SIMULTANEOUS COMMUTATIVITY OF OPERATORS

KEITH CONRAD

In this note we work with linear operators on finite-dimensional complex vector spaces. Any such operator has an eigenvector, by the fundamental theorem of algebra. A linear operator is called diagonalizable if it has a basis of eigenvectors: there is a basis in which the matrix representation of the operator is a diagonal matrix. We are interested in conditions that make a finite set of linear operators simultaneously diagonalizable: there is a basis in which the matrix representation of each operator is diagonal.
Example 1. The matrices $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ acting on \mathbf{C}^{2} are each diagonalizable, but they are not simultaneously diagonalizable: the eigenvectors of A are scalar multiples of $\binom{i}{1}$ and $\binom{-i}{1}$ while the eigenvectors of B are scalar multiples of $\binom{1}{1}$ and $\binom{-1}{1}$.

Example 2. The matrices

$$
A=\left(\begin{array}{rrr}
7 & -10 & 5 \\
4 & -5 & 3 \\
-1 & 3 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{rrr}
8 & -11 & 6 \\
5 & -6 & 4 \\
0 & 2 & 1
\end{array}\right)
$$

acting on \mathbf{C}^{3} are simultaneously diagonalizable with common eigenbasis

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-3 / 2+i / 2 \\
-1 / 2+i / 2 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-3 / 2-i / 2 \\
-1 / 2-i / 2 \\
1
\end{array}\right) .
$$

For linear operators to be simultaneously diagonalizable, they at least have to be individually diagonalizable, but more is needed (see Example 1). A further necessary condition is that the operators commute, since diagonal matrices commute. Check the matrices in Example 1 do not commute while those in Example 2 do commute. The following theorem shows that commuting linear operators already have something in common.

Theorem 3. If A_{1}, \ldots, A_{r} are commuting linear operators on a finite-dimensional \mathbf{C}-vector space V then they have a common eigenvector in V.

Proof. We induct on r, the result being clear if $r=1$ since we work over the complex numbers: every linear operator on a finite-dimensional \mathbf{C}-vector space has an eigenvector.

Now assume $r \geq 2$. Let the last operator A_{r} have an eigenvalue $\lambda \in \mathbf{C}$ and let

$$
E_{\lambda}=\left\{v \in V: A_{r} v=\lambda v\right\}
$$

be the λ-eigenspace for A_{r}. For $v \in E_{\lambda}, A_{r}\left(A_{i} v\right)=A_{i}\left(A_{r} v\right)=A_{i}(\lambda v)=\lambda\left(A_{i} v\right)$, so $A_{i} v \in E_{\lambda}$. Thus each A_{i} restricts to a linear operator on the subspace E_{λ}.

The linear operators $A_{1}\left|E_{\lambda}, \ldots, A_{r-1}\right|_{E_{\lambda}}$ commute since the A_{i} 's commute as operators on the larger space V. There are $r-1$ of these operators, so by induction on r (while quantifying over all finite-dimensional \mathbf{C}-vector spaces) these operators have a common eigenvector in E_{λ}. That vector is also an eigenvector of A_{r} by the definition of E_{λ}. We're done.

A common eigenvector for A_{1}, \ldots, A_{r} need not have the same eigenvalue for all the operators; the first eigenvector in Example 2 has eigenvalue 2 for A and 3 for B.

Lemma 4. If $A: V \rightarrow V$ is a diagonalizable linear operator and W is an A-stable subspace of V then the restriction $\left.A\right|_{W}: W \rightarrow W$ is also diagonalizable.
Proof. We use a variation on the answer by Zorn at https://math.stackexchange.com/ questions/62338/. Letting $\lambda_{1}, \ldots, \lambda_{r}$ be the distinct eigenvalues of A acting on V, we have $V=\bigoplus_{i=1}^{r} E_{\lambda_{i}}$, where $E_{\lambda_{i}}$ is the λ_{i}-eigenspace of A. For $w \in W$, write $w=v_{1}+\cdots+v_{r}$ where $v_{i} \in E_{\lambda_{i}}$. We'll prove each v_{i} is in W. Then $W=\bigoplus_{i=1}^{r}\left(E_{\lambda_{i}} \cap W\right)$, so $\left.A\right|_{W}$ is diagonalizable.

Since W is A-stable, $A^{k}(w) \in W$ for all $k \geq 0$. Also $A^{k} w=\lambda_{1}^{k} v_{1}+\cdots+\lambda_{r}^{k} v_{r}$. Taking $k=0,1, \ldots, r-1$, we have the following equation in V^{r} :

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{r} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{r-1} & \lambda_{2}^{r-1} & \cdots & \lambda_{r}^{r-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{r}
\end{array}\right)=\left(\begin{array}{c}
w \\
A w \\
\vdots \\
A^{r-1} w
\end{array}\right)
$$

The vector on the right is in W^{r} (a subspace of V^{r}) and the $r \times r$ matrix on the left is invertible (Vandermonde matrix with distinct λ_{i}). Therefore the vector on the left is in W^{r}, so each v_{i} is in W.
Theorem 5. If A_{1}, \ldots, A_{r} are commuting linear operators on V and each A_{i} is diagonalizable then they are simultaneously diagonalizable, i.e., there is a basis of V consisting of simultaneous eigenvectors for the A_{i}.

Proof. We won't use Theorem 3, but the proof will be essentially the same type of argument as in the proof of Theorem 3; the stronger hypothesis (commutativity and individual diagonalizability) will lead to a stronger conclusion (a basis of simultaneous eigenvectors, not just one simultaneous eigenvector).

The result is clear if $r=1$, so assume $r \geq 2$. Since the last operator A_{r} is diagonalizable on V, V is the direct sum of the eigenspaces for A_{r}. Let λ be an eigenvalue for A_{r} and E_{λ} be the λ-eigenspace of A_{r} in V. As in the proof of Theorem 3, since each A_{i} commutes with A_{r} we have $A_{i}\left(E_{\lambda}\right) \subset E_{\lambda}$. Thus each A_{i} restricts to a linear operator on the subspace E_{λ} and the linear operators $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}$ commute since A_{1}, \ldots, A_{r-1} commute as operators on V.

By Lemma 4, the restrictions $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}$ are each diagonalizable on E_{λ}. Since the number of these operators is less than r, by induction on r there is a basis for E_{λ} consisting of simultaneous eigenvectors for $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}{ }^{1}$ The elements of this basis for E_{λ} are eigenvectors for $\left.A_{r}\right|_{E_{\lambda}}$ as well, since all nonzero vectors in E_{λ} are eigenvectors for A_{r}. Thus $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}},\left.A_{r}\right|_{E_{\lambda}}$ are all diagonalizable. The vector space V is the direct sum of the eigenspaces E_{λ} of A_{r}, so stringing together simultaneous eigenbases of $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}},\left.A_{r}\right|_{E_{\lambda}}$ as λ runs over the eigenvalues of A_{r} gives a simultaneous eigenbasis of V for all the A_{1}, \ldots, A_{r}.

Remark 6. Theorem 5 is not saying commuting operators diagonalize! It says commuting diagonalizable operators simultaneously diagonalize. For example, the matrices $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ for all a commute with each other, but none of them are diagonalizable when $a \neq 0$.

Because we are dealing with operators on finite-dimensional spaces, Theorem 5 extends to a possibly infinite number of commuting operators, as follows.
Corollary 7. Let $\left\{A_{i}\right\}$ be a set of commuting linear operators on a finite-dimensional C-vector space V. If each A_{i} is diagonalizable on V then they are simultaneously diagonalizable.

[^0]Proof. Let U be the subspace of $\operatorname{End}_{F}(V)$ spanned by the operators A_{i} 's. Since $\operatorname{End}_{F}(V)$ is finite-dimensional, its subspace U is finite-dimensional, so U is spanned by a finite number of A_{i} 's, say $A_{i_{1}}, \ldots, A_{i_{r}}$. By Theorem 5 , there is a common eigenbasis of V for $A_{i_{1}}, \ldots, A_{i_{r}}$. A common eigenbasis for linear operators is also an eigenbasis for any linear combination of the operators, so this common eigenbasis of $A_{i_{1}}, \ldots, A_{i_{r}}$ diagonalizes every element of U, and in particular diagonalizes each A_{i}.

Corollary 7 is important in number theory, where it implies the existence of eigenforms for Hecke operators.

[^0]: ${ }^{1}$ This choice of basis for E_{λ} is not made by A_{r}, but by the other operators together.

