
SPLITTING OF SHORT EXACT SEQUENCES FOR MODULES

KEITH CONRAD

1. Introduction

Let R be a commutative ring. A sequence of R-modules and R-linear maps

N
f−−→M

g−−→ P

is called exact at M if im f = ker g. For example, to say 0 −→ M
h−−→ P is exact at M

means h is injective, and to say N
h−−→ M −→ 0 is exact at M means h is surjective. The

linear maps coming out of 0 or going to 0 are unique, so there is no need to label them.
A short exact sequence of R-modules is a sequence of R-modules and R-linear maps

(1.1) 0 −→ N
f−−→M

g−−→ P −→ 0

which is exact at N , M , and P . That means f is injective, g is surjective, and im f = ker g.

Example 1.1. For an R-module M and submodule N , there is a short exact sequence

0 // N // M // M/N // 0,

where the map N →M is the inclusion and the map M →M/N is reduction modulo N .

Example 1.2. For R-modules N and P , the direct sum N ⊕ P fits into the short exact
sequence

0 // N // N ⊕ P // P // 0,

where the map N → N ⊕P is the standard embedding n 7→ (n, 0) and the map N ⊕P → P
is the standard projection (n, p) 7→ p.

Example 1.3. Let I and J be ideals in R such that I+J = R. Then there is a short exact
sequence

0 // I ∩ J // I ⊕ J + // R // 0,

where the map I ⊕ J → R is addition, whose kernel is {(x,−x) : x ∈ I ∩ J}, and the map
I∩J → I⊕J is x 7→ (x,−x). This is not the short exact sequence 0 −→ I −→ I⊕J −→ J −→ 0
as in Example 1.2, even though the middle modules in both are I ⊕ J .

Any short exact sequence that looks like the short exact sequence of a direct sum in
Example 1.2 is called a split short exact sequence. More precisely, a short exact sequence

0 −→ N
f−−→ M

g−−→ P −→ 0 is called split when there is an R-module isomorphism
θ : M → N ⊕ P such that the diagram

(1.2) 0 // N
f //

id
��

M
g //

θ
��

P //

id
��

0

0 // N // N ⊕ P // P // 0
1
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commutes, where the bottom maps to and from the direct sum are the standard embedding
and projection.

In Section 2 we will give two ways to characterize when a short exact sequence of R-
modules splits. Section 3 will discuss a few consequences. Before doing that, we want
to stress that being split is not just saying there is an isomorphism M → N ⊕ P of R-
modules, but how the isomorphism works with the maps f and g in the exact sequence:
commutativity of (1.2) says f : N →M behaves like the standard embedding N → N ⊕ P
and g : M → P behaves like the standard projection N ⊕ P → P . (Notice that the outer
vertical maps in (1.2) are both the identities.)

Example 1.4. Let R = Z, so R-modules are just abelian groups. Fix a positive integer
a > 1. Set

• N = Z,
• P = (Z/aZ)N (a countable direct product of copies of Z/aZ indexed by {0, 1, 2, . . .}),
• M = N ⊕ P = Z⊕ (Z/aZ)N.

Even though M literally equals the direct sum of N and P , we will build a short exact
sequence

(1.3) 0 −→ N
f−−→M

g−−→ P −→ 0

that does not split.
Define f : Z→ Z⊕ (Z/aZ)N and g : M → P by

f(n) = (an,0), g(x, y0, y1, . . .) = (x, y0, y1, . . .).

In words, g reduces the first component modulo a and shifts the other components over
one position. Both f and g are Z-linear (i.e., they are additive), f is obviously injective, g
is obviously surjective, and im f = aZ ⊕ 0 = ker g, so we get a short exact sequence (1.3)
where M = N ⊕ P . We will show there is no isomorphism θ : M → N ⊕ P making (1.2)
commute.

If there were an isomorphism θ : M → N ⊕ P making (1.2) commute then the second
component of θ(x,y) in P must be g(x,y). Write the first component as f ′(x,y): θ(x,y) =
(f ′(x,y), g(x,y)). Commutatvity of (1.2) in this example tells us θ(f(n)) = (n,0) for all
n ∈ Z, so f ′(f(n)) = n for all n ∈ Z. Thus

n = f ′(f(n)) = f ′(an,0) = f ′(a(n,0)) = af ′(n,0)

for all n ∈ Z, which is a contradiction when n = 1 since a > 1.

The lesson of this example is that being split is not about a module being isomorphic to
a direct sum in an arbitrary way: the linear maps in the short exact sequence matter just
as much as the modules.

2. When a Short Exact Sequence Splits

Theorem 2.1. Let 0 −→ N
f−−→ M

g−−→ P −→ 0 be a short exact sequence of R-modules.
The following are equivalent:

(1) There is an R-linear map f ′ : M → N such that f ′(f(n)) = n for all n ∈ N .
(2) There is an R-linear map g′ : P →M such that g(g′(p)) = p for all p ∈ P .
(3) The short exact sequence splits: there is an isomorphism θ : M → N ⊕ P such that

the diagram (1.2) commutes.
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If we replace R-modules with groups and R-linear maps with group homomorphisms,

conditions (1) and (2) are not equivalent: for a short exact sequence 1 −→ H
f−−→ G

g−−→
K −→ 1, (1) corresponds to G being a direct product of H and K while (2) corresponds to
G being a semidirect product of H and K. The reason (1) and (2) are no longer equivalent
for groups is related to noncommutativity. For an exact sequence of abelian groups, (1) and
(2) are equivalent (this is the special case R = Z, since abelian groups are Z-modules).

Proof. We will first show (1) and (3) are equivalent, and then (2) and (3) are equivalent.
(1)⇒ (3): Define θ : M → N ⊕ P by

θ(m) = (f ′(m), g(m)).

Since f ′ and g are R-linear, θ is R-linear.
To see that the diagram (1.2) commutes, going around the top and right of the first

square has the effect n 7→ f(n) 7→ θ(f(n)) = (f ′(f(n)), g(f(n))) = (n, 0) and going around
the left and bottom has the effect n 7→ n 7→ (n, 0). Going both ways around the second
square sends m ∈M to g(m) ∈ P .

To see θ is injective, suppose θ(m) = (0, 0), so f ′(m) = 0 and g(m) = 0. From exactness
at M , the condition g(m) = 0 implies m = f(n) for some n ∈ N . Then 0 = f ′(m) =
f ′(f(n)) = n, so m = f(n) = f(0) = 0.

To show θ is surjective, let (n, p) ∈ N ⊕ P . Since g is onto, p = g(m) for some m ∈ M ,
so p = g(m) = g(m+ f(x)) for any x ∈ N . To have θ(m+ f(x)) = (n, p), we seek an x ∈ N
such that

n = f ′(m+ f(x)) = f ′(m) + f ′(f(x)) = f ′(m) + x.

So define x := n− f ′(m). Then m+ f(x) = m+ f(n)− f(f ′(m)) and

θ(m+ f(x)) = (f ′(m+ f(x)), g(m+ f(x)))

= (n, g(m))

= (n, p).

Thus θ is an isomorphism of R-modules.
(3) ⇒ (1): Suppose there is an R-module isomorphism θ : M → N ⊕ P making (1.2)

commute. From commutativity of the second square in (1.2), θ(m) = (∗, g(m)). Let the
first coordinate of θ(m) be f ′(m): θ(m) = (f ′(m), g(m)). Then f ′ : M → N . Since θ is
R-linear, f ′ is R-linear. By commutativity in the first square of (1.2), θ(f(n)) = (n, 0) for
n ∈ N , so (f ′(f(n)), g(f(n))) = (n, 0), so f ′(f(n)) = n for all n ∈ N .

(2) ⇒ (3): To get an isomorphism M → N ⊕ P , it is easier to go the other way. Let
h : N ⊕ P →M by

h(n, p) = f(n) + g′(p).

This is R-linear since f and g′ are R-linear.
To show h is injective, if h(n, p) = 0 then f(n) + g′(p) = 0. Applying g to both sides,

g(f(n)) + g(g′(p)) = 0, which simplifies to p = 0. Then 0 = f(n) + g′(0) = f(n), so n = 0
since f is injective.

To show h is surjective, pick m ∈M . We want to find n ∈ N and p ∈ P such that

f(n) + g′(p) = m.

Applying g to both sides, we get

g(f(n)) + g(g′(p)) = g(m)⇒ p = g(m).
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So we define p := g(m) and then ask if there is n ∈ N such that f(n) = m−g′(g(m)). Since
im f = ker g, whether or not there is such an n is equivalent to checking m−g′(g(m)) ∈ ker g:

g(m− g′(g(m))) = g(m)− g(g′(g(m))

= g(m)− g(m)

= 0.

Thus h : N ⊕ P → M is an isomorphism of R-modules. Let θ = h−1 be the inverse
isomorphism.

To show the diagram (1.2) commutes, it is equivalent to show the “flipped” diagram

0 // N
f // M

g // P // 0

0 // N //

id

OO

N ⊕ P //

h

OO

P //

id

OO

0

commutes (h = θ−1)). For n ∈ N , going around the first square along the left and top
has the effect n 7→ n 7→ f(n), and going around the other way has the effect n 7→ (n, 0) 7→
h(n, 0) = f(n) + g′(0) = f(n). In the second square, for (n, p) ∈ N ⊕ P going around the
left and top has the effect (n, p) 7→ g(h(n, p)) = g(f(n)) + g(g′(p)) = 0 + p = p, while going
around the other way has the effect (n, p) 7→ p 7→ p.

(3)⇒ (2): Let g′ : P →M by g′(p) = θ−1(0, p). Since p 7→ (0, p) and θ−1 are R-linear, g′

is R-linear. For p ∈ P , the commutativity of the diagram

M
g //

θ
��

P

id
��

N ⊕ P // P

implies commutativity of the diagram

M
g // P

N ⊕ P //

θ−1

OO

P

id

OO

so g(g′(p)) = g(θ−1(0, p)) = p. �

Example 2.2. Every short exact sequence 0 −→ N
f−−→ M

g−−→ P −→ 0 where P is free
splits, by using condition (2). Let {ei} be a basis of P and pick preimages: ei = g(mi) for
all i. Then define g′ : P → M by g′(ei) = mi and extend this by R-linearity: g(

∑
riei) =∑

rimi where the sum is finite. Since g(g′(ei)) = g(mi) = ei, we have g(g′(p)) = p for all
p ∈ P by linearity of both sides of the equation.

From exactness at N , N ∼= f(N). From exactness at M , f(N) = ker g. An isomorphism
θ : M → f(N)⊕ P is θ(m) = (m− g′(g(m)), g(m)).

Remark 2.3. It turns out that every short exact sequence 0 −→ N
f−−→ N ⊕P g−−→ P −→ 0

with a direct sum in the middle is equivalent to the usual short exact sequence for N ⊕ P
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from Example 1.2 when R is a Noetherian ring and N and P are finitely generated R-
modules.1 Example 1.4 is a non-split short exact sequence with a direct sum in the middle,
where R = Z is Noetherian and the module P is not finitely generated.

3. Consequences

Let’s take another look at the short exact sequence in Example 1.3:

(3.1) 0 −→ I ∩ J −→ I ⊕ J +−−→ R −→ 0,

where I and J are ideals with I + J = R and the map from I ∩ J to I ⊕ J is x 7→ (x,−x).
It turns out this splits: I ⊕ J is isomorphic to (I ∩ J)⊕R in a manner compatible with the
maps in the short exact sequence. That is, the diagram

0 // I ∩ J //

id
��

I ⊕ J + //

θ
��

R //

id
��

0

0 // I ∩ J // (I ∩ J)⊕R // R // 0

commutes for some isomorphism θ. The bottom row is the usual short exact sequence for a
direct sum of R-modules. To show the sequence (3.1) splits, we use the equivalence of (2)
and (3) in Theorem 2.1. From I + J = R we have x0 + y0 = 1 for some x0 ∈ I and y0 ∈ J .
Let g′ : R→ I ⊕ J by g′(r) = (rx0, ry0). Then rx0 + ry0 = r, so g′ is a right inverse to the
addition map I ⊕ J → R and that shows (3.1) splits.

Although I ⊕ J ∼= (I ∩ J) ⊕ R as R-modules, it need not be the case that either I or J
is isomorphic to I ∩ J or R.

Example 3.1. Let R = Z[
√
−5], I = (3, 1 +

√
−5), and J = (3, 1 −

√
−5). Then I + J

contains 3 and 1+
√
−5+1−

√
−5 = 2, so it contains 1 and thus I+J = R. From I+J = R,

I ∩ J = IJ and IJ = 3R ∼= R. Therefore

I ⊕ J ∼= R⊕R

as R-modules. The ideals I and J are not isomorphic to R as R-modules since they are
nonprincipal ideals: I2 = (2 −

√
−5), J2 = (2 +

√
−5), and there are no solutions to

α2 = ±(2 +
√
−5) or β2 = ±(2−

√
−5) in Z[

√
−5].

Using Theorem 2.1, we can describe when a submodule N ⊂M is a direct summand.

Theorem 3.2. For a submodule N ⊂M , the following conditions are equivalent:

(1) N is a direct summand: M = N ⊕ P for some submodule P ⊂M .
(2) There is an R-linear map f ′ : M → N such that f ′(n) = n for all n ∈ N .

Proof. (1)⇒ (2): Let f ′ : M → N by f ′(n+ p) = n. This is well-defined from the meaning
of a direct sum decomposition, and it is R-linear. Obviously f ′(n) = n for n ∈ N .

(2)⇒ (1): There is a standard short exact sequence

0 −→ N −→M −→M/N −→ 0.

1See T. Miyata, Note on direct summands of modules, J. Math. Kyoto Univ. 7 (1967), 65–69, where the
result is attributed to Toda. See also https://mathoverflow.net/questions/167701/.

https://mathoverflow.net/questions/167701/
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Since f ′ is a left inverse to the inclusion map N → M in this short exact sequence, the
equivalence of (1) and (3) in Theorem 2.1 implies there is a commutative diagram

0 // N //

id
��

M //

θ
��

M/N //

id
��

0

0 // N // N ⊕ (M/N) // M/N // 0

where θ(m) = (f ′(m),m) is an R-module isomorphism. For n ∈ N , θ(n) = (f ′(n), n) =
(n, 0), so using θ−1 shows M has a direct sum decomposition with N as the first summand.

�

Example 3.3. Using R = Z, there is no direct sum decomposition of abelian groups
Z = 2Z⊕ P for a subgroup P of Z, since P would have to be isomorphic to Z/2Z and no
element of Z has order 2. This failure of (1) in Theorem 3.2 implies the failure of (2), i.e.,
there is no additive map f ′ : Z→ 2Z such that f ′(n) = n for all n ∈ 2Z, which can also be
seen directly: from f ′(2) = 2 we have 2f ′(1) = 2, and there is no solution for f ′(1) in 2Z.

Theorem 3.4. For an injective R-linear map N
f−−→ M , the following conditions are

equivalent:

(1) f(N) is a direct summand of M .
(2) There is an R-linear map f ′ : M → N such that f ′(f(n)) = n for all n ∈ N .

The proof is similar to that of Theorem 3.2.

Example 3.5. In Example 1.4, f : Z → Z ⊕ (Z/aZ)N is the injective Z-linear map n 7→
(an,0), where a > 1. There is no Z-linear map f ′ : Z⊕(Z/aZ)N → Z such that f ′(f(n)) = n
for all n ∈ Z since the left side is f ′(an,0) = af ′(n,0), which is a multiple of a, and not
all n in Z are multiples of a (e.g., n = 1). Theorem 3.4 tells us that also f(Z), which is
aZ⊕ 0, is not a direct summand of M := Z⊕ (Z/aZ)N even though f(Z) ∼= Z and Z is a
direct summand of M .

We can directly show aZ⊕0 is not a direct summand of M as follows. Set A = aZ⊕0 and
assume A is a direct summand of M , so there is a complementary subgroup B: M = A+B
with A∩B = 0. Then aM = aA+aB. From the definition of M and A, aM = aZ⊕0 = A,
so A = aA+ aB. Thus aB ⊂ A ∩B = 0, so A = aA. However A is an infinite cyclic group
and a > 1, so aA is a proper subgroup of A. We have a contradiction, so f(Z) = A is not
a direct summand of M .


	1. Introduction
	2. When a Short Exact Sequence Splits
	3. Consequences

