STABLY FREE MODULES

KEITH CONRAD

1. INTRODUCTION

Let R be a commutative ring. When an R-module has a particular module-theoretic
property after direct summing it with a finite free module, it is said to have the property
stably. For example, R-modules M and N are stably isomorphic if R¥ & M = R* @ N for
some k > 0. An R-module M is stably free if it is stably isomorphic to a free module:
RF @ M is free for some k. When M is finitely generated and stably free, then for some k
R* @ M is finitely generated and free, so R¥ @ M =2 R’ for some ¢. Necessarily k < £ (why?).
Are stably isomorphic modules in fact isomorphic? Is a stably free module actually free?
Not always, and that’s why the concepts are interesting. This “stable mathematics” is part
of algebraic K-theory. Our purpose here is to describe the simplest example of a non-free
module that is stably free and then discuss what it means for all stably free modules over
a ring to be free.

Theorem 1.1. Let R be the ring Rlz,y,2]/(2® + y* + 22 —1). Let T = {(f,g,h) € R3:
rf +yg+zh=01in R}. Then R®T = R3, but T % R2.

The module T in this theorem is stably free (it is stably isomorphic to R?), but it is not
a free module. Indeed, if T is free then (since T is finitely generated; the theorem shows it
admits a surjection from R?) for some n we have T2 R", so R® R" = R3. Since R® = R}
only if a = b for nonzero commutative rings R' 1 +n = 3 so n = 2. But this contradicts
the non-isomorphism in the conclusion of the theorem.

It’s worth noting that the ranks in the theorem are as small as possible for a non-free
stably free module. If R is a commutative ring and M is an R-module such that R6M = R
then M = 0. If R® M = R? then M = R. The first time we could have R @ M = R’ with
M 2 R 1is ¢ =3, and Theorem 1.1 shows such an example occurs.

2. PROOF OoF THEOREM 1.1

In the proof of Theorem 1.1 it will be easy to show R @ T = R3. But the proof that
T 2 R? will require a theorem from topology about vector fields on the sphere. We denote
the module as T because it is related to tangent vectors on the sphere.

Proof. Since R is a ring, on R3 we can consider the dot product R? x R? — R. For example,
(2,9,2) - (z,y,2) =22 +y?> +22=1. Forallve R let r = v- (2,9,2) € R. Then

(v—r(q:,y,z))-(az,y,z) :V'(SL‘,y,Z)—T‘(l‘,y,Z)' (:vaaz) =r—r=0,

1f R* =~ R® as R-modules then, for a maximal ideal m in R, that R-module isomorphism implies m® 2 m®
and therefore R%/m® = R®/m®, so (R/m)® = (R/m)’ as R/m-vector spaces. By linear algebra over the field
R/m, a=b.
1
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so v —r(x,y,2) € T. That means R® = R(x,y,z) +T. This sum is direct since R(x,y,z)N
T =(0,0,0): if r(x,y,2) € T then dotting r(x,y, z) with (z,y, z) implies » = 0. So we have
proved

(2.1) R® = R(z,y,2) © T.
Since R = R(x,y,z) by r = r(z,y, 2), R® = R®T. Thus T is stably free.
Now we will show by contradiction that 7' % R?. Assume T = R?, so T has an R-basis

of size 2, say (f,g,h) and (F,G,H). By (2.1) the three vectors (z,y,2), (f,9,h), (F,G, H)
in R? are an R-basis, so the matrix

z f F
y g G
z h H
in M3(R) must be invertible: it is the change-of-basis matrix between the standard basis of

R3 and the basis (z,v, 2), (f,9,h), (F,G, H). Therefore the determinant of this matrix is a
unit in R:

z f F
(2.2) det| v g G | € R*
z h H

It makes sense to evaluate elements of R at points (g, %o, 20) on the unit sphere S2:
polynomials in R[z,y, z] that are congruent modulo z2 + 32 + 22 — 1 take the same value at
all (0,0, 20) € S? since 13 +y2 + 23 — 1 = 0. A unit in R takes nonzero values everywhere
on the sphere: if a(z,y, 2)b(z,y,2) = 1 in R then a(xo, Yo, 20)b(x0, Y0, 20) = 1 in R when
(70, %0, 20) € S?. In particular, at each point v € S? the determinant in (2.2) has a nonzero
value, so (f(v),g(v),h(v)) € R®—{0}. Thus v — (f(v),g(v), h(v)) is a nowhere vanishing
vector field on S? with continuous components (polynomial functions are continuous). But
this is impossible: the hairy ball theorem in topology says every continuous vector field on
the sphere vanishes at least once. [l

There is a stably free non-free module Ty over Z[z, y, 2]/ (z?+y*+22—1). The construction
is analogous to the previous one. Elements of Z[x, vy, 2]/(z?+%?+ 22 —1) can be evaluated on
the real sphere, and the proof that Ty is not a free module uses evaluations of polynomials
at points on the real sphere as before.

For each d > 1, every continuous vector field on the 2d-dimensional sphere $2¢ vanishes
somewhere, so over

(23) R:R[$1,...,$2d+1]/(1’%—|—"‘+l‘§d+1 - 1)

the tangent module T = {(f1,..., foas1) € R¥*1: S 2;f; = 0 in R} is stably free but not
free: R@® T = R*+! but T % R,

3. WHEN STABLY FREE MODULES MUST BE FREE

For some rings R, all stably free finitely generated R-modules are free. This holds if
R is a field since all vector spaces are free (have bases). It also holds if R is a PID: a
stably free R-module is a submodule of a finite free R-module, and every submodule of a
finite free module over a PID is a free module. A much more difficult example is when
R =Fk[X1,...,X,], where k is a field. (This is Serre’s conjecture, proved independently by
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Quillen and Suslin with & allowed to be a PID, not just a field.?) In this section we show
how the task of proving all stably free finitely generated modules over a particular ring R
are free can be formulated as a linear algebra problem over R. (It is shown in the appendix
that over every nonzero commutative ring, a non-finitely generated module that is stably
free must be free, so there is no loss of generality in focusing on finitely generated modules.)

To distinguish n-tuples (ay,...,ay) in R™ from the ideal (ai,...,a,) = Ra; + -+ + Ray,
in R, denote the n-tuple in R™ as [a,...,ay].

Theorem 3.1. Fiz a nonzero commutative ring R and a positive integer n. The following
conditions are equivalent.

(1) For every R-module M, if M & R = R™ then M is free.
(2) Every vector |ay,...,a,] € R" satisfying (a1,...,a,) = R is part of a basis of R™.

Proof. Both (1) and (2) are true (for all R) when n = 1, so we may suppose n > 2.

(1) = (2): Suppose (a1,...,a,) = R, so Y a;b; =1 for some b; € R. Set a = [a1,...,a,]
and b = [b1,...,b,]. Let f: R" — R by f(v) =v-b,so f(a) =1 and R" = Ra® ker f by
the decomposition

v=[f(v)at+(v—f(v)a)
(This sum decomposition is unique because if v = ra+ w with r € R and w € ker f then
applying f to both sides shows f(v) =7, so w = v —ra = v — f(v)a.) Since Ra = R
by v — v - b (concretely, ra — r), R™ is isomorphic to R @ ker f, so ker f is free by (1).
Adjoining a to a basis of ker f provides us with a basis of R".

(2) = (1): Let g: M ® R — R™ be an R-module isomorphism. Set a = ¢(0,1) =
[a1,...,ay]. To show the ideal (ai,...,ay) is R, suppose it is not. Then there is a maximal
ideal m containing each a;, so g(0,1) C m™. However, the isomorphism ¢ restricts to an
isomorphism from m(M & R) = mM @ m to mR"” = m"”, so g(0,1) being in m"™ implies
(0,1) € mM @ m, which is false.

By (2) there is a basis of R" containing a. Every R-basis of R” contains n elements® so
we can write the basis of R" as v1,...,v, with vi = a. Then g~'(vy),..., g *(vy,) is a basis
of M & R, with g=!(v1) = (0,1). Fori = 2,...,n, write g~ (v;) = (m;, ¢;). Subtracting a
multiple of (0, 1) from each (m;, ¢;) for i = 2,...,n, we get a basis (0, 1), (me,0),..., (my,0)
of M & R. Writing (m,0) in M @& R as a linear combination of these shows ma,...,m,
spans M as an R-module and is linearly independent, so M is free. ]

Corollary 3.2. For a commutative ring R, the following conditions are equivalent.

(1) For all R-modules M, if M & R = R™ for some n then M is free.

(2) For allm > 1, every vector |ay,...,a,] € R" satisfying (a1, ...,a,) = R is part of a
basis of R™.

(3) All stably free finitely generated R-modules are free.

Proof. (1) < (2): This equivalence is Theorem 3.1 for all n.

(1) = (3): Suppose M is a stably free R-module, so M @ R¥ = R’ for some k and ¢. We
want to show M is free. If k = 0 then obviously M is free. If k > 1 then (M®RF1)®R = R’,
so (1) with n = £ tells us that M @ RF~! is free. By induction on &, the module M is free.

2The actual problem put forward by Serre was to show every finitely generated projective module over
k[X1,...,X,] is free. He showed such modules are stably free, so his problem reduces to the version we
stated about freeness of stably free finitely generated modules over k[X71,. .., Xn,].

3If a basis contains n’ elements then R™ = R™ , so n’ = n by the first footnote.
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(3) = (1): If M & R = R" for some n then M is stably free, and thus M is free by
(3). O

Corollary 3.2(2) expresses the freeness of all stably free finitely generated R-modules as
a problem in linear algebra in R™ (over all n). The condition there that the coordinates
generate the unit ideal is necessary if [aq,...,a,] has a chance to be part of a basis of R™:

Theorem 3.3. If [a1,...,ay] € R™ is part of a basis of R"™ then the ideal (ay,...,ay,) is the

unit ideal.

Proof. We are assuming there is an R-basis of R™ that contains the n-tuple [a1,...,ay]. Any
basis has n elements, so write the basis as vi,..., v, with vi = [a1, ..., ay,]. Write each v; in
coordinates relative to the standard basis of R", say v; = [c1j,...,Cpn;] (s0 a; = ¢;1). Then
the matrix (¢;;) has the v;’s as its columns, so this matrix describes the linear transformation
R™ — R" sending the standard basis of R" to vi,...,v,. Since the v;’s form a basis, this
matrix is invertible: det(c;;) € R*. Expanding the determinant along its first column shows
det(c;;) is an R-linear combination of a1, ...,a,, so det(c;;) € (ai,...,a,). Therefore the
ideal (ay,...,a,) contains a unit, so the ideal is R. O

Thus all stably free finitely generated R-modules are free if and only if for all n the
“obvious” necessary condition for a vector in R™ to be part of a basis of R" is a sufficient
condition.

Example 3.4. If [a1,...,a,] in Z" is part of a basis of Z™ then ged(ay,...,a,) = 1. For
example, the vector [6, 9, 15] is not part of a basis of Z3 since its coordinates are all multiples
of 3. The vector [6,10,15] has no common factors among its coordinates (although each
pair of coordinates has a common factor). Is it part of a basis of Z3? Essentially we are
asking if the necessary condition in Theorem 3.3 is also sufficient over Z. It is in this case:
the vectors [6,10, 15],[1,1,0], and [0, 3,11] are a basis of Z3. (A matrix with these vectors
as the columns has determinant +1.)

For a nonzero commutative ring R, the necessary condition (ay,...,a,) = R in Theorem
3.3 is actually sufficient for [aq,...,a,] to be part of a basis of R™ when n =1 and n = 2.
For n = 1, if (a1) = R then a; is a unit and thus is a basis of R as an R-module. For
n = 2, if (a1,a2) = R then there are by, by € R such that a1b; + agby = 1, so the matrix
(o _15)12) has determinant 1 and therefore its columns are a basis of R2. What if n > 27
The necessary condition is sufficient when R is a PID by Corollary 3.2 since we already
saw that stably free = free when R is a PID. (e.g., R = Z or F[X]). More generally, the
necessary condition is sufficient when R is a Dedekind domain [6], [7], but Theorem 1.1
provides us with a ring admitting a stably free module that is not free, and this leads to a
counterexample when n = 3.

Example 3.5. Let R = Rlz,y,2]/(2? + y?> + 22 — 1). In the free module R3, the triple
[x,y, z] satisfies the condition of Theorem 3.3: the ideal (z,y, z) of R is the unit ideal since
22 +y? + 22 = 1 in R. However, there is no basis of R? containing [z, ¥, 2]. Indeed, assume
there is a basis vy, va, v3 where vi = [z,y, z]. Then there is a matrix in GL3(R) with first
column v1, and the argument in the proof of Theorem 1.1 derives a contradiction from this.

The “sphere rings” R[z1,...,2,]/(22 + - + 22 — 1) for odd n > 3 provide additional
examples where the condition in Theorem 3.3 is not sufficient to guarantee an n-tuple in
R"™ is part of a basis of R™.
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Another use of the ring R = R[z,y, z]/(2? + y* + 22 — 1) as a counterexample in algebra
involves matrices with trace 0. Since Tr(AB) = Tr(BA), every matrix of the form AB— BA
(called a commutator) has trace 0. Over a field, the converse holds [1]: every square matrix
with trace 0 is a commutator. However, the matrix (7 _% ) in Ma(R) has trace 0 and it is
proved in [8] that this matrix is not a commutator in Ma(R). But all is not lost. A matrix
with trace 0 is always a sum of two commutators [5].

APPENDIX A. THEOREMS OF GABEL AND BASS

Our discussion of stably free modules focused on finitely generated ones. The reason
is that in the case of non-finitely generated modules there are no interesting stably free
modules.

Theorem A.1 (Gabel). If M is stably free and not finitely generated then M is free.

Proof. Let F := M @ R* be free. We want to show M is free.

Projection from F' onto M is a surjective linear map, so M not being finitely generated
implies F' is not finitely generated. Let {e;};c; be a basis of F, so the index set I is infinite.

Projection from F onto R is a surjective linear map f: F — RF with kernel M. The
standard basis of R* is in the image of the span of finitely many e;’s, say the submodule
F':= Rej+---+Reg has f(F') = R¥. Foreach v € F, f(v) = f(v') for some v/ € F’. Then
v—v €kerf=M,so F=F + M. The module F’ is finite free and F'/(M N F') = RF.
Since R is free (and thus a projective module), there is an isomorphism F’ = N @ RF where
N=MNF' Since '+ M =F, F/F'= M/N and F/F' = @,., Re; is free with infinite
rank, so we can write F/F' = R* @ F" for some free F”. Therefore M/N is free, so

M=N@®(M/NY2Na (F/F)2NoR o F' = F ¢ F”",
which is free. U

To prove all stably free modules over a (nonzero commutative) ring R are free is the
same as showing M @ R*¥ = R’ = M is free for all k and £. When such an isomorphism
occurs, £ — k = dimp /(M /mM) for all maximal ideals m in R, so ¢ — k is well-defined by
M although ¢ and k are not. We call £ — k the rank of M. For example, if M & R = R"
then M has rank n — 1. We will prove a theorem of Bass that reduces the verification that
all stably free R-modules are free to the case of even rank.

Lemma A.2. If M & R = R* for some d>1 then M = R® N for some R-module N.

Proof. Composing an isomorphism R>? = M @ R with projection to the second summand
gives us a surjective map ¢: R?? — R with kernel isomorphic to M. Since every linear map
R* — R is dotting with a fixed vector, there is some w € R?? such that p(v) = v - w for
all v € R, Set w = (c1,...,coq). Then

QO(CQ, —Cl,y...,Cq, *CQd—l) =0.
Let u = (c2,—c1,...,C24, —C2q—1) € kerp = M. We will show there is a submodule N of
M such that M =2 R® N.
Choose (r1,...,72q) € R?® such that o(ri,...,req) = 1, 50 c171 + -+ + cogroq = 1.
Then u - (rg, —71,...,799, —T2q_1) = 1, so the linear map f: R?*? — R given by f(v) =
v - (ro,—ri,...,Taq, —Toq4—1) satisfies f(u) = 1. Since u € ker¢, the restriction of f to

a linear map kerp — R is surjective and restricts to an isomorphism Ru — R. Thus
M =kerp=Rudkerf=R®kerf. g
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Remark A.3. It is generally false that if M @ R =2 R?*! then M = R@ N for some N. An
example is R being the sphere ring (2.3) when 2d + 1 # 1,3 or 7 and M being the tangent
module 7. Our work in Section 2 shows T @ R = R?*1 A proof that T 2 R @& N for an
R-module N is in [3, pp. 33-35].

Theorem A.4 (Bass). The following conditions on a commutative ring R are equivalent.

(1) All stably free finitely generated R-modules are free.
(2) All stably free finitely generated R-modules of even rank are free.

Proof. Tt’s clear that (1) = (2). To show (2) = (1), suppose M @ R* = R’ (so k < ¢) with
¢ —k an odd number. If k = 0 then M is free. If k > 0 then (M ®R)OR* ' = R!, so M®R
is stably free of even rank £ — (k —1). Then M @ R = R**+1 so M = R@ N for some N
by Lemma A.2. Therefore N @ R? is free of even rank £ — k + 1, so N is stably free of odd
rank ({ —k+1) —2=/—k—1. By induction N = R+l so M2 Ro N= R O
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