2) 2,1 g T;1%ei @e, @e | = E T; 126’ (e4,) €5, = E ( E T ) €i,
11,42 11,42 i1 m

J1 J1

and the contraction co 1 on V&2 ® (V)92 is

(6.3) 2.1 Z T;lljz;e“ Re, el @e? | = Z (Z Tfﬁf;) e, ® e’2.

11,22 11,J2 m

1,52
Remark 6.1. In physics and engineering, tensors are often described just by components
(coordinates), with summing over the basis being understood: >, T"¢; is written as T° and
Zi, j Tijei ® € is written as T;;. That components have indices in the opposite position
(up vs. down) to basis vectors needs to be known to reconstruct the tensor from how its
components are written. Another convention, which is widely used in geometry as well, is
that summation signs within a component (due to contraction or to applying the metric —
see below) are omitted and an implicit summation running from 1 to the dimension of V'
is intended for each index repeated as both a superscript and subscript. This is called the
FEinstein summation convention. For example, the most basic contraction V @ VV — K,
where }, ; Tje; @ e/ = 3, T}, is written in this convention as

T; — T

The contractions co ;1 in (6.2) and (6.3), on V®? @ VV and V®% ® (VV)®2 respectively, are
denoted in the Einstein summation convention as
" 17 T~ T,

Contraction only makes sense when we combine V' and VV. We can’t contract V and V
— it doesn’t make sense to evaluate elements of V on V. However, if we have a preferred
isomorphism ¢g: V' — V'V of vector spaces then we can use ¢g to turn V into VV. We have
VeV =V@VVYusing id. ® g and we can contract the right side. So we can contract on
V ® V after all, provided we use an isomorphism ¢ from V to VV and remember what g is.
Contraction on V ® V' (using ¢g) means the composite map

id.®g c
(6.4) VeV —VeVV ——K.

This depends on the choice of g but not on a choice of basis of V.
There should be nothing special about using g in the second tensorand in (6.4). We want

g®id.
(6.5) VeV — VeV —— K

to be the same overall mapping as (6.4), where the second mapping in (6.5) is induced by
evaluation of V¥ on V. The agreement of (6.4) and (6.5) means g(v)(w) = g(w)(v) for all
v and w in V. This means that if we regard g: V — V" as a bilinear map V x V — K
by (v,w) — g(v)(w) or (v,w) — g(w)(v) we want the same result: we want g to be
symmetric as a bilinear form on V. To check a given ¢ is symmetric, it enough to check this
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on a basis {e1,...,en} of V: g(e;)(ej) = g(e;)(e;) in K for all ¢ and j. Set gi; = g(e;)(e;), so

g(e;) = Zgijej for all i and g;; = g;; for all ¢, j from 1 to n: the matrix (g;;) is symmetric.
J

We can think of the isomorphism g: V' — V'V as a bilinear map V x V — K in two ways:
either as (v,w) — g(v)(w) or as (v,w) — g(w)(v). The fact that ¢ is an isomorphism is
equivalent to g as a bilinear form on V' being nondegenerate and is also equivalent to the
matrix (g;;) coming from any basis of V' (g;; = g(e;)(e;)) being invertible. In practice we
always assume g is symmetric and nondegenerate as a bilinear form on V.

Let’s write g and then the contraction on V ® V from (6.4) or (6.5) in coordinates. Pick
a basis {e1,...,e,} of V and dual basis {el,...,e"} of VV. For v =" v'e; in V, how does
g(v) look in the dual basis of VV? That g;; = g(e;)(e;) means g(e;) = > gije’, so

g(v) =g (Z Ui@i) = Zvig(ei) = Zvi Zgi]’€j = Z (Z gijvi) el

% % 7 J

Thus g(>°,v'e;) = > vjel, where |v; = Zgijvi = Zgﬁvi for all j (recall g;; = gji)-
i i

The passage from the numbers {v'} (components of v) to the numbers {v;} (components
of g(v)) by multiplying each v’ by g;; and summing over all i is called lowering an index.
It is the coordinate version (using a basis of V' and its dual basis in V) of going from v in
V to g(v) in VV, which depends on g but not on the choice of basis of V.

Forx =) ;2% and y = Y, y'e; in V®2, (6.4) has the following effect on the elementary
tensor x Q y:

x®y = x®g(y)

s szyz by (6.1).
%

Unwrapping the definition of y; terms of g;; and y/ (for j =1,...,n),
D atyi =) gijay.
i i.j

This is usually not >, z'y? unless gij = 0;; for all ¢ and j. More generally, the contraction of
the tensor T = Z” T"e;®e; in V2 using ¢ is the scalar Z” gi; 17" in K. This contraction
is independent of the basis {e1,...,e,} of V but depends on the isomorphism g: V — VV.

Example 6.2. Let g be an isomorphism V — V'V that is symmetric (and nondegenerate)
as a bilinear form V' x V' — K. Applying g to the sth tensorand of V@ where k > 2 and
1 <s <k, turns the tensor >, . T "%e; @ @ e;, into

S Thte @@ gle)® e, = Y T, @ ® (de) ® - ® e,
7

11500k U15eenlk

sth tensorand
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and contracting the rth and sth tensorands'' where r # s gives us the following tensor in

V®k-2).
E : E :girisThmik e, R+ ® €i, -
—_————

ll: 77419 iryis

ir,is Missin,
ir,is Missing brits ssing

Example 6.3. Let g be an isomorphism V — V'V that is symmetric (and nondegenerate)
as a bilinear form V x V' — K. For a rank 3 tensor T in V¥2 @ V'V, we have the rank
3 tensors U= (9@ 1®@1)(T) € VV®@V ® VY (not standard form with all V’s first) and

U=(g®eg1)(T)e (VV)¥. What do U and U’ look like in terms of how T looks?
Using a basis {ei,...,e,} for V and dual basis {e!,...,e"} for VV, in V2 @ VV let

T=3 T, e, el

11,02

J1
Passing from V2@ VY =V a Ve VY to VVeV VY by g®1® 1 only affects the first
tensorand:

U=(g®1@1)(T)= ZU”. e ®e, ®elt,  where U2, ZmeT’”Q

J271 J2J1
ia
J1,j2
Passing from VE2@VY = VeVa V" to (VV)® by g2g®1 affects the first two tensorands:
U= (9@ g®1)( Z UJ2]5]1 ®eP® 6]1 where Uy, jyj, = Z giljzgiﬂsT;l”z'
J1,J2,J3 11,82

Remark 6.4. Putting the Einstein summation convention (Remark 6.1) to work, the con-
traction V®@V"V — K sends viei®wj e? to viw;, which is the same as v/ w; and is independent
of the basis since it is simply evaluating V¥ on V. Using an isomorphism g: V' — V"V that is
symmetric (and nondegenerate) as a bilinear form V x V — K, any v = v'e; in V turns into
g(v) = vt in VV where v; = gpo* = girv” since (gl]) is symmetric, and the contraction
V&V — K that depends on g has the effect x ez®yje] = 'y = 29 = gijx iyJ (remember
gij = g5i!) and more generally TYe; ® ej — gi; T’ J. The contraction on V®? depends on ¢
but not on the basis of V. Contraction on V&*_ for k > 2, using the rth and sth tensorand

is a linear map to V®(E=2) with the effect Til"""fei1 ® Qe — girisT“"’ik e R ® ey,
(S
ir,is missing
For TZ”2 in VeV ®VV, if we lower the first upper index we get g,mTle2 nVVeVveVY
and 1f we lower both upper indices then we get 9@132922]3:’?1”2 inVveVVe VY.

Contraction lets us map V& @ (VV)®¢ to VOKk-1) g (VV)2(=1) by combining a choice
of V and VV in V®* @ (VV)® using evaluation to get scalars. We can use an isomorphism
g: V — VV to change any V in V¥ @ (VV)®¢ into V'V (in practice ¢ is symmetric when
viewed as a bilinear form) and thus contract any two different V' tensorands (the result
depends on g). To contract two different V'V tensorands, use the inverse g=': VV — V,

which as a bilinear form on V'V is symmetric: writing | g~ !(e?) = Zgij ejl, (") is the

Hywhile VOG- g (V)@ V@ =2) is not in standard form, the meaning of contraction using the rth
tensorand V' and the sth tensorand V" should be obvious to the reader.
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inverse matrix to (g;;) and is symmetric since (g;;) is. We have ¢g71(}", vie’) = > viej,

where | v/ = Z g"v; | The passage from {v;} to {v7} is multiplying v; by ¢* and summing
(2
over all 7. It is called raising an inder and depends on ¢: this is the coordinate version
(using a basis of V and its dual basis in V') of going from elements of V" to elements of V'
by g~'.!2 Using g or g~ ! in enough places lets us turn the mixed tensors of V&* @ (VV)®¢
into pure tensors in VE*+0) or (V)@ k+0),

The operations of raising/lowering an index and contraction do not depend on a choice
of basis of V. That is because raising/lowering an index is just applying a choice of isomor-
phism from V to V' or vice versa and contraction is based on the natural bilnear evaluation
map VV x V — K thought of as a linear map V¥V @V — K or V® VY — K, and none
of these depend on bases. For physics or engineering students who don’t know about dual
spaces, the independence of basis for these operations is verified by tedious calculations
(if they care at all) and they check raising/lowering indices and contractions send tensors
to tensors by checking the output of such operations satisfies tensor transformation rules,
so it is a tensor. At least that it is how books for such students handles the tasks and it
might look like a miracle to those who can’t think about concepts without bases.: what do
raising/lowering an index and multiplying by g;; mean if you don’t know what V" is?

When K = R, a nondegenerate symmetric bilinear form g on V is called a metric on
V. This generalizes the dot product on R", so intuitively it is more like squared distance
than distance itself. (A metric in the sense of metric spaces is always nonnnegative, but g
as a bilinear form might be positive and negative.) There is an integer p from 0 to n and a
basis {e1,...,e,} of V in which (3=, 2;, > yie;) =Y P  atyt — D ipi 2y’ For p=10
or n one sum on the right is empty and that’s treated as 0. Here are two important special
cases.

e The case p = n means g(v,v) > 0 with equality if and only if v = 0. Such g are
called positive-definite or inner products. They are used in Riemannian geometry.

e The cases p =1 or p = n—1 are important in Lorentzian geometry, and in relativity
when n = 4.

7. TENSOR PRODUCT OF R-ALGEBRAS

~

Our tensor product isomorphisms of modules often involve rings, e.g., C ®r M,,(R) =
M,,(C) as C-vector spaces (Example 4.7). Now we will show how to turn the tensor product
of two rings into a ring. Then we will revisit a number of previous module isomorphisms
where the modules are also rings and find that the isomorphism holds at the level of rings.

Because we want to be able to say C ®@g M,,(R) = M,,(C) as rings, not just as vector
spaces (over R or C), and matrix rings are noncommutative, we are going to allow our
R-modules to be possibly noncommutative rings. But R itself remains commutative!

Our rings will all be R-algebras. An R-algebra is an R-module A equipped with an R-
bilinear map A x A — A, called multiplication or product. Bilinearity of multiplication
includes distributive laws for multiplication over addition as well as the extra rule

(7.1) r(ab) = (ra)b = a(rd)

12Raising or lowering indices describes what happens to components in a basis. The basis undergoes the
opposite change (lowering or raising its indices).
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for r € R and a and b in B, which says R-scaling commutes with multiplication in the
R-algebra. We also want 1-a = a for a € A, where 1 is the identity element of R.

Examples of R-algebras include the matrix ring M, (R), a quotient ring R/I, and the
polynomial ring R[X1,...,X,]. We will assume, as in all these examples, that our algebras
have associative multiplication and a multiplicative identity, so they are genuinely rings
(perhaps not commutative) and being an R-algebra just means they have a little extra
structure related to scaling by R. When an R-algebra contains R, (7.1) is a special case of
associative multiplication in the algebra.

The difference between an R-algebra and a ring is exactly like that between an R-module
and an abelian group. An R-algebra is a ring on which we have a scaling operation by R
that behaves nicely with respect to the addition and multiplication in the R-algebra, in the
same way that an R-module is an abelian group on which we have a scaling operation by
R that behaves nicely with respect to the addition in the R-module. While Z-modules are
nothing other than abelian groups, Z-algebras in our lexicon are nothing other than rings
(possibly noncommutative).

Because of the universal mapping property of the tensor product, to give an R-bilinear
multiplication A x A — A in an R-algebra A is the same thing as giving an R-linear map
A®r A — A. So we could define an R-algebra as an R-module A equipped with an R-
linear map A @ A ——— A, and declare the product of a and b in A to be ab := m(a ® b).
Associativity of multiplication can be formulated in tensor language: the diagram

A®RA®RA A®RA
m®1i im
A®p A m A

commutes.

Theorem 7.1. Let A and B be R-algebras. There is a unique multiplication on A g B
making it an R-algebra such that

(7.2) (a®b)(d @) =ad @bV
for all elementary tensors. The multiplicative identity is 1 ® 1.

Proof. If there is an R-algebra multiplication on A®p B satisfying (7.2) then multiplication
between any two tensors is determined:

k 4
Y ai®bi- Yy d;@b = (a; @ b)(d; @) Zaza ® bib).
i=1 Jj=1 1,
So the R-algebra multiplication on A ®r B satisfying (7.2) is unique if it exists at all. Our
task now is to write down a multiplication on A ® g B satisfying (7.2).

One way to do this is to define what left multiplication by each elementary tensor a®b on
A ®p B should be, by introducing a suitable bilinear map and making it into a linear map.
But rather than proceed by this route, we’ll take advantage of various maps we already know
between tensor products. Writing down an associative R-bilinear multiplication on A®p B
with identity 1 ® 1 means writing down an R-linear map (A®p B) ®r (A®Qr B) > AQr B
satisfying certain conditions and that’s What we’re going to do.

Let A9p A —25 A and B ®p B 23 B be the R-linear maps corresponding to
multiplication on A and on B. Their tensor product mg ® mp is an R-linear map from
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(A®rA)®r (B®pr B) to A®r B. Using the commutativity and associativity isomorphisms
on tensor products, there are natural isomorphisms

(A@r B)©r (A®r B) = (A®rB)®rA)®rB
& (A@R(BQQRA)) ®RB
~ (A®r(A®RrB))®grB
~ ((A®rA)®rB)®gr B
~ (A®rA)®r (B®pgB).

Tracking the effect of these maps on (a ® b) ® (a/ ® V'),
(a®b)® (@ ob) —» (axb)xd)V
= (a@(bed) eV
= (a®(d @b)l
= ((a®d)@b) @b

= (a@d)®(boV).

Composing these isomorphisms with m 4®mp makes a map (A®QrB)®r(A®rB) - AQrB
that is R-linear and has the effect

(a@b) @@ eb)— (a®d)® (b)) — ad @bV,

where m4 ® mp is used in the second step. This R-linear map (A ®r B) ®r (A ®r B) —
A ®p B pulls back to an R-bilinear map (A ®@r B) x (A ®r B) - A ®pr B with the effect
(a®b,d @)+ ad’ @ bY on pairs of elementary tensors, which is what we wanted for our
multiplication on A ® g B. This proves A ® g B has a multiplication satisfying (7.2).

To prove 1 ® 1 is an identity and multiplication in A ® g B is associative, we want

Iolt=t tA®1)=t, (tito)ts=t1(tat3)

for general tensors t, t1, to, and t3 in A ® g B. These identities are additive in each tensor
appearing on both sides, so verifying these equations reduces to the case that the tensors
are all elementary, and this case is left to the reader. O

Corollary 7.2. If A and B are commutative R-algebras then A ®g B is a commutative
R-algebra.

Proof. We want to check tt' = t't for all t and t' in A ®g B. Both sides are additive in ¢, so

it suffices to check the equation when ¢ = a ®b is an elementary tensor: (a®b)t’ Ly (a®D).
Both sides of this are additive in ¢/, so we are reduced further to the special case when
?

t'=a @V is also an elementary tensor: (a ® b)(a’ @ b') = (o’ @ b')(a @ b). The validity of
this is immediate from (7.2) since A and B are commutative. u

Example 7.3. Let’s look at the ring C ®g C. It is 4-dimensional as a real vector space,
and its multiplication is determined from linearity by the products of its standard basis
1®1,1®i,t®1, and ? ®¢. The tensor 1 ® 1 is the multiplicative identity, so we’ll look at
the products of the three other basis elements, and since multiplication is commutative we
only need one product per basis pair:

1ei)2=10(-1)=—-(11), 1e)(iel)=i®i, 10)(i®i)=i®(-1)=—-(i®1),
((i@1)P=(-1)el=-1c1), ()(i®)=(-1)Ri=-11i), (®i)*=11.
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Setting x = i® 1 and y = 1®1i, we have C®g C = R+ Rz + Ry +Ray, where (£2)? = —1
and (£%)? = —1. This commutative ring is not a field (—1 can’t have more than two square
roots in a field), and in fact it is “clearly” the product ring (R+Rz)x (R+Ry) = Cx C with
componentwise operations. (Warning: an isomorphism C®g C — C x C is not obtained by
z® w +— (z,w) since that is not well-defined: (—z) ® (—w) = z ® w but (—z, —w) # (z,w)
in general. We'll see an explicit isomorphism in Example 7.18.)

Example 7.4. The tensor product R ®q R is isomorphic to R as a Q-vector space for
the nonconstructive reason that they have the same (infinite) dimension over Q. When we
compare R ®q R to R as commutative rings, they look very different: the tensor product
ring has zero divisors. The elementary tensors v2 ® 1 and 1 ® v/2 are linearly independent
over Q and square to 2(1 ® 1), so

(V201+10vV2)(V201-19v2)=201-182=0
with neither factor on the left side being 0.

A homomorphism of R-algebras is a function between R-algebras that is both R-linear
and a ring homomorphism. An isomorphism of R-algebras is a bijective R-algebra homo-
morphism. That is, an R-algebra isomorphism is simultaneously an R-module isomorphism
and a ring isomorphism. For example, the reduction map R[X] — R[X]/(X?+ X +1) is an
R-algebra homomorphism (it is R-linear and a ring homomorphism) and R[X]/(X2%+1) = C
as R-algebras by a + bX +— a + bi: this function is not just a ring isomorphism, but also
R-linear.

For any R-algebras A and B, there is an R-algebra homomorphism A — A ®pr B by
a— a®1 (check!). The image of A in A®p B might not be isomorphic to A. For instance,
in Z ®z (Z/5Z) (which is isomorphic to Z/5Z by a ® (bmod 5) = abmod 5), the image
of Z by a — a ® 1 is isomorphic to Z/5Z. There is also an R-algebra homomorphism
B—> A®r B by b— 1®b. Even when A and B are noncommutative, the images of A and
Bin A®r B commute: (a®1)(1®b) =a®b=(1®b)(a®1). This is like groups G and
H commuting in G x H even if G and H are nonabelian.

It is worth contrasting the direct product A x B (componentwise addition and multipli-
cation, with r(a,b) = (ra,rb)) and the tensor product A ®g B, which are both R-algebras.
The direct product A x B is a ring structure on the R-module A @& B, which is usually
quite different from A ®pr B as an R-module. There are natural R-algebra homomorphisms
Ax B Aand A x B -2 B by projection, while there are natural R-algebra homo-
morphisms A -+ A®pr B and B — A ®p B in the other direction (out of A and B to the
tensor product rather than to A and B from the direct product). The projections out of the
direct product A x B to A and B are both surjective, but the maps to the tensor product
A®p B from A and B need not be injective, e.g., Z — Z ®z Z/5Z. The maps A - A®Qr B
and B —+ A®pg B are ring homomorphisms and the images are subrings, but although there
are natural functions A — A x B and B — A x B given by a — (a,0) and b — (0, b), these
are not ring homomorphisms and the images are ideals rather than subrings.

Example 7.5. We saw in Example 7.3 that C®r C = C x C as R-algebras. How do R®qR
and R x R compare? They are not isomorphic as real vector spaces since dimg (R xR) = 2
while dimg (R ®q R) = dimg(R) = co. An R-algebra isomorphism would in particular be
an R-vector space isomorphism, so R ®q R 2 R x R as R-algebras. To show R ®q R is
not isomorphic to R x R just as rings, we’ll count square roots of 1. In R x R there are
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four square roots of 1, namely (£1,+1) using independent choices of signs, but in R®q R
there are at least six square roots of 1:

+(1®1), i%(ﬂ@x@) and i%(\fs@@\@).

These six tensors look different from each other, but how do we know they really are
different? The numbers 1,v/2, and /3 are linearly independent over Q (why?), so any
elementary tensors formed from these numbers in R ®q R are linearly independent over Q.
This proves the six elementary tensors above are distinct.

We will see in Example 7.17 that R ®q R has infinitely many square roots of 1.

The R-algebras A x B and A ®pr B have dual universal mapping properties. For any

R-algebra C' and R-algebra homomorphisms C *5 Aand C L B, there is a unique
R-algebra homomorphism C' — A x B making the diagram

C

™ R\

\ﬁ
T N\

commute. For any R-algebra C' and R-algebra homomorphisms A —= C and B SGINYG
such that the images of A and B in C commute (¢(a)(b) = ¥ (b)p(a)), there is a unique
R-algebra homomorphism A ® gk B — C' making the diagram

A B
W@l bb—y
A®RB
¥ P
'

C

commute.

A practical criterion for showing an R-linear map of R-algebras is an R-algebra homo-
morphism is as follows. If ¢: A — B is an R-linear map of R-algebras and {a;} is a spanning
set for A as an R-module (that is, A =), Ra;), then ¢ is multiplicative as long as it is so
on these module generators: yp(a;a;) = p(a;)p(a;) for all i and j. Indeed, if this equation
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holds then
(%2 Zriai . Z r}aj = @ Z rir;-aiaj
( J 4,J

— Z ririo(aiag)
2'7j

= > rirfplai)e(a))
Z'7j

= ) riplai) Y rielay)
i J

= @ (ZHG,‘) %2 ZY’;CLJ‘
i J

This will let us bootstrap a lot of known R-module isomorphisms between tensor products
to R-algebra isomorphisms by checking the behavior only on products of elementary tensors
(and checking the multiplicative identity is preserved, which is always easy). We give some
concrete examples before stating some general theorems.

Example 7.6. For ideals I and J in R, there is an isomorphism ¢: R/I g R/J —
R/(I + J) of R-modules where (T ® y) = 7y. Then p(1 ®1) =1 and

P(Een) (@ oY) =@ @gy) = w2’y =7y oy = p(T 2 P)e@ @ 7).
So R/I ®r R/J = R/(I + J) as R-algebras, not just as R-modules. In particular, the
additive isomorphism Z/aZ ®z Z/bZ = Z/(a,b)Z is in fact an isomorphism of rings.

Example 7.7. There is an R-module isomorphism ¢: R[X| ®r R[Y] — R[X,Y] where
o(f(X)®9(Y)) = f(X)g(Y). Let’s show it’s an R-algebra isomorphism: ¢(1® 1) =1 and
P((f1(X) @ q1(Y)(f2(X) @ 92(Y))) = @(f1(X)f2(X) © 61(Y)ga2(Y))
(X)) f2(X)g1(Y)g2(Y)
= [u(X)g1(Y)f2(X)g2(Y)
= 2(i(X) © 1 (Y))p(f2(X) ® g2(Y)),
so R[X]®g R[Y]| = R[X,Y] as R-algebras, not just as R-modules. (It would have sufficed
to check ¢ is multiplicative on pairs of monomial tensors X* ® Y7.)
In a similar way, the natural R-module isomorphism R[X]®* = R[Xy, ..., X,], where the

indeterminate X; on the right corresponds on the left to the tensor 1 ® - R X ® ---® 1
with X in the ¢th position, is an isomorphism of R-algebras.

Example 7.8. When R is a domain with fraction field K, K ® g K = K as R-modules by
z®y +— xy. This sends 1 ® 1 to 1 and preserves multiplication on elementary tensors, so it
is an isomorphism of R-algebras.

Example 7.9. Let F be a field. When x and y are independent indeterminates over F,
Flz)®F Fly] = F[z,y] as F-algebras by Example 7.7. It is natural to think that we should
also have F'(z) @ F(y) = F(z,y) as F-algebras, but this is always false! Why should it be
false, and is there a concrete way to think about F(z) @ F(y)?
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Every tensor ¢ in F'(z)®@p F'(y) is a finite sum  , ; fi(z)®g;(y). We can give all the f;(x)’s
a common denominator and all the g;(y)’s a common denominator, say f;(x) = a;(x)/b(x)
and g;(y) = ¢;(y)/d(y) where a;(x) € F[z] and ¢;(y) € Fly]. Then

- ai(r) Cj(y) _ a c
t_i-bu)@Fd(y)‘( >Z’ J @l

Since Flz|®p Fly| & F|x,y] as F-algebras by multiplication, this suggests comparing ¢ with
the rational function we get by multiplying terms in each elementary tensor, which leads to
Zi,j ai(z)c;(y)

b(z)d(y)
The numerator is a polynomial in x and y, and every polynomial in F[x,y] has that form
(all polynomials in z and y are sums of polynomials in z times polynomials in y). The
denominator, however, is quite special: it is a single polynomial in x times a single polyno-
mial in y. Most rational functions in F'(x,y) don’t have such a denominator. For example,
1/(1 — zy) can’t be written to have a denominator of the form b(x)d(y) (proof?).

To show F(z) ®F F(y) is isomorphic as an F-algebra to the rational functions in F(z,y)
having a denominator in the factored form b(x)d(y), show that the multiplication mapping
F(z) ®F F(y) — F(z,y) given by f(z) ® g(y) — f(x)g(y) on elementary tensors is an
embedding of F-algebras. That it is an F-algebra homomorphism follows by the same
argument used in Example 7.7. It is left to the reader to show the kernel is 0 from the
known fact that the multiplication mapping F[z] ®p Fly] — F|z,y] is injective. (Hint:
Justify the idea of clearing denominators.) Thus F'(z) ®r F(y) is an integral domain that is
not a field, since its image in F'(x,y) is not a field: the image contains F'[x, y] but is smaller
than F(z,y). Concretely, the fact that 1 — zy is the image of 1 ® 1 — 2z ®y but 1/(1 — xy)
is not in the image shows 1 ® 1 — 2 ® y is not invertible in F(z) ®p F(y). (In terms of
localizations, F'(z) ®p F(y) is isomorphic as an F-algebra to the localization of F|x,y] at
the multiplicative set of all products b(z)d(y).)

Example 7.10. For any R-module M, there is an S-linear map
S ®@r Endr(M) — Endg(S ®@r M)

where s ® ¢ — sps = s(1 ® ¢). Both sides are S-algebras. Check this S-linear map is
an S-algebra map. When M is finite free this map is a bijection (chase bases), so it is an
S-algebra isomorphism. For other M it might not be an isomorphism.

As a concrete instance of this, when M = R™ we get S®rM,(R) = M,,(S) as S-algebras,
not just as S-modules. In particular, C g M, (R) = M, (C) as C-algebras.

Example 7.11. If I is an ideal in R and A is an R-algebra, R/I @ p A = A/IA first as R-
modules, then as R-algebras (the R-linear isomorphism is also multiplicative and preserves
identities), and finally as R/I-algebras since the isomorphism is R/I-linear too.

Theorem 7.12. Let A, B, and C' be R-algebras. The standard R-module isomorphisms

ARrB = B®pgA,
ARr(Bx(C) =2 (A®rB)x (A®r(C)
(A®rB)®@rC = A®pr(B®r0).

are all R-algebra isomorphisms.
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The distributivity of ® over x suggests denoting the direct product of algebras as a direct
sum with .

Proof. Exercise. Note the direct product of two R-algebras is the direct sum as R-modules
with componentwise multiplication, so first just treat the direct product as a direct sum. [

Corollary 7.13. For R-algebras A and B, A®r B" = (A®pr B)" as R-algebras.
Proof. Induct on n. Note B™ here means the n-fold product ring, not B®". ]

We turn now to base extensions. Fix a homomorphism f: R — S of commutative rings.
We can restrict scalars from S-modules to R-modules and extend scalars from R-modules to
S-modules. What about between R-algebras and S-algebras? An example is the formation
of C ®r M, (R), which ought to look like M,,(C) as rings (really, as C-algebras) and not
just as complex vector spaces.

If A is an S-algebra, then we make A into an R-module in the usual way by ra = f(r)a,
and this makes A into an R-algebra (restriction of scalars). More interesting is extension
of scalars. For this we need a lemma.

Lemma 7.14. If A, A, B, and B’ are all R-algebras and A —*— A’ and B Yy B are

R-algebra homomorphisms then the R-linear map A Qg B % A’ ®@r B’ is an R-algebra
homomorphism.

Proof. Exercise. O

Theorem 7.15. Let A be an R-algebra.
(1) The base extension S ®@r A, which is both an R-algebra and an S-module, is an
S-algebra by its S-scaling.
(2) If A —2 B is an R-algebra homomorphism then S ®p A L ®r B is an
S-algebra homomorphism.

Proof. 1) We just need to check multiplication in S ®r A commutes with S-scaling (not
just R-scaling): s(tt') = (st)t’ = t(st’). Since all three expressions are additive in ¢ and ¢,
it suffices to check this when ¢ and ¢’ are elementary tensors:

?

s((s1® ar)(s2 ® az)) = (s(s1 ® a1))(s2 @ az) = (51 ® a1)(s(s2 @ a2)).

From the way S-scaling on S ®p A is defined, all these products equal ss1s2 ® ajas.

2) For an R-algebra homomorphism A LN B, the base extension S®r A L AN QrBis

S-linear and it is an R-algebra homomorphism by Lemma 7.14. Therefore it is an S-algebra
homomorphism. 0

We can also give A ®g S an S-algebra structure by S-scaling and the natural S-module
isomorphism S ®r A =2 A®pr S is an S-algebra isomorphism.

Example 7.16. Let I be an ideal in R[X},...,X,]. Check the S-module isomorphism
S ®r R[X1,...,Xp)/I =2 S[Xy,...,X,]/(I-S[X1,...,Xy]) from Corollary 2.24 is an S-
algebra isomorphism.

In one-variable, with I = (h(X)) a principal ideal in R[X],'® Example 7.16 gives us an
S-algebra isomorphism

S ®r RIX]/(h(X)) = S[X]/(h (X)),

13Not all ideals in R[X] have to be principal, but this is just an example.
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where hf(X) is the result of applying f: R — S to the coefficients of h(X). (If f: Z —
Z/pZ is reduction mod p, for instance, then h/(X) = h(X) mod p.) This isomorphism is
particularly convenient, as it lets us compute a lot of tensor products of fields.

Example 7.17. Writing Q(v/2) as Q[X]/(X? — 2) (as a Q-algebra), we have
R ©q Q(v2) = R®q Q[X]/(X? - 2) 2 R[X]/(X? - 2) *R x R

as R-algebras since X2 — 2 factors into distinct linear polynomials in R[X], and
R g Q(V2) = R @q QUX)/(X* - 2) 2 R[X]/(X* ~2) 2R x C

as R-algebras since X® — 2 has irreducible factors in R[X] of degree 1 and 2.
More generally, we have an R-algebra isomorphism

R @q Q(V2) 2 R[X]/(X" - 2).

The Q-linear embedding Q(/2) — R extends to an R-linear embedding R ®q Q(V/2) —
R ®q R that is multiplicative (it suffices to check that on elementary tensors), so the ring
R ®q R contains a subring isomorphic to R[X]/(X"™ — 2). When n is odd, X™ — 2 has
one linear factor and (n — 1)/2 quadratic irreducible factors in R[X], so R[X]/(X" —2) =
R x C(»~1)/2 a5 R-algebras. Therefore R[X]/(X"—2) contains 2!+(=1)/2 = 2(n+1)/2 gquare
roots of 1. Letting n — oo shows R ®q R contains infinitely many square roots of 1.

Example 7.18. We revisit Example 7.3, using Example 7.16:
CorC=Caegr (RX]/(X?+1) 2C[X]/(X?*+1)=C[X]/(X —i)(X +i)=CxC

as R-algebras.
Let’s make the R-algebra isomorphism C @g C = C x C explicit, as it is not z ® w —
(z,w). Tracing the effect of the isomorphisms on elementary tensors,

z2®(a+bi) = z2® (a+bX) — za+ 2bX — (za + zbi, za + ab(—1i)) = (z(a + bi), z(a — bi)),
$0 z@w — (zw, zw). Thus 1® 1~ (1,1), 2® 1+ (2,2), and 1 @ w — (w,w).

In these examples, a tensor product of fields is not a field. But the tensor product of
fields can be a field (besides the trivial case K @ x K = K). Here is an example.

Example 7.19. We have
Q(V2) @q Q(V3) = Q(V2) ®q Q[X]/(X* - 3) = Q(V2)[X]/(X? - 3),
which is a field because X2 — 3 is irreducible in Q(v/2)[X].
Example 7.20. As an example of a tensor product involving a finite field and a ring,
Z/5Z 7 L)) = Z/5Z ©7 Z[X] /(X% +1) = (Z/5Z)[X]/(X? + 1) = Z/5Z x Z/5Z
since X2 +1= (X —2)(X —3) in (Z/5Z)[X].
A general discussion of tensor products of fields is in [3, Sect. 8.18].

Theorem 7.21. If A is R-algebra and B is an S-algebra, then the S-module structure on
the R-algebra A ® g B makes it an S-algebra, and

A®rB=(A®rS)®s B
as S-algebras sending a @b to (a® 1) @ b.
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Proof. Tt is left as an exercise to check the S-module and R-algebra structure on A ®p B
make it an S-algebra. As for the isomorphism, from part I we know there is an S-module
isomorphism with the indicated effect on elementary tensors. This function sends 1 ® 1 to
(1 ®1)® 1, which are the multiplicative identities. It is left to the reader to check this
function is multiplicative on products of elementary tensors too. ]

Theorem 7.21 is particularly useful in field theory. Consider two field extensions L/K
and F'/K with an intermediate field K C F C L, as in the following diagram.

L

F E
K
Then there is a ring isomorphism

FogL=(Fok E)®gL

which is also an isomorphism as F-algebras, F-algebras (from the left factor) and L-algebras
(from the right factor).

Theorem 7.22. Let A and B be R-algebras. There is an S-algebra isomorphism
S®r(A®rB) = (S®r A) ®s (S ®r B)
by s®@(a®b) — s((1®a)®(1®DH)).

Proof. By part I, there is an S-module isomorphism with the indicated effect on tensors of
the form s ® (a ® b). This function preserves multiplicative identities and is multiplicative
on such tensors (which span S ®r (A ®g B)), so it is an S-algebra isomorphism. O

8. THE TENSOR ALGEBRA OF AN R-MODULE

Modules don’t usually have a multiplication operation. That is, R-modules are not
usually R-algebras. However, there is a construction that turns an R-module M into the
generating set of an R-algebra in the “minimal” way possible. This R-algebra is the tensor
algebra of M, which we’ll construct in this section.

To start off, let’s go over the difference between a generating set of an R-module and a
generating set of an R-algebra. When we say an R-module M is generated by mq,...,my,
we mean every element of M is an R-linear combination of mq,...,m,. When we say
an R-algebra A is generated by aq,...,a, we mean every element of A is a polynomial in
ai,...,a, with coefficients in R, i.e., is an R-linear combination of products of the a;’s. For
example, the ring R[X] is both an R-module and an R-algebra, but as an R-module it is
generated by {1, X, X2 ...} while as an R-algebra it is generated by X alone. A generating
set of an R-module is also called a spanning set, but the generating set of an R-algebra is
not called a spanning set (the term “span” is used for linear things).

To enlarge an R-module M to an R-algebra, we want to multiply elements in M without
having any multiplication defined in advance. (As in Section 7, R-algebras are associative.)
The “most general” product mims for m; and ms in M should be bilinear in m; and mo,
so we want this product to be the elementary tensor m; ® meo, which lives not in M but in
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M®?. Similarly, an expression like mimso 4+ msmams using five elements from M should be
m1 ® ma + ma ® my ® ms in M®? @ M®3. This suggests creating an R-algebra as

Pu*=RoMoeoMPeoMPe. ..,
E>0

whose elements are formal sums Y ¢ with ¢, € M ®k and t;, = 0 for all large k. We want
to multiply by the intuitive rule

(8.1) Ztk.Zt;:Z<Z tk®t’£>,

k>0 >0 n>0 \k+{=n

where ¢, @ ¢, € M®" if k + ¢ = n. To show this multiplication makes the direct sum of all
M®* an R-algebra we use the following construction theorem.

Theorem 8.1. Let {My}ir>0 be a sequence of R-modules with My = R and let there be
R-bilinear mappings ( “multiplications”) pye: My x My — Mjy for all k and £ such that

1) (scaling by R) po: My x R — My, and poe: R x My — M are both scaling by R:
pro(x,r) =rx and po(r,y) =1y forr € R, x € My, and y € My,

2) (associativity) for k,f,n > 0 we have poin (T, ton (Y, 2)) = prtren(tre(z,y), 2) in
My pin for allx € My, y € My, and z € M,.

The direct sum @~y My, is an associative R-algebra with identity using the multiplication
rule Y0 M 250 M = 2onz0 (Dkstmn Mt (M, 7).

Proof. The direct sum @, M}, is automatically an R-module. It remains to check (i) the
multiplication defined on the direct sum is R-bilinear, (ii) 1 € R = My is a multiplica-
tive identity, and (iii) multiplication is associative. The R-bilinearity of multiplication is a
bookkeeping exercise left to the reader. In particular, this includes distributivity of multi-
plication over addition. To prove multiplication has 1 as an identity and is associative, it
suffices by distributivity to consider only multiplication with factors from direct summands
Mj;, in which case we can use the two properties of the maps p ¢ in the theorem. ]

Lemma 8.2. For k,{ > 0, there is a unique bilinear map By : M®k 5 pM®t — N+
where By o(t,r) = rt, Boe(r,t) = rt, and for k, £ > 1, Br(mi @ --- @ mp,m| @ --- @my) =
m Q- @m®m) ® - ®my on pairs of elementary tensors.

Proof. The cases kK = 0 and ¢ = 0 are trivial, so let k£, > 1. It suffices to construct a
bilinear 3y, with the indicated values on pairs of elementary tensors; uniqueness is then
automatic since elementary tensors span M®* and M®*.

Define f: M x -+ x M x M X -+ x M — M@+ 1y

k times £ times

/ / !/ !/
flmi,...ome,mi,...,my) =m1 - @m @m; @ --- @ my.

This is (k + ¢)-multilinear. In particular, f is multilinear in the first k factors when the
last ¢ factors are fixed and it is multilinear in the last ¢ factors when the first k£ factors are
fixed, so we can collapse the first k factors and the last ¢ factors into tensor powers to get
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a bilinear mapping By¢: M®F x M®¢ — M®*+) making the diagram

Mk x M®*
(®,9)
(M x---xM)x(Mx---xM) Br,e
\
M®k+L)

commute. (This collapsing is analogous to the proof of associativity of the tensor product
in part I.) By commutativity of the diagram, on a pair of elementary tensors we have

Bre(m1 @ -+ @mp,my @ ---@my) = f(m,...,mg,my,...,mg)
= MR - QmEAm)® - ®@mj.

O

Theorem 8.3. The M-module P~ M®* is an R-algebra using the multiplication in (8.1).

Proof. Use Theorem 8.1 with M, = M®% and tke = Bre from Lemma 8.2. The first prop-
erty of the maps py ¢ in Theorem 8.1 is automatic from the definition of 8¢ and By . To
prove the second property of the maps py, ¢ in Theorem 8.1, namely fug, o1, (t1, e n(t2,t3)) =
kson(pre(ts, ta), t3) in MEFEHER) for all ¢ € M®F, ty € M®Y, and t3 € M®", by multi-
linearity of each p, = By it suffices to consider the case when each ¢; is an elementary
tensor, in which case the equality is a simple calculation. O

Definition 8.4. For an R-module M, its tensor algebra is T(M) = Py M®* with
multiplication defined by (8.1).

Since multiplication in 7'(M) is the tensor product, a generating set of M as an R-module
is a generating set of T'(M) as an R-algebra.

Example 8.5. If M = R then M®" = R as an R-module and T(M) = R[X] with X*
corresponding to the k-fold tensor 1 ® --- ® 1 in R®*.

Example 8.6. If M is a finite free R-module with basis ey, ..., e, then T(M) is the poly-
nomial ring over R in n noncommauting indeterminates ey, ..., e,: in M®?, ¢; ® ej#ejRe;
when i # j, which says in T'(M) that e;e; # eje;.

Remark 8.7. The tensor product construction of the polynomial ring over R in n non-
commuting indeterminates is quite different from that of the tensor product construction
of the commutative polynomial ring R[X7, ..., X,]: the former is the tensor algebra T'(R")
of a free R-module of rank n while the latter is R[X]|®" (Example 7.7).

The mapping i: M — T(M) that identifies M with the k¥ = 1 component of T'(M) is
R-linear and injective, so we can view M as a submodule of T'(M) (the “degree 1”7 terms)
using 4. Just as the bilinear map M x N — M ®pg N is universal for R-bilinear maps from
M x N to all R-modules, the mapping i: M — T'(M) is universal for R-linear maps from
M to all R-algebras.
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Theorem 8.8. Let M be an R-module. For each R-algebra A and R-linear map f: M — A,
there is a unique R-algebra map F: T(M) — A such that the diagram

commutes.

This says R-linear maps from M to an R-algebra A turn into R-algebra homomorphisms
from T' (M) to A. It works by extending an R-linear map from M — A to an R-algebra map
T(M) — A by forcing multiplicativity, and there are no relations to worry about keeping
track of because T'(M) is an R-algebra formed from M in the most general way possible.

Proof. First suppose there is an R-algebra map F' that makes the indicated diagram com-
mute. Forr € R, F(r) = r since F'is an R-algebra homomorphism. Since T'(M) is generated
as an R-algebra by M, an R-algebra homomorphism out of T'(M) is determined by its values
on M, which really means its values on i(M). For m € M, we have F(i(m)) = f(m), and
thus there is at most one R-algebra homomorphism F' that fits into the above commutative
diagram.

To construct F', we will define it first on each M®* in T(M) and then extend by additivity.
For k > 1, the R-linear map f: M — A leads to an R-linear map f®*: M®* — A®* that is
mp®---@mg — f(m)®---® f(my) on elementary tensors. Multiplication on A gives us an
R-linear map A®* — A thatis a1 ®--- ® ag — aj - - - aj on elementary tensors. Composing
this with f®F gives us an R-linear map Fj,: M®* — A whose value on elementary tensors
is

Fip(my @ -+~ @my) = f(ma) - f(mg).
Define Fy: M®° — A by Fy(r) =714 for r € R. Finally, define F': T(M) — A by

F> te] =D Fut)

k>0 k>0

where t, € M®* and t;, = 0 for large k. Since each Fj is R-linear and Fy(1) = 14, F
is R-linear and F(1) = 14. To prove F' is multiplicative, by linearity it suffices to check
F(zy) = F(z)F(y) where x is an elementary tensor in some M®* and y is an elementary
tensor in some M®¢. The cases k = 0 and ¢ = 0 are the linearity of F. If k,¢ > 1, write
r=m® -@mpandy=m)|® ---@mj. Thenzy=m; ® - @mp ®m| ®---®m) in
T(M), so
F(zy) = Fire(zy) = f(ma) - f(mg) f(m]) - f(my)

and

F(x)F(y) = Fr(z)Fi(y)
= (f(ma)--- f(mg))(f(mY)--- f(my))
= f(my)-- flmg)f(m}) - f(my).
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Tensor algebras are useful preliminary constructions for other structures that can be
defined as a quotient of them, such as the exterior algebra of a module, the Clifford algebra
of a quadratic form, and the universal enveloping algebra of a Lie algebra.
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