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In this note we work with linear operators on finite-dimensional complex vector spaces.
Any such operator has an eigenvector, by the fundamental theorem of algebra. A linear
operator is called diagonalizable if it has a basis of eigenvectors: there is a basis in which the
matrix representation of the operator is a diagonal matrix. We are interested in conditions
that make a finite set of linear operators simultaneously diagonalizable: there is a basis in
which the matrix representation of each operator is diagonal.

Example 1. The matrices A = ( 0 −1
1 0 ) and B = ( 1 2

2 1 ) acting on C2 are each diagonalizable,
but they are not simultaneously diagonalizable: the eigenvectors of A are scalar multiples
of
(
i
1

)
and

(−i
1

)
while the eigenvectors of B are scalar multiples of

(
1
1

)
and

(−1
1

)
.

Example 2. The matrices

A =

 7 −10 5
4 −5 3
−1 3 0

 and B =

 8 −11 6
5 −6 4
0 2 1


acting on C3 are simultaneously diagonalizable with common eigenbasis 1

1
1

 ,

 −3/2 + i/2
−1/2 + i/2

1

 ,

 −3/2− i/2
−1/2− i/2

1

 .

For linear operators to be simultaneously diagonalizable, they at least have to be indi-
vidually diagonalizable, but more is needed (see Example 1). A further necessary condition
is that the operators commute, since diagonal matrices commute. Check the matrices in
Example 1 do not commute while those in Example 2 do commute. The following theorem
shows that commuting linear operators already have something in common.

Theorem 3. If A1, . . . , Ar are commuting linear operators on a finite-dimensional C-vector
space V then they have a common eigenvector in V .

Proof. We induct on r, the result being clear if r = 1 since we work over the complex
numbers: every linear operator on a finite-dimensional C-vector space has an eigenvector.

Now assume r ≥ 2. Let the last operator Ar have an eigenvalue λ ∈ C and let

Eλ = {v ∈ V : Arv = λv}

be the λ-eigenspace for Ar. For v ∈ Eλ, Ar(Aiv) = Ai(Arv) = Ai(λv) = λ(Aiv), so
Aiv ∈ Eλ. Thus each Ai restricts to a linear operator on the subspace Eλ.

The linear operators A1|Eλ , . . . , Ar−1|Eλ commute since the Ai’s commute as operators
on the larger space V . There are r − 1 of these operators, so by induction on r (while
quantifying over all finite-dimensional C-vector spaces) these operators have a common
eigenvector in Eλ. That vector is also an eigenvector of Ar by the definition of Eλ. We’re
done. �

A common eigenvector for A1, . . . , Ar need not have the same eigenvalue for all the
operators; the first eigenvector in Example 2 has eigenvalue 2 for A and 3 for B.
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Lemma 4. If A : V → V is a diagonalizable linear operator and W is an A-stable subspace
of V then the restriction A|W : W →W is also diagonalizable.

Proof. We use a variation on the answer by Zorn at https://math.stackexchange.com/

questions/62338/. Letting λ1, . . . , λr be the distinct eigenvalues of A acting on V , we have
V =

⊕r
i=1Eλi , where Eλi is the λi-eigenspace of A. For w ∈ W , write w = v1 + · · · + vr

where vi ∈ Eλi . We’ll prove each vi is in W . Then W =
⊕r

i=1(Eλi ∩ W ), so A|W is
diagonalizable.

Since W is A-stable, Ak(w) ∈ W for all k ≥ 0. Also Akw = λk1v1 + · · · + λkrvr. Taking
k = 0, 1, . . . , r − 1, we have the following equation in V r:

1 1 · · · 1
λ1 λ2 · · · λr
...

...
. . .

...
λr−1
1 λr−1

2 · · · λr−1
r




v1
v2
...
vr

 =


w
Aw

...
Ar−1w

 .

The vector on the right is in W r (a subspace of V r) and the r × r matrix on the left is
invertible (Vandermonde matrix with distinct λi). Therefore the vector on the left is in W r,
so each vi is in W . �

Theorem 5. If A1, . . . , Ar are commuting linear operators on V and each Ai is diagonal-
izable then they are simultaneously diagonalizable, i.e., there is a basis of V consisting of
simultaneous eigenvectors for the Ai.

Proof. We won’t use Theorem 3, but the proof will be essentially the same type of argu-
ment as in the proof of Theorem 3; the stronger hypothesis (commutativity and individual
diagonalizability) will lead to a stronger conclusion (a basis of simultaneous eigenvectors,
not just one simultaneous eigenvector).

The result is clear if r = 1, so assume r ≥ 2. Since the last operator Ar is diagonalizable
on V , V is the direct sum of the eigenspaces for Ar. Let λ be an eigenvalue for Ar and
Eλ be the λ-eigenspace of Ar in V . As in the proof of Theorem 3, since each Ai commutes
with Ar we have Ai(Eλ) ⊂ Eλ. Thus each Ai restricts to a linear operator on the subspace
Eλ and the linear operators A1|Eλ , . . . , Ar−1|Eλ commute since A1, . . . , Ar−1 commute as
operators on V .

By Lemma 4, the restrictions A1|Eλ , . . . , Ar−1|Eλ are each diagonalizable on Eλ. Since
the number of these operators is less than r, by induction on r there is a basis for Eλ
consisting of simultaneous eigenvectors for A1|Eλ , . . . , Ar−1|Eλ .1 The elements of this basis
for Eλ are eigenvectors for Ar|Eλ as well, since all nonzero vectors in Eλ are eigenvectors
for Ar. Thus A1|Eλ , . . . , Ar−1|Eλ , Ar|Eλ are all diagonalizable. The vector space V is the
direct sum of the eigenspaces Eλ of Ar, so stringing together simultaneous eigenbases of
A1|Eλ , . . . , Ar−1|Eλ , Ar|Eλ as λ runs over the eigenvalues of Ar gives a simultaneous eigen-
basis of V for all the A1, . . . , Ar. �

Remark 6. Theorem 5 is not saying commuting operators diagonalize! It says commuting
diagonalizable operators simultaneously diagonalize. For example, the matrices ( 1 a

0 1 ) for
all a commute with each other, but none of them are diagonalizable when a 6= 0.

Because we are dealing with operators on finite-dimensional spaces, Theorem 5 extends
to a possibly infinite number of commuting operators, as follows.

Corollary 7. Let {Ai} be a set of commuting linear operators on a finite-dimensional
C-vector space V . If each Ai is diagonalizable on V then they are simultaneously diagonal-
izable.

1This choice of basis for Eλ is not made by Ar, but by the other operators together.

https://math.stackexchange.com/questions/62338/
https://math.stackexchange.com/questions/62338/
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Proof. Let U be the subspace of EndF (V ) spanned by the operators Ai’s. Since EndF (V ) is
finite-dimensional, its subspace U is finite-dimensional, so U is spanned by a finite number
of Ai’s, say Ai1 , . . . , Air . By Theorem 5, there is a common eigenbasis of V for Ai1 , . . . , Air .
A common eigenbasis for linear operators is also an eigenbasis for any linear combination
of the operators, so this common eigenbasis of Ai1 , . . . , Air diagonalizes every element of U ,
and in particular diagonalizes each Ai. �

Corollary 7 is important in number theory, where it implies the existence of eigenforms
for Hecke operators.


