SIMULTANEOUS COMMUTATIVITY OF OPERATORS

KEITH CONRAD

In this note we work with linear operators on finite-dimensional complex vector spaces.
Any such operator has an eigenvector, by the fundamental theorem of algebra. A linear
operator is called diagonalizable if it has a basis of eigenvectors: there is a basis in which the
matrix representation of the operator is a diagonal matrix. We are interested in conditions
that make a finite set of linear operators simultaneously diagonalizable: there is a basis in
which the matrix representation of each operator is diagonal.

Example 1. The matrices A = ({ 7} ) and B = (4 %) acting on C? are each diagonalizable,
but they are not simultaneously diagonalizable: the eigenvectors of A are scalar multiples
of (i) and (_f) while the eigenvectors of B are scalar multiples of (}) and (_11)

Example 2. The matrices

7 —10 5 8§ —11 6
A= 4 -5 3 and B=| 5 -6 4
-1 3 0 0 21

acting on C? are simultaneously diagonalizable with common eigenbasis

1 —3/241i/2 —3/2 —i/2
1|, | —1/2442 |, [ —1/2—i/2
1 1 1

For linear operators to be simultaneously diagonalizable, they at least have to be indi-
vidually diagonalizable, but more is needed (see Example 1). A further necessary condition
is that the operators commute, since diagonal matrices commute. Check the matrices in
Example 1 do not commute while those in Example 2 do commute. The following theorem
shows that commuting linear operators already have something in common.

Theorem 3. If Aq,..., A, are commuting linear operators on a finite-dimensional C-vector
space V' then they have a common eigenvector in V.

Proof. We induct on r, the result being clear if r = 1 since we work over the complex
numbers: every linear operator on a finite-dimensional C-vector space has an eigenvector.
Now assume 7 > 2. Let the last operator A, have an eigenvalue A € C and let

Ey={veV:Awv=X}

be the A-eigenspace for A,. For v € E), A.(Aiv) = Ai(Av) = Ai(Av) = MAw), so
A;v € E). Thus each A; restricts to a linear operator on the subspace F.

The linear operators A;|g,, ..., Ar—1|g, commute since the A;’s commute as operators
on the larger space V. There are r — 1 of these operators, so by induction on r (while
quantifying over all finite-dimensional C-vector spaces) these operators have a common
eigenvector in . That vector is also an eigenvector of A, by the definition of E). We're
done. O

A common eigenvector for Aj,..., A, need not have the same eigenvalue for all the
operators; the first eigenvector in Example 2 has eigenvalue 2 for A and 3 for B.
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Lemma 4. If A: V — V is a diagonalizable linear operator and W is an A-stable subspace
of V' then the restriction Alw: W — W is also diagonalizable.

Proof. We use a variation on the answer by Zorn at https://math.stackexchange.com/
questions/62338/. Letting A1, ..., A\ be the distinct eigenvalues of A acting on V', we have
V = @;_, E\,, where E), is the \;-eigenspace of A. For w € W, write w = vy + -+ + v,
where v; € E),. We'll prove each v; is in W. Then W = @;_,(E), N W), so Alw is
diagonalizable.

Since W is A-stable, A¥(w) € W for all k > 0. Also A¥w = Mwv; 4 --- + A\ry,. Taking

k=0,1,...,r — 1, we have the following equation in V":
1 | I 1 V1 w
A1 Ay e A V9 Aw
)\71"—1 )\g—l . )\:71 Uy Ar—lw

The vector on the right is in W (a subspace of V") and the r x r matrix on the left is
invertible (Vandermonde matrix with distinct \;). Therefore the vector on the left is in W7,
so each v; is in W. O

Theorem 5. If Ay,..., A, are commuting linear operators on V and each A; is diagonal-
izable then they are simultaneously diagonalizable, i.e., there is a basis of V' consisting of
simultaneous eigenvectors for the A;.

Proof. We won’t use Theorem 3, but the proof will be essentially the same type of argu-
ment as in the proof of Theorem 3; the stronger hypothesis (commutativity and individual
diagonalizability) will lead to a stronger conclusion (a basis of simultaneous eigenvectors,
not just one simultaneous eigenvector).

The result is clear if » = 1, so assume r > 2. Since the last operator A, is diagonalizable
on V, V is the direct sum of the eigenspaces for A,. Let A be an eigenvalue for A, and
E) be the M-eigenspace of A, in V. As in the proof of Theorem 3, since each A; commutes
with A, we have A;(E)) C E,. Thus each A; restricts to a linear operator on the subspace
E) and the linear operators Ay|g,,...,Ar—1|p, commute since Ay,..., A,_; commute as
operators on V.

By Lemma 4, the restrictions Ai|g,,...,Ar—1|E, are each diagonalizable on E). Since
the number of these operators is less than 7, by induction on r there is a basis for FE)
consisting of simultaneous eigenvectors for A1|g,, ..., Ar—1] Ex.l The elements of this basis
for E) are eigenvectors for A,|g, as well, since all nonzero vectors in E) are eigenvectors
for A,. Thus Ai|g,,...,Ar—1|E,, Ar|E, are all diagonalizable. The vector space V is the
direct sum of the eigenspaces E) of A, so stringing together simultaneous eigenbases of
Ailg,, .-, Ar1lE,, Ar|E, as A runs over the eigenvalues of A, gives a simultaneous eigen-
basis of V for all the Ay,..., A,. O

Remark 6. Theorem 5 is not saying commuting operators diagonalize! It says commuting
diagonalizable operators simultaneously diagonalize. For example, the matrices (§¢) for
all a commute with each other, but none of them are diagonalizable when a # 0.

Because we are dealing with operators on finite-dimensional spaces, Theorem 5 extends
to a possibly infinite number of commuting operators, as follows.

Corollary 7. Let {A;} be a set of commuting linear operators on a finite-dimensional
C-vector space V. If each A; is diagonalizable on V' then they are simultaneously diagonal-
izable.

IThis choice of basis for Ey is not made by A, but by the other operators together.
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Proof. Let U be the subspace of Endg (V') spanned by the operators A;’s. Since Endp(V') is
finite-dimensional, its subspace U is finite-dimensional, so U is spanned by a finite number
of A;’s, say A;,,...,A;.. By Theorem 5, there is a common eigenbasis of V for A;,..., 4;,.
A common eigenbasis for linear operators is also an eigenbasis for any linear combination
of the operators, so this common eigenbasis of 4;,, ..., A;. diagonalizes every element of U,
and in particular diagonalizes each A;. ([l

Corollary 7 is important in number theory, where it implies the existence of eigenforms
for Hecke operators.



