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1. Introduction

Let R be a commutative ring. When an R-module has a particular module-theoretic
property after direct summing it with a finite free module, it is said to have the property
stably. For example, R-modules M and N are stably isomorphic if Rk ⊕M ∼= Rk ⊕N for
some k ≥ 0. An R-module M is stably free if it is stably isomorphic to a free module:
Rk ⊕M is free for some k. When M is finitely generated and stably free, then for some k
Rk⊕M is finitely generated and free, so Rk⊕M ∼= R` for some `. Necessarily k ≤ ` (why?).
Are stably isomorphic modules in fact isomorphic? Is a stably free module actually free?
Not always, and that’s why the concepts are interesting. This “stable mathematics” is part
of algebraic K-theory. Our purpose here is to describe the simplest example of a non-free
module that is stably free and then discuss what it means for all stably free modules over
a ring to be free. It is due to Hochster (second paragraph of [2]).

Theorem 1.1. Let R be the ring R[x, y, z]/(x2 + y2 + z2 − 1). Let T = {(f, g, h) ∈ R3 :
xf + yg + zh = 0 in R}. Then R⊕ T ∼= R3, but T 6∼= R2.

The module T in this theorem is stably free (it is stably isomorphic to R2), but it is not
a free module. Indeed, if T is free then (since T is finitely generated; the theorem shows it
admits a surjection from R3) for some n we have T ∼= Rn, so R⊕Rn ∼= R3. Since Ra ∼= Rb

only if a = b for nonzero commutative rings R1 1 + n = 3 so n = 2. But this contradicts
the non-isomorphism in the conclusion of the theorem.

It’s worth noting that the ranks in the theorem are as small as possible for a non-free
stably free module. If R is a commutative ring and M is an R-module such that R⊕M ∼= R
then M = 0. If R⊕M ∼= R2 then M ∼= R. The first time we could have R⊕M ∼= R` with
M 6∼= R`−1 is ` = 3, and Theorem 1.1 shows such an example occurs.

2. Proof of Theorem 1.1

In the proof of Theorem 1.1 it will be easy to show R ⊕ T ∼= R3. But the proof that
T 6∼= R2 will require a theorem from topology about vector fields on the sphere. We denote
the module as T because it is related to tangent vectors on the sphere.

Proof. Since R is a ring, on R3 we can consider the dot product R3×R3 → R. For example,
(x, y, z) · (x, y, z) = x2 + y2 + z2 = 1. For all v ∈ R3, let r = v · (x, y, z) ∈ R. Then

(v − r(x, y, z)) · (x, y, z) = v · (x, y, z)− r(x, y, z) · (x, y, z) = r − r = 0,

1If Ra ∼= Rb as R-modules then, for a maximal ideal m in R, that R-module isomorphism implies ma ∼= mb

and therefore Ra/ma ∼= Rb/mb, so (R/m)a ∼= (R/m)b as R/m-vector spaces. By linear algebra over the field
R/m, a = b.
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so v− r(x, y, z) ∈ T . That means R3 = R(x, y, z) + T . This sum is direct since R(x, y, z)∩
T = (0, 0, 0): if r(x, y, z) ∈ T then dotting r(x, y, z) with (x, y, z) implies r = 0. So we have
proved

(2.1) R3 = R(x, y, z)⊕ T.

Since R ∼= R(x, y, z) by r 7→ r(x, y, z), R3 ∼= R⊕ T . Thus T is stably free.
Now we will show by contradiction that T 6∼= R2. Assume T ∼= R2, so T has an R-basis

of size 2, say (f, g, h) and (F,G,H). By (2.1) the three vectors (x, y, z), (f, g, h), (F,G,H)
in R3 are an R-basis, so the matrix  x f F

y g G
z h H


in M3(R) must be invertible: it is the change-of-basis matrix between the standard basis of
R3 and the basis (x, y, z), (f, g, h), (F,G,H). Therefore the determinant of this matrix is a
unit in R:

(2.2) det

 x f F
y g G
z h H

 ∈ R×.

It makes sense to evaluate elements of R at points (x0, y0, z0) on the unit sphere S2:
polynomials in R[x, y, z] that are congruent modulo x2 + y2 + z2− 1 take the same value at
all (x0, y0, z0) ∈ S2 since x20 + y20 + z20 − 1 = 0. A unit in R takes nonzero values everywhere
on the sphere: if a(x, y, z)b(x, y, z) = 1 in R then a(x0, y0, z0)b(x0, y0, z0) = 1 in R when
(x0, y0, z0) ∈ S2. In particular, at each point v ∈ S2 the determinant in (2.2) has a nonzero
value, so (f(v), g(v), h(v)) ∈ R3−{0}. Thus v 7→ (f(v), g(v), h(v)) is a nowhere vanishing
vector field on S2 with continuous components (polynomial functions are continuous). But
this is impossible: the hairy ball theorem in topology says every continuous vector field on
the sphere vanishes at least once. �

There is a stably free non-free module TZ over Z[x, y, z]/(x2+y2+z2−1). The construction
is analogous to the previous one. Elements of Z[x, y, z]/(x2+y2+z2−1) can be evaluated on
the real sphere, and the proof that TZ is not a free module uses evaluations of polynomials
at points on the real sphere as before.

For each d ≥ 1, every continuous vector field on the 2d-dimensional sphere S2d vanishes
somewhere, so over

(2.3) R = R[x1, . . . , x2d+1]/(x21 + · · ·+ x22d+1 − 1)

the tangent module T = {(f1, . . . , f2d+1) ∈ R2d+1 :
∑

xifi = 0 in R} is stably free but not
free: R⊕ T ∼= R2d+1 but T 6∼= R2d.

3. When Stably Free Modules Must Be Free

For some rings R, all stably free finitely generated R-modules are free. This holds if
R is a field since all vector spaces are free (have bases). It also holds if R is a PID: a
stably free R-module is a submodule of a finite free R-module, and every submodule of a
finite free module over a PID is a free module. A much more difficult example is when
R = k[X1, . . . , Xn], where k is a field. (This is Serre’s conjecture, proved independently by
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Quillen and Suslin with k allowed to be a PID, not just a field.2) In this section we show
how the task of proving all stably free finitely generated modules over a particular ring R
are free can be formulated as a linear algebra problem over R. (It is shown in the appendix
that over every nonzero commutative ring, a non-finitely generated module that is stably
free must be free, so there is no loss of generality in focusing on finitely generated modules.)

To distinguish n-tuples (a1, . . . , an) in Rn from the ideal (a1, . . . , an) = Ra1 + · · ·+ Ran
in R, denote the n-tuple in Rn as [a1, . . . , an].

Theorem 3.1. Fix a nonzero commutative ring R and a positive integer n. The following
conditions are equivalent.

(1) For every R-module M , if M ⊕R ∼= Rn then M is free.
(2) Every vector [a1, . . . , an] ∈ Rn satisfying (a1, . . . , an) = R is part of a basis of Rn.

Proof. Both (1) and (2) are true (for all R) when n = 1, so we may suppose n ≥ 2.
(1) ⇒ (2): Suppose (a1, . . . , an) = R, so

∑
aibi = 1 for some bi ∈ R. Set a = [a1, . . . , an]

and b = [b1, . . . , bn]. Let f : Rn → R by f(v) = v · b, so f(a) = 1 and Rn = Ra⊕ ker f by
the decomposition

v = f(v)a + (v − f(v)a).

(This sum decomposition is unique because if v = ra + w with r ∈ R and w ∈ ker f then
applying f to both sides shows f(v) = r, so w = v − ra = v − f(v)a.) Since Ra ∼= R
by v 7→ v · b (concretely, ra 7→ r), Rn is isomorphic to R ⊕ ker f , so ker f is free by (1).
Adjoining a to a basis of ker f provides us with a basis of Rn.

(2) ⇒ (1): Let g : M ⊕ R → Rn be an R-module isomorphism. Set a = g(0, 1) =
[a1, . . . , an]. To show the ideal (a1, . . . , an) is R, suppose it is not. Then there is a maximal
ideal m containing each ai, so g(0, 1) ⊂ mn. However, the isomorphism g restricts to an
isomorphism from m(M ⊕ R) = mM ⊕ m to mRn = mn, so g(0, 1) being in mn implies
(0, 1) ∈ mM ⊕m, which is false.

By (2) there is a basis of Rn containing a. Every R-basis of Rn contains n elements3 so
we can write the basis of Rn as v1, . . . ,vn with v1 = a. Then g−1(v1), . . . , g

−1(vn) is a basis
of M ⊕ R, with g−1(v1) = (0, 1). For i = 2, . . . , n, write g−1(vi) = (mi, ci). Subtracting a
multiple of (0, 1) from each (mi, ci) for i = 2, . . . , n, we get a basis (0, 1), (m2, 0), . . . , (mn, 0)
of M ⊕ R. Writing (m, 0) in M ⊕ R as a linear combination of these shows m2, . . . ,mn

spans M as an R-module and is linearly independent, so M is free. �

Corollary 3.2. For a commutative ring R, the following conditions are equivalent.

(1) For all R-modules M , if M ⊕R ∼= Rn for some n then M is free.
(2) For all n ≥ 1, every vector [a1, . . . , an] ∈ Rn satisfying (a1, . . . , an) = R is part of a

basis of Rn.
(3) All stably free finitely generated R-modules are free.

Proof. (1) ⇔ (2): This equivalence is Theorem 3.1 for all n.
(1) ⇒ (3): Suppose M is a stably free R-module, so M ⊕Rk ∼= R` for some k and `. We

want to show M is free. If k = 0 then obviously M is free. If k ≥ 1 then (M⊕Rk−1)⊕R ∼= R`,
so (1) with n = ` tells us that M ⊕Rk−1 is free. By induction on k, the module M is free.

2The actual problem put forward by Serre was to show every finitely generated projective module over
k[X1, . . . , Xn] is free. He showed such modules are stably free, so his problem reduces to the version we
stated about freeness of stably free finitely generated modules over k[X1, . . . , Xn].

3If a basis contains n′ elements then Rn ∼= Rn′
, so n′ = n by the first footnote.
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(3) ⇒ (1): If M ⊕ R ∼= Rn for some n then M is stably free, and thus M is free by
(3). �

Corollary 3.2(2) expresses the freeness of all stably free finitely generated R-modules as
a problem in linear algebra in Rn (over all n). The condition there that the coordinates
generate the unit ideal is necessary if [a1, . . . , an] has a chance to be part of a basis of Rn:

Theorem 3.3. If [a1, . . . , an] ∈ Rn is part of a basis of Rn then the ideal (a1, . . . , an) is the
unit ideal.

Proof. We are assuming there is an R-basis of Rn that contains the n-tuple [a1, . . . , an]. Any
basis has n elements, so write the basis as v1, . . . ,vn with v1 = [a1, . . . , an]. Write each vj in
coordinates relative to the standard basis of Rn, say vj = [c1j , . . . , cnj ] (so ai = ci1). Then
the matrix (cij) has the vj ’s as its columns, so this matrix describes the linear transformation
Rn → Rn sending the standard basis of Rn to v1, . . . ,vn. Since the vj ’s form a basis, this
matrix is invertible: det(cij) ∈ R×. Expanding the determinant along its first column shows
det(cij) is an R-linear combination of a1, . . . , an, so det(cij) ∈ (a1, . . . , an). Therefore the
ideal (a1, . . . , an) contains a unit, so the ideal is R. �

Thus all stably free finitely generated R-modules are free if and only if for all n the
“obvious” necessary condition for a vector in Rn to be part of a basis of Rn is a sufficient
condition.

Example 3.4. If [a1, . . . , an] in Zn is part of a basis of Zn then gcd(a1, . . . , an) = 1. For
example, the vector [6, 9, 15] is not part of a basis of Z3 since its coordinates are all multiples
of 3. The vector [6, 10, 15] has no common factors among its coordinates (although each
pair of coordinates has a common factor). Is it part of a basis of Z3? Essentially we are
asking if the necessary condition in Theorem 3.3 is also sufficient over Z. It is in this case:
the vectors [6, 10, 15], [1, 1, 0], and [0, 3, 11] are a basis of Z3. (A matrix with these vectors
as the columns has determinant ±1.)

For a nonzero commutative ring R, the necessary condition (a1, . . . , an) = R in Theorem
3.3 is actually sufficient for [a1, . . . , an] to be part of a basis of Rn when n = 1 and n = 2.
For n = 1, if (a1) = R then a1 is a unit and thus is a basis of R as an R-module. For
n = 2, if (a1, a2) = R then there are b1, b2 ∈ R such that a1b1 + a2b2 = 1, so the matrix

( a1 −b2
a2 b1

) has determinant 1 and therefore its columns are a basis of R2. What if n > 2?
The necessary condition is sufficient when R is a PID by Corollary 3.2 since we already
saw that stably free ⇒ free when R is a PID. (e.g., R = Z or F [X]). More generally, the
necessary condition is sufficient when R is a Dedekind domain [7], [8], but Theorem 1.1
provides us with a ring admitting a stably free module that is not free, and this leads to a
counterexample when n = 3.

Example 3.5. Let R = R[x, y, z]/(x2 + y2 + z2 − 1). In the free module R3, the triple
[x, y, z] satisfies the condition of Theorem 3.3: the ideal (x, y, z) of R is the unit ideal since
x2 + y2 + z2 = 1 in R. However, there is no basis of R3 containing [x, y, z]. Indeed, assume
there is a basis v1,v2,v3 where v1 = [x, y, z]. Then there is a matrix in GL3(R) with first
column v1, and the argument in the proof of Theorem 1.1 derives a contradiction from this.

The “sphere rings” R[x1, . . . , xn]/(x21 + · · · + x2n − 1) for odd n ≥ 3 provide additional
examples where the condition in Theorem 3.3 is not sufficient to guarantee an n-tuple in
Rn is part of a basis of Rn.
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Another use of the ring R = R[x, y, z]/(x2 + y2 + z2 − 1) as a counterexample in algebra
involves matrices with trace 0. Since Tr(AB) = Tr(BA), every matrix of the form AB−BA
(called a commutator) has trace 0. Over a field, the converse holds [1]: every square matrix
with trace 0 is a commutator. However, the matrix ( x y

z −x ) in M2(R) has trace 0 and it is
proved in [9] that this matrix is not a commutator in M2(R). But all is not lost. A matrix
with trace 0 is always a sum of two commutators [6].

Appendix A. Theorems of Gabel and Bass

Our discussion of stably free modules focused on finitely generated ones. The reason
is that in the case of non-finitely generated modules there are no interesting stably free
modules.

Theorem A.1 (Gabel). If M is stably free and not finitely generated then M is free.

Proof. Let F := M ⊕Rk be free. We want to show M is free.
Projection from F onto M is a surjective linear map, so M not being finitely generated

implies F is not finitely generated. Let {ei}i∈I be a basis of F , so the index set I is infinite.
Projection from F onto Rk is a surjective linear map f : F � Rk with kernel M . The

standard basis of Rk is in the image of the span of finitely many ei’s, say the submodule
F ′ := Re1+ · · ·+Re` has f(F ′) = Rk. For each v ∈ F , f(v) = f(v′) for some v′ ∈ F ′. Then
v − v′ ∈ ker f = M , so F = F ′ + M . The module F ′ is finite free and F ′/(M ∩ F ′) ∼= Rk.
Since Rk is free (and thus a projective module), there is an isomorphism F ′ ∼= N⊕Rk where
N = M ∩ F ′. Since F ′ + M = F , F/F ′ ∼= M/N and F/F ′ =

⊕
i>`Rei is free with infinite

rank, so we can write F/F ′ ∼= Rk ⊕ F ′′ for some free F ′′. Therefore M/N is free, so

M ∼= N ⊕ (M/N) ∼= N ⊕ (F/F ′) ∼= N ⊕Rk ⊕ F ′′ ∼= F ′ ⊕ F ′′,

which is free. �

To prove all stably free modules over a (nonzero commutative) ring R are free is the
same as showing M ⊕ Rk ∼= R` ⇒ M is free for all k and `. When such an isomorphism
occurs, `− k = dimR/m(M/mM) for all maximal ideals m in R, so `− k is well-defined by
M although ` and k are not. We call ` − k the rank of M . For example, if M ⊕ R ∼= Rn

then M has rank n− 1. We will prove a theorem of Bass that reduces the verification that
all stably free R-modules are free to the case of even rank.

Lemma A.2. If M ⊕R ∼= R2d for some d ≥ 1 then M ∼= R⊕N for some R-module N .

Proof. Composing an isomorphism R2d ∼= M ⊕ R with projection to the second summand
gives us a surjective map ϕ : R2d → R with kernel isomorphic to M . Since every linear map
R2d → R is dotting with a fixed vector, there is some w ∈ R2d such that ϕ(v) = v ·w for
all v ∈ R2d. Set w = (c1, . . . , c2d). Then

ϕ(c2,−c1, . . . , c2d,−c2d−1) = 0.

Let u = (c2,−c1, . . . , c2d,−c2d−1) ∈ kerϕ ∼= M . We will show there is a submodule N of
M such that M ∼= R⊕N .

Choose (r1, . . . , r2d) ∈ R2d such that ϕ(r1, . . . , r2d) = 1, so c1r1 + · · · + c2dr2d = 1.
Then u · (r2,−r1, . . . , r2d,−r2d−1) = 1, so the linear map f : R2d → R given by f(v) =
v · (r2,−r1, . . . , r2d,−r2d−1) satisfies f(u) = 1. Since u ∈ kerϕ, the restriction of f to
a linear map kerϕ → R is surjective and restricts to an isomorphism Ru → R. Thus
M ∼= kerϕ = Ru⊕ ker f ∼= R⊕ ker f . �
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Remark A.3. It is generally false that if M⊕R ∼= R2d+1 then M ∼= R⊕N for some N . An
example is R being the sphere ring (2.3) when 2d + 1 6= 1, 3 or 7 and M being the tangent
module T . Our work in Section 2 shows T ⊕ R ∼= R2d+1. A proof that T 6∼= R ⊕N for an
R-module N is in [4, pp. 33–35].

Theorem A.4 (Bass). The following conditions on a commutative ring R are equivalent.

(1) All stably free finitely generated R-modules are free.
(2) All stably free finitely generated R-modules of even rank are free.

Proof. It’s clear that (1)⇒ (2). To show (2)⇒ (1), suppose M ⊕Rk ∼= R` (so k ≤ `) with
`−k an odd number. If k = 0 then M is free. If k > 0 then (M⊕R)⊕Rk−1 ∼= R`, so M⊕R
is stably free of even rank `− (k − 1). Then M ⊕R ∼= R`−k+1, so M ∼= R⊕N for some N
by Lemma A.2. Therefore N ⊕R2 is free of even rank `− k + 1, so N is stably free of odd
rank (`− k + 1)− 2 = `− k − 1. By induction N ∼= R`−k−1, so M ∼= R⊕N ∼= R`−k. �
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