
SUMS OF SQUARES IN Q AND F(T )

KEITH CONRAD

1. Introduction

To illustrate the analogies between integers and polynomials, we prove a theorem about
sums of squares over Z and then prove an analogous result in F [T ] (where F does not have
characteristic 2). Specifically, we will show that if an integer is a sum of 2 or 3 rational
squares then it is in fact a sum of 2 or 3 integer squares. The polynomial analogue is
stronger: if a polynomial is a sum of n squares of rational functions for any n then it is a
sum of n squares of polynomials. The proof in the polynomial case is essentially the same
as the integer case.

2. The integer case

Theorem 2.1. If an integer is a sum of two rational squares then it is a sum of two integral
squares. If an integer is a sum of three rational squares then it is a sum of three integral
squares.

Example 2.2. We have 193 = (1512/109)2 + (83/109)2, 193 = (933/101)2 + (1048/101)2,
and 193 = 72 + 122.

Example 2.3. We have 13 = (18/11)2+(15/11)2+(32/11)2, 13 = (2/3)2+(7/3)2+(8/3)2,
and 13 = 02 + 32 + 22.

Proof. Suppose v = (s1, s2) ∈ Q2 satisfies s21 + s22 = a. We we will write this as v · v = a. If
s1 and s2 are in Z, we’re done, so we assume at least one of them is not in Z. Write the si’s
with a common denominator: si = mi/d where the mi’s and d are in Z and d 6= ±1. We
want to find a w ∈ Q2 such that w ·w = v · v and w has a common denominator of smaller
size than v. Repeating this enough times, we will eventually get a common denominator of
1, meaning we have a as a sum of integer squares.

In Z, divide each mi by the common denominator d:

mi = dqi + ri

where qi and ri are in Z and |ri| ≤ d/2. Since s1 and s2 are not both in Z, some ri is
nonzero. Thus v = (s1, s2) = q + (1/d)r where q = (q1, q2) and r = (r1, r2) are in Z2 and
r 6= (0, 0).

Using the dot product,

(2.1) v · v =

(
q +

1

d
r

)
·
(
q +

1

d
r

)
= q · q +

1

d2
r · r +

2

d
q · r.

Since q and r are integral vectors the dot products q · q, r · r, and q · r are in Z. Since
|ri| ≤ d/2, r · r = r21 + r22 ≤ 2(d/2)2 = d2/2, so (1/d2)r · r ≤ 1/2.

Since r 6= 0, we can consider the reflection w = τr(v). From the properties of reflections,
w · w = v · v = a. We will show the coordinates of w ∈ Q2 have a smaller common
denominator than the common denominator d for v.
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Explicitly,

w = τr(v)

= τr(q + (1/d)r)

= τr(q)− 1

d
r

=

(
q− 2q · r

r · r
r

)
− 1

d
r

= q−
(

2q · r
r · r

+
1

d

)
r.

Multiplying (2.1) by d/(r · r),

d(v · v)

r · r
=
d(q · q)

r · r
+

1

d
+

2q · r
r · r

,

so

w = q− d(v · v − r · r)

r · r
r = q− v · v − r · r

(r · r)/d
r,

where the denominator (r · r)/d is an integer: by (2.1),

r · r
d

= d(v · v − q · q)− 2q · r

and the right side is in Z. We noted before that (1/d2)r · r ≤ 1/2, so (r · r)/d is at most
d/2 < d, which means the common denominator for w is less than that for v, so we are
done with the sum of two squares case.

The exact same proof works for a sum of three squares, using dot products and reflections
in three dimensions instead of two dimensions. The only change to be made is the following:
now we have r = (r1, r2, r3) where |ri| ≤ (1/2)d, so r · r = r21 + r22 + r23 ≤ (3/4)d2 instead
of (1/2)d2. Now (1/d2)r · r ≤ 3/4 instead of 1/2, so (r · r)/d ≤ (3/4)d instead of d/2. This
is still less than d, so everything still works in the proof when it is done for sums of three
squares. �

Geometrically, we are looking at the circle {(x, y) : x2 + y2 = a} and taking reflections
of rational points through the nearest Z-point to get new rational points.

The corresponding result for a sum of 2 cubes is false: 13 = (7/3)3 + (2/3)3, but 13 is
not a sum of two cubes in Z (look at how the cubes spread apart on the real line).

Theorem 2.1 has a nice application to the negative Pell equation. Pell’s equation is
x2 − dy2 = 1 for d ∈ Z, and a famous result in number theory says for each d > 1 that’s
not a perfect square (d = 2, 3, 5, 6, 7, 8, 10, 11, 12, . . .), the Pell equation x2 − dy2 = 1 has a
solution (x, y) in positive integers.1 The negative Pell equation is x2− dy2 = −1, and there
is a strong constraint on the d for which this equation admits an integral solution.

Corollary 2.4. If x2 − dy2 = −1 has a solution in Z then d is a sum of two squares in Z.

Proof. If x2 − dy2 = −1 for x, y ∈ Z, then y 6= 0. Since dy2 = x2 + 1, we have d =
(x/y)2 + (1/y)2. That shows d is a sum of two rational squares, so d must also be a sum of
two integral squares. �

1See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf and https://kconrad.

math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf
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A further constraint on d in order for x2 − dy2 = −1 to be solvable in Z is that it has
no prime factors that are 3 mod 4: necessarily x2 ≡ −1 mod d, so if p | d for prime p then
x2 ≡ −1 mod p, and it’s known that −1 is not a square mod p for primes p ≡ 3 mod 4.2

However, there are d with no prime factors that are 3 mod 4 and x2 − dy2 = −1 has no
integral solution. The smallest two such squarefree d are 34 and 146. A longer list of such
d is at https://oeis.org/A031398.

3. The polynomial analogue

Theorem 3.1. Let Q : Fn → F be a non-degenerate n-dimensional quadratic form over
a field F not of characteristic 2. If v ∈ F (T )n satisfies Q(v) ∈ F [T ] then there is some
w ∈ F [T ]n such that Q(w) = Q(v). In other words, any polynomial that is represented by
Q over F (T ) is represented by Q over F [T ].

The quadratic form in this theorem has coefficients in F , not simply in F [T ]. For example,
the 1-dimensional quadratic form Q(x) = T 2x2 represents 1 over F (T ) but not over F [T ].

Proof. Let v = (f1, . . . , fn) ∈ F (T )n satisfy Q(v) ∈ F [T ]. Assume the fi’s are not all in
F [T ]. (Otherwise we are done.) Write the fi’s with a common denominator: fi = gi/h
where the gi’s and h are in F [T ] and h is non-constant. We want to find a w ∈ F (T )n such
that Q(w) = Q(v) and w has a common denominator of smaller degree than deg h. Then
repeating the argument will eventually produce a vector of polynomials w ∈ F [T ]n such
that Q(w) = Q(v) and we’re done.

In F [T ], divide each gi by the common denominator h:

gi = hqi + ri

where qi and ri are in F [T ] and ri = 0 or deg ri < deg h. Since not all fi’s are in F [T ], some
ri is nonzero. Thus v = (f1, . . . , fn) = q+(1/h)r where q = (q1, . . . , qn) and r = (r1, . . . , rn)
are in F [T ]n and r 6= (0, . . . , 0).

Let B be the bilinear form associated to Q, so B has coefficients in F and

(3.1) Q(v) = Q

(
q +

1

h
r

)
= Q(q) +

1

h2
Q(r) +

2

h
B(q, r).

Since q and r are polynomial vectors and Q and B have coefficients in F , the values
Q(q), Q(r), and B(q, r) are in F [T ]. Since deg(rirj) < 2 deg h or rirj = 0, Q(r) is 0 or
degQ(r) < 2 deg h. (Here we use the non-archimedean nature of the degree on F [T ], which
has no analogue for the absolute value on Z.)

We consider now two cases: Q(r) = 0 and Q(r) 6= 0.
If Q(r) = 0 then r is a nonzero null vector for Q. Necessarily n > 1 (n is the dimension

of Q), since Q is non-degenerate: a 1-dimensional quadratic form doesn’t have any nonzero
null vectors. We will find a nonzero constant vector v0 ∈ Fn such that Q(v0) = 0. Then,
since n > 1 and Q is non-degenerate, there is another null vector w0 for Q in Fn with
B(v0, w0) = 1. Then for any f ∈ F [T ], the polynomial vector fv0 + (1/2)w0 ∈ F [T ]n

satisfies

Q(fv0 + (1/2)w0) = f2Q(v0) +
1

4
Q(w0) + 2B(fv0, (1/2)w0) = f,

showing Q is universal over F [T ]. We are done.

2This leads to a second proof of Corollary 2.4, since primes that are not 3 mod 4 are known to be sums
of two squares and the sums of two squares in Z+ are closed under multiplication.

https://oeis.org/A031398
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To find such v0, pull out the largest factor of T common to all the coordinates of r:
r = T k(r0 + Tr1), where k ≥ 0, r0 ∈ Fn, r0 6= 0, and r1 ∈ F [T ]n. Then

0 = Q(r) = T 2kQ(r0 + Tr1) = T 2k(Q(r0) + T 2Q(r1) + 2TB(r0, r1)).

Therefore 0 = Q(r0) + T 2Q(r1) + 2TB(r0, r1), Evaluating at T = 0 shows r0 ∈ Fn is a null
vector for Q. Use v0 = r0.

Now suppose Q(r) 6= 0. As in the situation over Q, consider the reflection w = τr(v).
From the properties of reflections, Q(w) = Q(v). We will show the coordinates of w ∈ F (T )n

have a common denominator with smaller degree than the common denominator h for v.
Explicitly,

w = τr(v)

= τr(q + (1/h)r)

= τr(q)− 1

h
r

=

(
q− 2B(q, r)

Q(r)
r

)
− 1

h
r

= q−
(

2B(q, r)

Q(r)
+

1

h

)
r.

Multiplying (3.1) by h/Q(r),

hQ(v)

Q(r)
=
hQ(q)

Q(r)
+

1

h
+

2B(q, r)

Q(r)
,

so

w = q− h(Q(v)−Q(r))

Q(r)
r = q− Q(v)−Q(r)

Q(r)/h
r,

where the denominator Q(r)/h is a polynomial: by (3.1),

Q(r)

h
= h(Q(v)−Q(q))− 2B(q, r)

and the right side is in F [T ] (here, for the first time in the case when Q(r) 6= 0, we use the
assumption that Q(v) ∈ F [T ]). The degree of Q(r)/h is degQ(r)−deg h < 2 deg h−deg h =
deg h, so we are done. �

Corollary 3.2. If a polynomial in F [T ] is a sum of n squares in F (T ) then it is a sum of
n squares in F [T ].

Proof. Take Q(x1, . . . , xn) = x21 + · · ·+ x2n in Theorem 3.1. �
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