In this note we work with linear operators on finite-dimensional complex vector spaces. Any such operator has an eigenvector, by the fundamental theorem of algebra. A linear operator is called *diagonalizable* if it has a basis of eigenvectors: there is a basis in which the matrix representation of the operator is a diagonal matrix. We are interested in conditions that make a finite set of linear operators *simultaneously diagonalizable*: there is a basis in which the matrix representation of each operator is diagonal.

Example 1. The matrices $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ acting on \mathbb{C}^2 are each diagonalizable, but they are not simultaneously diagonalizable: the eigenvectors of A are scalar multiples of (i^1) and $(-i^1)$ while the eigenvectors of B are scalar multiples of (1^1) and (1^-1).

Example 2. The matrices

$$A = \begin{pmatrix} 7 & -10 & 5 \\ 4 & -5 & 3 \\ -1 & 3 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 8 & -11 & 6 \\ 5 & -6 & 4 \\ 0 & 2 & 1 \end{pmatrix}$$

acting on \mathbb{C}^3 are simultaneously diagonalizable with common eigenbasis

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} -3/2 + i/2 \\ -1/2 + i/2 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} -3/2 - i/2 \\ -1/2 - i/2 \\ 1 \end{pmatrix}.$$

For linear operators to be simultaneously diagonalizable, they at least have to be individually diagonalizable, but more is needed (see Example 1). A further necessary condition is that the operators commute, since diagonal matrices commute. Check the matrices in Example 1 do not commute while those in Example 2 do commute. The following theorem shows that commuting linear operators already have something in common.

Theorem 3. If A_1, \ldots, A_r are commuting linear operators on a finite-dimensional \mathbb{C}-vector space V then they have a common eigenvector in V.

Proof. We induct on r, the result being clear if $r = 1$ since we work over the complex numbers: every linear operator on a finite-dimensional \mathbb{C}-vector space has an eigenvector.

Now assume $r \geq 2$. Let the last operator A_r have an eigenvalue $\lambda \in \mathbb{C}$ and let

$$E_\lambda = \{ v \in V : A_r v = \lambda v \}$$

be the λ-eigenspace for A_r. For $v \in E_\lambda$, $A_r (A_i v) = A_i (A_r v) = A_i (\lambda v) = \lambda (A_i v)$, so $A_i v \in E_\lambda$. Thus each A_i restricts to a linear operator on the subspace E_λ.

The linear operators $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}$ commute since the A_i's commute as operators on the larger space V. There are $r - 1$ of these operators, so by induction on r (while quantifying over all finite-dimensional \mathbb{C}-vector spaces) these operators have a common eigenvector in E_λ. That vector is also an eigenvector of A_r by the definition of E_λ. We're done.

A common eigenvector for A_1, \ldots, A_r need not have the same eigenvalue for all the operators; the first eigenvector in Example 2 has eigenvalue 2 for A and 3 for B.

Lemma 4. If $A: V \to V$ is a diagonalizable linear operator and W is an A-stable subspace of V then the restriction $A|_W: W \to W$ is also diagonalizable.

Proof. We use a variation on the answer by Zorn at https://math.stackexchange.com/questions/62338/. Letting $\lambda_1, \ldots, \lambda_r$ be the distinct eigenvalues of A acting on V, we have $V = \bigoplus_{i=1}^r E_{\lambda_i}$, where E_{λ_i} is the λ_i-eigenspace of A. For $w \in W$, write $w = v_1 + \cdots + v_r$ where $v_i \in E_{\lambda_i}$. We’ll prove each v_i is in W. Then $W = \bigoplus_{i=1}^r (E_{\lambda_i} \cap W)$, so $A|_W$ is diagonalizable.

Since W is A-stable, $A^k(w) \in W$ for all $k \geq 0$. Also $A^k w = \lambda_1^k v_1 + \cdots + \lambda_r^k v_r$. Taking $k = 0, 1, \ldots, r - 1$, we have the following equation in V^r:

$$
\begin{pmatrix}
1 & \cdots & 1 \\
\lambda_1 & \lambda_2 & \cdots & \lambda_r \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^{r-1} & \lambda_2^{r-1} & \cdots & \lambda_r^{r-1}
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_r
\end{pmatrix}
=
\begin{pmatrix}
w \\
A w \\
\vdots \\
A^{r-1} w
\end{pmatrix}.
$$

The vector on the right is in W^r (a subspace of V^r) and the $r \times r$ matrix on the left is invertible (Vandermonde matrix with distinct λ_i). Therefore the vector on the left is in V^r, so each v_i is in W.

Theorem 5. If A_1, \ldots, A_r are commuting linear operators on V and each A_i is diagonalizable then they are simultaneously diagonalizable, i.e., there is a basis of V consisting of simultaneous eigenvectors for the A_i.

Proof. We won’t use Theorem 3, but the proof will be essentially the same type of argument as in the proof of Theorem 3: the stronger hypothesis (commutativity and individual diagonalizability) will lead to a stronger conclusion (a basis of simultaneous eigenvectors, not just one simultaneous eigenvector).

The result is clear if $r = 1$, so assume $r \geq 2$. Since the last operator A_r is diagonalizable on V, V is the direct sum of the eigenspaces for A_r. Let λ be an eigenvalue for A_r and E_λ be the λ-eigenspace of A_r in V. As in the proof of Theorem 3, since each A_i commutes with A_r we have $A_i(E_\lambda) \subset E_\lambda$. Thus each A_i restricts to a linear operator on the subspace E_λ and the linear operators $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}$ commute since A_1, \ldots, A_{r-1} commute as operators on V.

By Lemma 4, the restrictions $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}$ are each diagonalizable on E_λ. Since the number of these operators is less than r, by induction on r there is a basis for E_λ consisting of simultaneous eigenvectors for $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}$. The elements of this basis for E_λ are eigenvectors for $A_r|_{E_\lambda}$ as well, since all nonzero vectors in E_λ are eigenvectors for A_r. Thus $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}, A_r|_{E_\lambda}$ are all diagonalizable. The vector space V is the direct sum of the eigenspaces E_λ of A_r, so stringing together simultaneous eigenbases of $A_1|_{E_\lambda}, \ldots, A_{r-1}|_{E_\lambda}, A_r|_{E_\lambda}$ as λ runs over the eigenvalues of A_r gives a simultaneous eigenbasis of V for all the A_1, \ldots, A_r.

Remark 6. Theorem 5 is not saying commuting operators diagonalize! It says commuting diagonalizable operators simultaneously diagonalize. For example, the matrices $(\begin{smallmatrix} 1 & a \\ 0 & 1 \end{smallmatrix})$ for all a commute with each other, but none of them are diagonalizable when $a \neq 0$.

Because we are dealing with operators on finite-dimensional spaces, Theorem 5 extends to a possibly infinite number of commuting operators, as follows.

Corollary 7. Let $\{A_i\}$ be a set of commuting linear operators on a finite-dimensional \mathbb{C}-vector space V. If each A_i is diagonalizable on V then they are simultaneously diagonalizable.

\[\text{Remark 6.} \quad \text{This choice of basis for } E_\lambda \text{ is not made by } A_i, \text{ but by the other operators together.}\]
Proof. Let U be the subspace of $\text{End}_F(V)$ spanned by the operators A_i’s. Since $\text{End}_F(V)$ is finite-dimensional, its subspace U is finite-dimensional, so U is spanned by a finite number of A_i’s, say A_{i_1}, \ldots, A_{i_r}. By Theorem 5, there is a common eigenbasis of V for A_{i_1}, \ldots, A_{i_r}. A common eigenbasis for linear operators is also an eigenbasis for any linear combination of the operators, so this common eigenbasis of A_{i_1}, \ldots, A_{i_r} diagonalizes every element of U, and in particular diagonalizes each A_i. □

Corollary 7 is important in number theory, where it implies the existence of eigenforms for Hecke operators.