# SUMS OF SQUARES IN Q AND F( $T$ ) 

KEITH CONRAD

## 1. Introduction

To illustrate the analogies between integers and polynomials, we prove a theorem about sums of squares over $\mathbf{Z}$ and then prove an analogous result in $F[T]$ (where $F$ does not have characteristic 2). Specifically, we will show that if an integer is a sum of 2 or 3 rational squares then it is in fact a sum of 2 or 3 integer squares. The polynomial analogue is stronger: if a polynomial is a sum of $n$ squares of rational functions for any $n$ then it is a sum of $n$ squares of polynomials. The proof in the polynomial case is essentially the same as the integer case.

## 2. The integer case

Theorem 2.1. If an integer is a sum of two rational squares then it is a sum of two integral squares. If an integer is a sum of three rational squares then it is a sum of three integral squares.
Example 2.2. We have $193=(1512 / 109)^{2}+(83 / 109)^{2}, 193=(933 / 101)^{2}+(1048 / 101)^{2}$, and $193=7^{2}+12^{2}$.
Example 2.3. We have $13=(18 / 11)^{2}+(15 / 11)^{2}+(32 / 11)^{2}, 13=(2 / 3)^{2}+(7 / 3)^{2}+(8 / 3)^{2}$, and $13=0^{2}+3^{2}+2^{2}$.

Proof. Suppose $v=\left(s_{1}, s_{2}\right) \in \mathbf{Q}^{2}$ satisfies $s_{1}^{2}+s_{2}^{2}=a$. We we will write this as $v \cdot v=a$. If $s_{1}$ and $s_{2}$ are in $\mathbf{Z}$, we're done, so we assume at least one of them is not in $\mathbf{Z}$. Write the $s_{i}$ 's with a common denominator: $s_{i}=m_{i} / d$ where the $m_{i}$ 's and $d$ are in $\mathbf{Z}$ and $d \neq \pm 1$. We want to find a $w \in \mathbf{Q}^{2}$ such that $w \cdot w=v \cdot v$ and $w$ has a common denominator of smaller size than $v$. Repeating this enough times, we will eventually get a common denominator of 1, meaning we have $a$ as a sum of integer squares.

In $\mathbf{Z}$, divide each $m_{i}$ by the common denominator $d$ :

$$
m_{i}=d q_{i}+r_{i}
$$

where $q_{i}$ and $r_{i}$ are in $\mathbf{Z}$ and $\left|r_{i}\right| \leq d / 2$. Since $s_{1}$ and $s_{2}$ are not both in $\mathbf{Z}$, some $r_{i}$ is nonzero. Thus $v=\left(s_{1}, s_{2}\right)=\mathbf{q}+(1 / d) \mathbf{r}$ where $\mathbf{q}=\left(q_{1}, q_{2}\right)$ and $\mathbf{r}=\left(r_{1}, r_{2}\right)$ are in $\mathbf{Z}^{2}$ and $\mathbf{r} \neq(0,0)$.

Using the dot product,

$$
\begin{equation*}
v \cdot v=\left(\mathbf{q}+\frac{1}{d} \mathbf{r}\right) \cdot\left(\mathbf{q}+\frac{1}{d} \mathbf{r}\right)=\mathbf{q} \cdot \mathbf{q}+\frac{1}{d^{2}} \mathbf{r} \cdot \mathbf{r}+\frac{2}{d} \mathbf{q} \cdot \mathbf{r} \tag{2.1}
\end{equation*}
$$

Since $\mathbf{q}$ and $\mathbf{r}$ are integral vectors the dot products $\mathbf{q} \cdot \mathbf{q}, \mathbf{r} \cdot \mathbf{r}$, and $\mathbf{q} \cdot \mathbf{r}$ are in $\mathbf{Z}$. Since $\left|r_{i}\right| \leq d / 2, \mathbf{r} \cdot \mathbf{r}=r_{1}^{2}+r_{2}^{2} \leq 2(d / 2)^{2}=d^{2} / 2$, so $\left(1 / d^{2}\right) \mathbf{r} \cdot \mathbf{r} \leq 1 / 2$.

Since $\mathbf{r} \neq \mathbf{0}$, we can consider the reflection $w=\tau_{\mathbf{r}}(v)$. From the properties of reflections, $w \cdot w=v \cdot v=a$. We will show the coordinates of $w \in \mathbf{Q}^{2}$ have a smaller common denominator than the common denominator $d$ for $v$.

Explicitly,

$$
\begin{aligned}
w & =\tau_{\mathbf{r}}(v) \\
& =\tau_{\mathbf{r}}(\mathbf{q}+(1 / d) \mathbf{r}) \\
& =\tau_{\mathbf{r}}(\mathbf{q})-\frac{1}{d} \mathbf{r} \\
& =\left(\mathbf{q}-\frac{2 \mathbf{q} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} \mathbf{r}\right)-\frac{1}{d} \mathbf{r} \\
& =\mathbf{q}-\left(\frac{2 \mathbf{q} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}}+\frac{1}{d}\right) \mathbf{r}
\end{aligned}
$$

Multiplying (2.1) by $d /(\mathbf{r} \cdot \mathbf{r})$,

$$
\frac{d(v \cdot v)}{\mathbf{r} \cdot \mathbf{r}}=\frac{d(\mathbf{q} \cdot \mathbf{q})}{\mathbf{r} \cdot \mathbf{r}}+\frac{1}{d}+\frac{2 \mathbf{q} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}}
$$

so

$$
w=\mathbf{q}-\frac{d(v \cdot v-\mathbf{r} \cdot \mathbf{r})}{\mathbf{r} \cdot \mathbf{r}} \mathbf{r}=\mathbf{q}-\frac{v \cdot v-\mathbf{r} \cdot \mathbf{r}}{(\mathbf{r} \cdot \mathbf{r}) / d} \mathbf{r},
$$

where the denominator $(\mathbf{r} \cdot \mathbf{r}) / d$ is an integer: by (2.1),

$$
\frac{\mathbf{r} \cdot \mathbf{r}}{d}=d(v \cdot v-\mathbf{q} \cdot \mathbf{q})-2 \mathbf{q} \cdot \mathbf{r}
$$

and the right side is in $\mathbf{Z}$. We noted before that $\left(1 / d^{2}\right) \mathbf{r} \cdot \mathbf{r} \leq 1 / 2$, so $(\mathbf{r} \cdot \mathbf{r}) / d$ is at most $d / 2<d$, which means the common denominator for $w$ is less than that for $v$, so we are done with the sum of two squares case.

The exact same proof works for a sum of three squares, using dot products and reflections in three dimensions instead of two dimensions. The only change to be made is the following: now we have $\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right)$ where $\left|r_{i}\right| \leq(1 / 2) d$, so $\mathbf{r} \cdot \mathbf{r}=r_{1}^{2}+r_{2}^{2}+r_{3}^{2} \leq(3 / 4) d^{2}$ instead of $(1 / 2) d^{2}$. Now $\left(1 / d^{2}\right) \mathbf{r} \cdot \mathbf{r} \leq 3 / 4$ instead of $1 / 2$, so $(\mathbf{r} \cdot \mathbf{r}) / d \leq(3 / 4) d$ instead of $d / 2$. This is still less than $d$, so everything still works in the proof when it is done for sums of three squares.

Geometrically, we are looking at the circle $\left\{(x, y): x^{2}+y^{2}=a\right\}$ and taking reflections of rational points through the nearest Z-point to get new rational points.

The corresponding result for a sum of 2 cubes is false: $13=(7 / 3)^{3}+(2 / 3)^{3}$, but 13 is not a sum of two cubes in $\mathbf{Z}$ (look at how the cubes spread apart on the real line).

Theorem 2.1 has a nice application to the negative Pell equation. Pell's equation is $x^{2}-d y^{2}=1$ for $d \in \mathbf{Z}$, and a famous result in number theory says for each $d>1$ that's not a perfect square $(d=2,3,5,6,7,8,10,11,12, \ldots)$, the Pell equation $x^{2}-d y^{2}=1$ has a solution $(x, y)$ in positive integers. ${ }^{1}$ The negative Pell equation is $x^{2}-d y^{2}=-1$, and there is a strong constraint on the $d$ for which this equation admits an integral solution.

Corollary 2.4. If $x^{2}-d y^{2}=-1$ has a solution in $\mathbf{Z}$ then $d$ is a sum of two squares in $\mathbf{Z}$.
Proof. If $x^{2}-d y^{2}=-1$ for $x, y \in \mathbf{Z}$, then $y \neq 0$. Since $d y^{2}=x^{2}+1$, we have $d=$ $(x / y)^{2}+(1 / y)^{2}$. That shows $d$ is a sum of two rational squares, so $d$ must also be a sum of two integral squares.

[^0]A further constraint on $d$ in order for $x^{2}-d y^{2}=-1$ to be solvable in $\mathbf{Z}$ is that it has no prime factors that are $3 \bmod 4$ : necessarily $x^{2} \equiv-1 \bmod d$, so if $p \mid d$ for prime $p$ then $x^{2} \equiv-1 \bmod p$, and it's known that -1 is not a square $\bmod p$ for primes $p \equiv 3 \bmod 4 .{ }^{2}$ However, there are $d$ with no prime factors that are $3 \bmod 4$ and $x^{2}-d y^{2}=-1$ has no integral solution. The smallest two such squarefree $d$ are 34 and 146. A longer list of such $d$ is at https://oeis.org/A031398.

## 3. The polynomial analogue

Theorem 3.1. Let $Q: F^{n} \rightarrow F$ be a non-degenerate $n$-dimensional quadratic form over a field $F$ not of characteristic 2. If $v \in F(T)^{n}$ satisfies $Q(v) \in F[T]$ then there is some $w \in F[T]^{n}$ such that $Q(w)=Q(v)$. In other words, any polynomial that is represented by $Q$ over $F(T)$ is represented by $Q$ over $F[T]$.

The quadratic form in this theorem has coefficients in $F$, not simply in $F[T]$. For example, the 1-dimensional quadratic form $Q(x)=T^{2} x^{2}$ represents 1 over $F(T)$ but not over $F[T]$.

Proof. Let $v=\left(f_{1}, \ldots, f_{n}\right) \in F(T)^{n}$ satisfy $Q(v) \in F[T]$. Assume the $f_{i}$ 's are not all in $F[T]$. (Otherwise we are done.) Write the $f_{i}$ 's with a common denominator: $f_{i}=g_{i} / h$ where the $g_{i}$ 's and $h$ are in $F[T]$ and $h$ is non-constant. We want to find a $w \in F(T)^{n}$ such that $Q(w)=Q(v)$ and $w$ has a common denominator of smaller degree than deg $h$. Then repeating the argument will eventually produce a vector of polynomials $w \in F[T]^{n}$ such that $Q(w)=Q(v)$ and we're done.

In $F[T]$, divide each $g_{i}$ by the common denominator $h$ :

$$
g_{i}=h q_{i}+r_{i}
$$

where $q_{i}$ and $r_{i}$ are in $F[T]$ and $r_{i}=0$ or $\operatorname{deg} r_{i}<\operatorname{deg} h$. Since not all $f_{i}$ 's are in $F[T]$, some $r_{i}$ is nonzero. Thus $v=\left(f_{1}, \ldots, f_{n}\right)=\mathbf{q}+(1 / h) \mathbf{r}$ where $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ are in $F[T]^{n}$ and $\mathbf{r} \neq(0, \ldots, 0)$.

Let $B$ be the bilinear form associated to $Q$, so $B$ has coefficients in $F$ and

$$
\begin{equation*}
Q(v)=Q\left(\mathbf{q}+\frac{1}{h} \mathbf{r}\right)=Q(\mathbf{q})+\frac{1}{h^{2}} Q(\mathbf{r})+\frac{2}{h} B(\mathbf{q}, \mathbf{r}) \tag{3.1}
\end{equation*}
$$

Since $\mathbf{q}$ and $\mathbf{r}$ are polynomial vectors and $Q$ and $B$ have coefficients in $F$, the values $Q(\mathbf{q}), Q(\mathbf{r})$, and $B(\mathbf{q}, \mathbf{r})$ are in $F[T]$. Since $\operatorname{deg}\left(r_{i} r_{j}\right)<2 \operatorname{deg} h$ or $r_{i} r_{j}=0, Q(\mathbf{r})$ is 0 or $\operatorname{deg} Q(\mathbf{r})<2 \operatorname{deg} h$. (Here we use the non-archimedean nature of the degree on $F[T]$, which has no analogue for the absolute value on $\mathbf{Z}$.)

We consider now two cases: $Q(\mathbf{r})=0$ and $Q(\mathbf{r}) \neq 0$.
If $Q(\mathbf{r})=0$ then $\mathbf{r}$ is a nonzero null vector for $Q$. Necessarily $n>1$ ( $n$ is the dimension of $Q$ ), since $Q$ is non-degenerate: a 1-dimensional quadratic form doesn't have any nonzero null vectors. We will find a nonzero constant vector $v_{0} \in F^{n}$ such that $Q\left(v_{0}\right)=0$. Then, since $n>1$ and $Q$ is non-degenerate, there is another null vector $w_{0}$ for $Q$ in $F^{n}$ with $B\left(v_{0}, w_{0}\right)=1$. Then for any $f \in F[T]$, the polynomial vector $f v_{0}+(1 / 2) w_{0} \in F[T]^{n}$ satisfies

$$
Q\left(f v_{0}+(1 / 2) w_{0}\right)=f^{2} Q\left(v_{0}\right)+\frac{1}{4} Q\left(w_{0}\right)+2 B\left(f v_{0},(1 / 2) w_{0}\right)=f,
$$

showing $Q$ is universal over $F[T]$. We are done.

[^1]To find such $v_{0}$, pull out the largest factor of $T$ common to all the coordinates of $\mathbf{r}$ : $\mathbf{r}=T^{k}\left(\mathbf{r}_{0}+T \mathbf{r}_{1}\right)$, where $k \geq 0, \mathbf{r}_{0} \in F^{n}, \mathbf{r}_{0} \neq \mathbf{0}$, and $\mathbf{r}_{1} \in F[T]^{n}$. Then

$$
0=Q(\mathbf{r})=T^{2 k} Q\left(\mathbf{r}_{0}+T \mathbf{r}_{1}\right)=T^{2 k}\left(Q\left(\mathbf{r}_{0}\right)+T^{2} Q\left(\mathbf{r}_{1}\right)+2 T B\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)\right) .
$$

Therefore $0=Q\left(\mathbf{r}_{0}\right)+T^{2} Q\left(\mathbf{r}_{1}\right)+2 T B\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)$, Evaluating at $T=0$ shows $\mathbf{r}_{0} \in F^{n}$ is a null vector for $Q$. Use $v_{0}=\mathbf{r}_{0}$.

Now suppose $Q(\mathbf{r}) \neq 0$. As in the situation over $\mathbf{Q}$, consider the reflection $w=\tau_{\mathbf{r}}(v)$. From the properties of reflections, $Q(w)=Q(v)$. We will show the coordinates of $w \in F(T)^{n}$ have a common denominator with smaller degree than the common denominator $h$ for $v$.

Explicitly,

$$
\begin{aligned}
w & =\tau_{\mathbf{r}}(v) \\
& =\tau_{\mathbf{r}}(\mathbf{q}+(1 / h) \mathbf{r}) \\
& =\tau_{\mathbf{r}}(\mathbf{q})-\frac{1}{h} \mathbf{r} \\
& =\left(\mathbf{q}-\frac{2 B(\mathbf{q}, \mathbf{r})}{Q(\mathbf{r})} \mathbf{r}\right)-\frac{1}{h} \mathbf{r} \\
& =\mathbf{q}-\left(\frac{2 B(\mathbf{q}, \mathbf{r})}{Q(\mathbf{r})}+\frac{1}{h}\right) \mathbf{r} .
\end{aligned}
$$

Multiplying (3.1) by $h / Q(\mathbf{r})$,

$$
\frac{h Q(\mathbf{v})}{Q(\mathbf{r})}=\frac{h Q(\mathbf{q})}{Q(\mathbf{r})}+\frac{1}{h}+\frac{2 B(\mathbf{q}, \mathbf{r})}{Q(\mathbf{r})}
$$

so

$$
w=\mathbf{q}-\frac{h(Q(v)-Q(\mathbf{r}))}{Q(\mathbf{r})} \mathbf{r}=\mathbf{q}-\frac{Q(v)-Q(\mathbf{r})}{Q(\mathbf{r}) / h} \mathbf{r},
$$

where the denominator $Q(\mathbf{r}) / h$ is a polynomial: by (3.1),

$$
\frac{Q(\mathbf{r})}{h}=h(Q(v)-Q(\mathbf{q}))-2 B(\mathbf{q}, \mathbf{r})
$$

and the right side is in $F[T]$ (here, for the first time in the case when $Q(\mathbf{r}) \neq 0$, we use the assumption that $Q(v) \in F[T])$. The degree of $Q(\mathbf{r}) / h$ is $\operatorname{deg} Q(\mathbf{r})-\operatorname{deg} h<2 \operatorname{deg} h-\operatorname{deg} h=$ $\operatorname{deg} h$, so we are done.

Corollary 3.2. If a polynomial in $F[T]$ is a sum of $n$ squares in $F(T)$ then it is a sum of $n$ squares in $F[T]$.
Proof. Take $Q\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$ in Theorem 3.1.


[^0]:    ${ }^{1}$ See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf and https://kconrad. math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf.

[^1]:    ${ }^{2}$ This leads to a second proof of Corollary 2.4 , since primes that are not $3 \bmod 4$ are known to be sums of two squares and the sums of two squares in $\mathbf{Z}^{+}$are closed under multiplication.

