SUMS OF SQUARES IN \(Q \) AND \(F(T) \)

KEITH CONRAD

1. Introduction

To illustrate the analogies between integers and polynomials, we prove a theorem about sums of squares over \(\mathbb{Z} \) and then prove an analogous result in \(F[T] \) (where \(F \) does not have characteristic 2). Specifically, we will show that if an integer is a sum of 2 or 3 rational squares then it is in fact a sum of 2 or 3 integer squares. The polynomial analogue is stronger: if a polynomial is a sum of \(n \) squares of rational functions for any \(n \) then it is a sum of \(n \) squares of polynomials. The proof in the polynomial case is essentially the same as the integer case.

2. The integer case

Theorem 2.1. If an integer is a sum of two rational squares then it is a sum of two integral squares. If an integer is a sum of three rational squares then it is a sum of three integral squares.

Example 2.2. We have \(193 = (1512/109)^2 + (83/109)^2 \), \(193 = (933/101)^2 + (1048/101)^2 \), and \(193 = 7^2 + 12^2 \).

Example 2.3. We have \(13 = (18/11)^2 + (15/11)^2 + (32/11)^2 \), \(13 = (2/3)^2 + (7/3)^2 + (8/3)^2 \), and \(13 = 0^2 + 3^2 + 2^2 \).

Proof. Suppose \(v = (s_1, s_2) \in \mathbb{Q}^2 \) satisfies \(s_1^2 + s_2^2 = a \). We will write this as \(v \cdot v = a \). If \(s_1 \) and \(s_2 \) are in \(\mathbb{Z} \), we’re done, so we assume at least one of them is not in \(\mathbb{Z} \). Write the \(s_i \)'s with a common denominator: \(s_i = m_i/d \) where the \(m_i \)'s and \(d \) are in \(\mathbb{Z} \) and \(d \neq \pm 1 \). We want to find a \(w \in \mathbb{Q}^2 \) such that \(w \cdot w = v \cdot v \) and \(w \) has a common denominator of smaller size than \(v \). Repeating this enough times, we will eventually get a common denominator of 1, meaning we have \(a \) as a sum of integer squares.

In \(\mathbb{Z} \), divide each \(m_i \) by the common denominator \(d \):

\[
m_i = dq_i + r_i
\]

where \(q_i \) and \(r_i \) are in \(\mathbb{Z} \) and \(|r_i| \leq d/2 \). Since \(s_1 \) and \(s_2 \) are not both in \(\mathbb{Z} \), some \(r_i \) is nonzero. Thus \(v = (s_1, s_2) = q + (1/d)r \) where \(q = (q_1, q_2) \) and \(r = (r_1, r_2) \) are in \(\mathbb{Z}^2 \) and \(r \neq (0, 0) \).

Using the dot product,

\[
(2.1) \quad v \cdot v = \left(q + \frac{1}{d}r \right) \cdot \left(q + \frac{1}{d}r \right) = q \cdot q + \frac{1}{d^2}r \cdot r + \frac{2}{d}q \cdot r.
\]

Since \(q \) and \(r \) are integral vectors the dot products \(q \cdot q, r \cdot r, \) and \(q \cdot r \) are in \(\mathbb{Z} \). Since \(|r_i| \leq d/2, r \cdot r = r_1^2 + r_2^2 \leq 2(d/2)^2 = d^2/2, \) so \((1/d^2)r \cdot r \leq 1/2 \).

Since \(r \neq 0 \), we can consider the reflection \(w = r_\tau(v) \). From the properties of reflections, \(w \cdot w = v \cdot v = a \). We will show the coordinates of \(w \in \mathbb{Q}^2 \) have a smaller common denominator than the common denominator \(d \) for \(v \).
Explicitly,
\[w = \tau_r(v) \]
\[= \tau_r(q + (1/d)r) \]
\[= \tau_r(q) - \frac{1}{d}r \]
\[= \left(q - \frac{2q \cdot r}{r \cdot r} \right) - \frac{1}{d}r \]
\[= q - \left(\frac{2q \cdot r}{r \cdot r} + \frac{1}{d} \right) r. \]

Multiplying (2.1) by \(d/(r \cdot r) \),
\[\frac{d(v \cdot v)}{r \cdot r} = \frac{d(q \cdot q)}{r \cdot r} + \frac{1}{d} + \frac{2q \cdot r}{r \cdot r}, \]
so
\[w = q - \frac{d(v \cdot v - r \cdot r)}{r \cdot r} = q - \frac{v \cdot v - r \cdot r}{(r \cdot r)/d}, \]
where the denominator \((r \cdot r)/d\) is an integer: by (2.1),
\[\frac{r \cdot r}{d} = d(v \cdot v - q \cdot q) - 2q \cdot r \]
and the right side is in \(\mathbb{Z} \). We noted before that \((1/d^2)r \cdot r \leq 1/2\), so \((r \cdot r)/d\) is at most \(d/2 < d\), which means the common denominator for \(w \) is less than that for \(v \), so we are done with the sum of two squares case.

The exact same proof works for a sum of three squares, using dot products and reflections in three dimensions instead of two dimensions. The only change to be made is the following: now we have \(r = (r_1, r_2, r_3) \) where \(|r_i| \leq (1/2)d\), so \(r \cdot r = r_1^2 + r_2^2 + r_3^2 \leq (3/4)d^2 \) instead of \((1/2)d^2\). Now \((1/d^2)r \cdot r \leq 3/4\) instead of \(1/2\), so \((r \cdot r)/d \leq (3/4)d\) instead of \(d/2\). This is still less than \(d\), so everything still works in the proof when it is done for sums of three squares. \(\square\)

Geometrically, we are looking at the circle \(\{(x, y) : x^2 + y^2 = a\} \) and taking reflections of rational points through the nearest \(\mathbb{Z} \)-point to get new rational points.

The corresponding result for a sum of 2 cubes is false: \(13 = (7/3)^3 + (2/3)^3\), but 13 is not a sum of two cubes in \(\mathbb{Z} \) (look at how the cubes spread apart on the real line).

Theorem 2.1 has a nice application to the negative Pell equation. Pell’s equation is \(x^2 - dy^2 = 1 \) for \(d \in \mathbb{Z} \), and a famous result in number theory says for each \(d > 1 \) that’s not a perfect square \((d = 2, 3, 5, 6, 7, 8, 10, 11, 12, \ldots)\), the Pell equation \(x^2 - dy^2 = 1 \) has a solution \((x, y) \) in positive integers.\(^1\) The negative Pell equation is \(x^2 - dy^2 = -1 \), and there is a strong constraint on the \(d \) for which this equation admits an integral solution.

Corollary 2.4. If \(x^2 - dy^2 = -1 \) has a solution in \(\mathbb{Z} \) then \(d \) is a sum of two squares in \(\mathbb{Z} \).

Proof. If \(x^2 - dy^2 = -1 \) for \(x, y \in \mathbb{Z} \), then \(y \neq 0 \). Since \(dy^2 = x^2 + 1 \), we have \(d = (x/y)^2 + (1/y)^2 \). That shows \(d \) is a sum of two rational squares, so \(d \) must also be a sum of two integral squares. \(\square\)

A further constraint on \(d \) in order for \(x^2 - dy^2 = -1 \) to be solvable in \(\mathbb{Z} \) is that it has no prime factors that are \(3 \mod 4 \): necessarily \(x^2 \equiv -1 \mod d \), so if \(p \mid d \) for prime \(p \) then \(x^2 \equiv -1 \mod p \), and it’s known that \(-1 \) is not a square \(\mod p \) for primes \(p \equiv 3 \mod 4 \). However, there are \(d \) with no prime factors that are \(3 \mod 4 \) and \(x^2 - dy^2 = -1 \) has no integral solution. The smallest two such squarefree \(d \) are 34 and 146. A longer list of such \(d \) is at https://oeis.org/A031398.

3. The polynomial analogue

Theorem 3.1. Let \(Q : F^n \to F \) be a non-degenerate \(n \)-dimensional quadratic form over a field \(F \) not of characteristic 2. If \(v \in F(T)^n \) satisfies \(Q(v) \in F[T] \) then there is some \(w \in F[T]^n \) such that \(Q(w) = Q(v) \). In other words, any polynomial that is represented by \(Q \) over \(F(T) \) is represented by \(Q \) over \(F \).

The quadratic form in this theorem has coefficients in \(F \), not simply in \(F[T] \). For example, the 1-dimensional quadratic form \(Q(x) = T^2 x^2 \) represents 1 over \(F(T) \) but not over \(F[T] \).

Proof. Let \(v = (f_1, \ldots, f_n) \in F(T)^n \) satisfy \(Q(v) \in F[T] \). Assume the \(f_i \)'s are not all in \(F[T] \). (Otherwise we are done.) Write the \(f_i \)'s with a common denominator: \(f_i = g_i/h \) where the \(g_i \)'s and \(h \) are in \(F[T] \) and \(h \) is non-constant. We want to find a \(w \in F(T)^n \) such that \(Q(w) = Q(v) \) and \(w \) has a common denominator of smaller degree than \(\deg h \). Then repeating the argument will eventually produce a vector of polynomials \(w \in F[T]^n \) such that \(Q(w) = Q(v) \) and we’re done.

In \(F[T] \), divide each \(g_i \) by the common denominator \(h \):

\[
g_i = h q_i + r_i
\]

where \(g_i \) and \(r_i \) are in \(F[T] \) and \(r_i = 0 \) or \(\deg r_i < \deg h \). Since not all \(f_i \)'s are in \(F[T] \), some \(r_i \) is nonzero. Thus \(v = (f_1, \ldots, f_n) = q + (1/h)r \) where \(q = (g_1, \ldots, g_n) \) and \(r = (r_1, \ldots, r_n) \) are in \(F[T]^n \) and \(r \neq (0, \ldots, 0) \).

Let \(B \) be the bilinear form associated to \(Q \), so \(B \) has coefficients in \(F \) and

\[
Q(v) = Q\left(q + \frac{1}{h}r\right) = Q(q) + \frac{1}{h^2}Q(r) + \frac{2}{h}B(q, r).
\]

Since \(q \) and \(r \) are polynomial vectors and \(Q \) and \(B \) have coefficients in \(F \), the values \(Q(q), Q(r) \), and \(B(q, r) \) are in \(F[T] \). Since \(\deg(r_ir_j) < 2 \deg h \) or \(r_ir_j = 0 \), \(Q(r) \) is 0 or \(\deg Q(r) < 2 \deg h \). (Here we use the non-archimedean nature of the degree on \(F[T] \), which has no analogue for the absolute value on \(\mathbb{Z} \).)

We consider now two cases: \(Q(r) = 0 \) and \(Q(r) \neq 0 \).

If \(Q(r) = 0 \) then \(r \) is a nonzero null vector for \(Q \). Necessarily \(n > 1 \) (\(n \) is the dimension of \(Q \)), since \(Q \) is non-degenerate: a 1-dimensional quadratic form doesn’t have any nonzero null vectors. We will find a nonzero constant vector \(v_0 \in F^n \) such that \(Q(v_0) = 0 \). Then, since \(n > 1 \) and \(Q \) is non-degenerate, there is another null vector \(w_0 \) for \(Q \) in \(F^n \) with \(B(v_0, w_0) = 1 \). Then for any \(f \in F[T] \), the polynomial vector \(f v_0 + (1/2)w_0 \in F[T]^n \) satisfies

\[
Q(fv_0 + (1/2)w_0) = f^2Q(v_0) + \frac{1}{4}Q(w_0) + 2B(fv_0, (1/2)w_0) = f,
\]

showing \(Q \) is universal over \(F[T] \). We are done.

\[\text{\[2\]This leads to a second proof of Corollary 2.4, since primes that are not 3 mod 4 are known to be sums of two squares and the sums of two squares in Z^+ are closed under multiplication.}\]
To find such \(v_0 \), pull out the largest factor of \(T \) common to all the coordinates of \(r \):

\[
r = T^k(r_0 + T r_1),
\]

where \(k \geq 0 \), \(r_0 \in F^n \), \(r_0 \neq 0 \), and \(r_1 \in F[T]^n \). Then

\[
0 = Q(r) = T^{2k}Q(r_0 + T r_1) = T^{2k}(Q(r_0) + T^2 Q(r_1) + 2TB(r_0, r_1)).
\]

Therefore \(0 = Q(r_0) + T^2 Q(r_1) + 2TB(r_0, r_1) \), Evaluating at \(T = 0 \) shows \(r_0 \in F^n \) is a null vector for \(Q \). Use \(v_0 = r_0 \).

Now suppose \(Q(r) \neq 0 \). As in the situation over \(Q \), consider the reflection \(w = \tau_r(v) \). From the properties of reflections, \(Q(w) = Q(v) \). We will show the coordinates of \(w \in F(T)^n \) have a common denominator with smaller degree than the common denominator \(h \) for \(v \).

Explicitly,

\[
w = \tau_r(v) = \tau_r(q + (1/h)r) = \tau_r(q) - \frac{1}{h}r = \left(q - \frac{2B(q, r)}{Q(r)}\right) - \frac{1}{h}r = q - \left(\frac{2B(q, r)}{Q(r)} + \frac{1}{h}\right)r.
\]

Multiplying (3.1) by \(h/Q(r) \),

\[
\frac{hQ(v)}{Q(r)} = \frac{hQ(q)}{Q(r)} + \frac{1}{h} + \frac{2B(q, r)}{Q(r)},
\]

so

\[
w = q - \frac{h(Q(v) - Q(r))}{Q(r)}r = q - \frac{Q(v) - Q(r)}{Q(r)/h}r,
\]

where the denominator \(Q(r)/h \) is a polynomial: by (3.1),

\[
\frac{Q(r)}{h} = h(Q(v) - Q(q)) - 2B(q, r)
\]

and the right side is in \(F[T] \) (here, for the first time in the case when \(Q(r) \neq 0 \), we use the assumption that \(Q(v) \in F[T] \)). The degree of \(Q(r)/h \) is \(\deg Q(r) - \deg h < 2\deg h - \deg h = \deg h \), so we are done.

\[\square\]

Corollary 3.2. If a polynomial in \(F[T] \) is a sum of \(n \) squares in \(F(T) \) then it is a sum of \(n \) squares in \(F[T] \).

Proof. Take \(Q(x_1, \ldots, x_n) = x_1^2 + \cdots + x_n^2 \) in Theorem 3.1. \[\square\]