SUMS OF SQUARES IN Q AND F(T)

KEITH CONRAD

1. INTRODUCTION

To illustrate the analogies between integers and polynomials, we prove a theorem about
sums of squares over Z and then prove an analogous result in F[T] (where F' does not have
characteristic 2). Specifically, we will show that if an integer is a sum of 2 or 3 rational
squares then it is in fact a sum of 2 or 3 integer squares. The polynomial analogue is
stronger: if a polynomial is a sum of n squares of rational functions for any n then it is a
sum of n squares of polynomials. The proof in the polynomial case is essentially the same
as the integer case.

2. THE INTEGER CASE

Theorem 2.1. If an integer is a sum of two rational squares then it is a sum of two integral
squares. If an integer is a sum of three rational squares then it is a sum of three integral
squares.

Example 2.2. We have 193 = (1512/109)2 + (83/109)2, 193 = (933/101)2 + (1048/101)2,
and 193 = 7% + 122

Example 2.3. We have 13 = (18/11)2+ (15/11)2 4 (32/11)%, 13 = (2/3)2+(7/3)% +(8/3)?,
and 13 = 0% + 32 + 22,

Proof. Suppose v = (s1, s2) € Q? satisfies s} + s3 = a. We we will write this as v-v = a. If
s1 and s are in Z, we're done, so we assume at least one of them is not in Z. Write the s;’s
with a common denominator: s; = m;/d where the m;’s and d are in Z and d # +1. We
want to find a w € Q? such that w-w = v -v and w has a common denominator of smaller
size than v. Repeating this enough times, we will eventually get a common denominator of
1, meaning we have a as a sum of integer squares.

In Z, divide each m; by the common denominator d:

mi = dg; + 1

where ¢; and r; are in Z and |r;| < d/2. Since s; and sy are not both in Z, some r; is
nonzero. Thus v = (s1,52) = q + (1/d)r where q = (q1,¢2) and r = (ry,72) are in Z? and

r # (0,0).
Using the dot product,

(2.1) vev = —i—lr —i—lr = —|—ir r—i—2 r
: ={a+ a+t-r)=q-q+ 5 J4°T

Since q and r are integral vectors the dot products q-q, r-r, and q - r are in Z. Since
lri| <d/2,r-r=1r2+1r3<2(d/2)? =d?/2,s0 (1/d*)r-r < 1/2.

Since r # 0, we can consider the reflection w = 7.(v). From the properties of reflections,
w-w = v-v = a We will show the coordinates of w € Q? have a smaller common
denominator than the common denominator d for v.
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Explicitly,
w Tr (V)
= n(q+(1/d)r)
= 7(q) - %r

Multiplying (2.1) by d/(r - r),

SO

where the denominator (r - r)/d is an integer: by (2.1),
r-r

— =dv-v-a-q) -2q-r

and the right side is in Z. We noted before that (1/d*)r-r < 1/2, so (r-r)/d is at most
d/2 < d, which means the common denominator for w is less than that for v, so we are
done with the sum of two squares case.

The exact same proof works for a sum of three squares, using dot products and reflections
in three dimensions instead of two dimensions. The only change to be made is the following;:
now we have r = (r1,79,73) where |r;| < (1/2)d, sor-r =7} +7r3 +r2 < (3/4)d? instead
of (1/2)d?. Now (1/d?*)r - r < 3/4 instead of 1/2, so (r-r)/d < (3/4)d instead of d/2. This
is still less than d, so everything still works in the proof when it is done for sums of three
squares. ]

Geometrically, we are looking at the circle {(x,y) : 22 + y? = a} and taking reflections
of rational points through the nearest Z-point to get new rational points.

The corresponding result for a sum of 2 cubes is false: 13 = (7/3)3 + (2/3)3, but 13 is
not a sum of two cubes in Z (look at how the cubes spread apart on the real line).

Theorem 2.1 has a nice application to the negative Pell equation. Pell’s equation is
2?2 —dy?> = 1 for d € Z, and a famous result in number theory says for each d > 1 that’s
not a perfect square (d = 2,3,5,6,7,8,10,11,12,...), the Pell equation 22 — dy? = 1 has a
solution (z,%) in positive integers.! The negative Pell equation is 2> — dy? = —1, and there
is a strong constraint on the d for which this equation admits an integral solution.

Corollary 2.4. If 2> — dy? = —1 has a solution in Z then d is a sum of two squares in Z.
Proof. If x? — dy> = —1 for x,y € Z, then y # 0. Since dy?> = x> + 1, we have d =
(x/y)? + (1/y)?. That shows d is a sum of two rational squares, so d must also be a sum of
two integral squares. O

1See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqnl.pdf and https://kconrad.
math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf.
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A further constraint on d in order for 22 — dy? = —1 to be solvable in Z is that it has
no prime factors that are 3 mod 4: necessarily 22> = —1 mod d, so if p | d for prime p then
22 = —1 mod p, and it’s known that —1 is not a square mod p for primes p = 3 mod 4.2
However, there are d with no prime factors that are 3 mod 4 and z? — dy?> = —1 has no
integral solution. The smallest two such squarefree d are 34 and 146. A longer list of such

d is at https://oeis.org/A031398.

3. THE POLYNOMIAL ANALOGUE

Theorem 3.1. Let Q: F™ — F be a non-degenerate n-dimensional quadratic form over
a field F not of characteristic 2. If v € F(T)™ satisfies Q(v) € F[T] then there is some
w € F[T)" such that Q(w) = Q(v). In other words, any polynomial that is represented by
Q over F(T) is represented by Q over F[T].

The quadratic form in this theorem has coefficients in F', not simply in F[T]. For example,
the 1-dimensional quadratic form Q(x) = T?x? represents 1 over F(T) but not over F[T].

Proof. Let v = (f1,..., fn) € F(T)" satisfy Q(v) € F[T]. Assume the f;’s are not all in
F[T]. (Otherwise we are done.) Write the f;’s with a common denominator: f; = g;/h
where the g;’s and h are in F[T| and h is non-constant. We want to find a w € F(T')" such
that Q(w) = Q(v) and w has a common denominator of smaller degree than degh. Then
repeating the argument will eventually produce a vector of polynomials w € F[T]" such
that Q(w) = Q(v) and we're done.

In F[T], divide each g; by the common denominator h:

9i = hgi + 1

where ¢; and r; are in F[T] and r; = 0 or degr; < degh. Since not all f;’s are in F'[T], some
r; is nonzero. Thus v = (f1,..., fn) = q+(1/h)r whereq = (q1,...,¢n) andr = (r1,...,7y)
are in F[T]" and r # (0,...,0).

Let B be the bilinear form associated to (), so B has coefficients in F' and

(31) Q0 =@ (a+ 1) =Qla) + ;00 +  Blan)

Since q and r are polynomial vectors and ¢ and B have coefficients in F', the values
Q(q), Q(r), and B(q,r) are in F[T]. Since deg(ryr;) < 2degh or ryr; = 0, Q(r) is 0 or
deg Q(r) < 2degh. (Here we use the non-archimedean nature of the degree on F'[T'], which
has no analogue for the absolute value on Z.)

We consider now two cases: Q(r) =0 and Q(r) # 0.

If Q(r) = 0 then r is a nonzero null vector for (). Necessarily n > 1 (n is the dimension
of @), since @ is non-degenerate: a 1-dimensional quadratic form doesn’t have any nonzero
null vectors. We will find a nonzero constant vector vg € F™ such that Q(vg) = 0. Then,
since n > 1 and @ is non-degenerate, there is another null vector wg for @ in F™ with
B(vg,wp) = 1. Then for any f € F[T], the polynomial vector fvg + (1/2)wy € F[T]"
satisfies

Qoo + (1/2)u0) = FQwo) + {Quwo) + 2B(fvo, (1/2)uwo) = [,

showing @ is universal over F[T]. We are done.

2This leads to a second proof of Corollary 2.4, since primes that are not 3 mod 4 are known to be sums
of two squares and the sums of two squares in Z*1 are closed under multiplication.
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To find such vy, pull out the largest factor of 7' common to all the coordinates of r:
r = TF(rg 4 Try), where k > 0, rg € F™, rg # 0, and r; € F[T]". Then

0=Q(r) = T**Q(ro + Tr1) = T*(Q(ro) + T?Q(r1) + 2T B(ro,1)).

Therefore 0 = Q(ro) + T%Q(r1) + 2T B(ro, r1), Evaluating at T = 0 shows ry € F" is a null
vector for ). Use vy = ry.

Now suppose Q(r) # 0. As in the situation over Q, consider the reflection w = 7(v).
From the properties of reflections, Q(w) = Q(v). We will show the coordinates of w € F(T)"
have a common denominator with smaller degree than the common denominator h for v.

Explicitly,

w = 7p(v)
7e(a+ (1/h)r)
1
= Tr(‘l)_ﬁr

B _ZB(q,r)r —lr
B <q Q) ) h
o 2B(q,r) 1 .
= o (557 +1)
Multiplying (3.1) by h/Q(r),
hQ(v) _ hQ(a) | 1 2B(q.r)

Qr) Q) h Q)
hQ(v) — Q(r)) Qv) = Q(r)

SO

TR e T amm
where the denominator Q(r)/h is a polynomial: by (3.1),
) @) - Q) -~ 2B(a.r)

and the right side is in F[T] (here, for the first time in the case when Q(r) # 0, we use the
assumption that Q(v) € F[T]). The degree of Q(r)/h is deg Q(r)—degh < 2degh—degh =
deg h, so we are done. O

Corollary 3.2. If a polynomial in F[T)] is a sum of n squares in F(T) then it is a sum of
n squares in F[T)].

Proof. Take Q(z1,...,zn) = 2% + -+ + 22 in Theorem 3.1. O
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