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A subspaceW of an F -vector space V always has a complementary subspace: V = W⊕W ′
for some subspace W ′. This can be seen using bases: extend a basis of W to a basis of
V and let W ′ be the span of the part of the basis of V not originally in W . Of course
there are many ways to build a complementary subspace, since extending a basis is a rather
flexible procedure. If the vector space or subspace has extra structure then we can ask if
a complement to W can be found with properties related to this structure. For example,
when V = Rn we have the concept of orthogonality in Rn, and any subspace W has an
orthogonal complement: Rn = W ⊕W ′ where W ⊥ W ′, and moreover there is only one
such complement to W . The orthogonal complement is tied up with the geometry of Rn.
Another kind of structure we can put on subspaces (of general vector spaces) is stability
under a linear operator on the whole space. Given a linear operator A : V → V , a subspace
W satisfying A(W ) ⊂ W is called an A-stable subspace. For example, a one-dimensional
A-stable subspace is the same thing as the line spanned by an eigenvector for A: if W = Fv
is A-stable then A(v) = λv for some λ ∈ F , so v is an eigenvector. We ask: does an A-stable
subspace have a complement which is also A-stable?

Example 1. If A = idV then all subspaces are A-stable, so any complement to an A-stable
subspace is also A-stable. In particular, an A-stable complement to a subspace is not unique
(if the subspace isn’t {0} or V ).

Example 2. Consider A = ( 1 1
0 1 ) acting on F 2 and its eigenspace W = {

(
x
0

)
: x ∈ F}.

This is A-stable. A complementary subspace to W would be 1-dimensional and thus also
be spanned by an eigenvector for A, but W is the only eigenspace of A. So W is A-stable
but has no A-stable complement. Remember this example!

From now on, all linear operators are acting on nonzero finite-dimensional vector spaces.
While a subspace stable for an operator does not always have a stable complementary

subspace, we will show any stable subspace has a stable complementary subspace when the
operator is potentially diagonalizable. We will carry out the proof in the diagonalizable case
first since the ideas are a simpler there, and then one appreciates more clearly the extra
details that crop up in the more general potentially diagonalizable case.

Theorem 3. Let A : V → V be diagonalizable and V =
⊕r

i=1Eλi be the corresponding
eigenspace decomposition.

(1) If W is an A-stable subspace of V then W =
⊕r

i=1(W ∩ Eλi) and each W ∩ Eλi is
A-stable,

(2) Any A-stable subspace of V has an A-stable complement.

Proof. (1) We will show W =
∑r

i=1(W ∩ Eλi); the sum is automatically direct since the
subspaces Eλi ’s are linearly independent. (Eigenvectors for different eigenvalues are linearly
independent.)

For w ∈W , write w = w1+ · · ·+wr with wi ∈ Eλi . We will show the eigencomponents wi
all lie in W , so wi ∈W ∩Eλi for all i and thus W =

∑r
i=1(W ∩Eλi). The reason wi ∈W is

1
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that W is h(A)-stable for any h(T ) ∈ F [T ] since W is A-stable, and in the proof that V has
an eigenspace decomposition for A it is shown that wi = hi(A)(w) for a certain polynomials
hi(T ) ∈ F [T ]. Since W and Eλi are both A-stable, so is their intersection W ∩ Eλi .

(2) Let W be A-stable and Wi = W ∩ Eλi , so W =
⊕r

i=1Wi by (1). In each Eλi ,
A acts by scaling by λi, so all subspaces of Eλi are A-stable. (Not all subspaces of the
whole space V are A-stable!) Let W ′i be any subspace complement to Wi inside Eλi . Then
W ′ :=

∑r
i=1W

′
i =

⊕r
i=1W

′
i is a subspace of V that is A-stable (because each W ′i is A-stable)

and

W ⊕W ′ =
r⊕
i=1

(Wi ⊕W ′i ) =
r⊕
i=1

Eλi = V.

�

Although a potentially diagonalizable operator A : V → V may not have eigenspaces in
V , its minimal polynomial has distinct irreducible factors and we can use them to extend
the previous theorem to the potentially diagonalizable case.

Theorem 4. Let A : V → V be potentially diagonalizable, with minimal polynomial mA(T ).
For each monic irreducible factor πi(T ) of mA(T ), let Vi = {v ∈ V : πi(A)(v) = 0}.

(1) Each Vi is A-stable and V =
⊕r

i=1 Vi.
(2) If W is an A-stable subspace of V then W =

⊕r
i=1(W ∩ Vi) and each W ∩ Vi is

A-stable.
(3) Any A-stable subspace of V has an A-stable complement.

If A is diagonalizable, so each πi(T ) is linear, say πi(T ) = T − λi, then Vi = Eλi is an
eigenspace and this theorem becomes Theorem 3.

Proof. (1) Since A and πi(A) commute, if v ∈ Vi then A(v) ∈ Vi. Therefore A(Vi) ⊂ Vi for
all i, so each Vi is A-stable.

We will show that it is possible to “project” from V to Vi using a polynomial in the
operator A. We seek h1(T ), . . . , hr(T ) in F [T ] such that

(1) 1 = h1(T ) + · · ·+ hr(T ), hi(T ) ≡ 0 mod mA(T )/πi(T ).

Once these polynomials are found, πi(T )hi(T ) is divisible bymA(T ) for all i, so πi(A)hi(A) =
O. Then replacing T with the operator A in (1) and applying all operators to any v ∈ V
gives

v = h1(A)(v) + · · ·+ hr(A)(v), πi(A)hi(A)(v) = 0.

The second equation tells us hi(A)(v) ∈ Vi, so the first equation shows V = V1 + · · · + Vr.
To show this sum is direct, suppose

(2) v1 + · · ·+ vr = 0

with vi ∈ Vi. We want to show each vi is 0. Apply hi(A) to both sides of (2). Since hi(T ) is
divisible by πj(T ) for j 6= i, hi(A)(vj) = 0 for j 6= i (look at the definition of Vj). Therefore
hi(A)(vi) = 0. Also πi(A)(vi) = 0 by the definition of Vi, so hj(A)(vi) = 0 for j 6= i. Thus
idV = hi(A) +

∑
j 6=i hj(A) kills vi, so vi = 0.

It remains to find polynomials hi(T ) fitting (1). Set fi(T ) = mA(T )/πi(T ). These
polynomials are relatively prime as an r-tuple, so some F [T ]-linear combination of them is
1:

1 = g1(T )f1(T ) + · · ·+ gr(T )fr(T ).

Use hi(T ) = gi(T )fi(T ).
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(2) We will show W =
∑r

i=1(W ∩ Vi). Then the sum must be direct because the Vi’s
are linearly independent by (1). For w ∈ W , the proof of (1) shows that the component of
w in Vi is wi := hi(A)(w) for some polynomial hi(T ). Since W is A-stable and hi(A) is a
polynomial in A, wi ∈ W . Therefore wi ∈ W ∩ Vi. Since W and Vi are each carried into
themselves by A, so is W ∩ Vi.

(3) This will be more technical than the proof of the corresponding case for diagonalizable
operators.

Let W be A-stable and set Wi := W ∩ Vi, so W =
⊕r

i=1Wi and the Wi’s are A-stable
by (2). To find an A-stable complement to W in V it suffices (in fact, it is equivalent) to
find an A-stable complement to Wi in Vi for all i. Then the sum of these complements will
be an A-stable complement to W in V . Unlike in the proof of Theorem 3(2), A need not
be a scaling operator on Vi, so a random subspace complement to Wi in Vi is unlikely to be
A-stable. We have to think more carefully to find an A-stable complement of Wi in Vi.

Think about Vi as an F [T ]-module where any f(T ) ∈ F [T ] acts on V by f(T )(v) :=
f(A)(v). Since A(Wi) ⊂ Wi, Wi is an F [T ]-submodule of Vi. More generally, the F [T ]-
submodules of Vi are precisely the A-stable F -vector spaces in V . We seek an F [T ]-
submodule W ′i of Vi such that Vi = Wi⊕W ′i . Since πi(T ) kills Vi, Vi is an F [T ]/(πi)-module
and Wi is an F [T ]/(πi)-submodule. Now F [T ]/(πi) is a field, so Vi is a vector space over
F [T ]/(πi) and Wi is a subspace over this field. Set W ′i to be any complementary subspace
to Wi inside Vi as F [T ]/(πi)-vector spaces. (When detπi > 1, this is a stronger condition
than being a complementary subspace in Vi as F -vector spaces.) Since W ′i is an F [T ]/(πi)-
submodule of Vi, it is an F -vector space and A-stable, so we are done: W ′ =

∑r
i=1W

′
i is

an A-stable complement to W in V . �

Definition 5. A linear operatorA : V → V is called semisimple if everyA-stable subspace of
V admits an A-stable complement: whenW ⊂ V and A(W ) ⊂W , we can write V = W⊕W ′
for some subspace W ′ such that A(W ′) ⊂W ′.

The term “semisimple” is derived from the term “simple,” so let’s explain what simple
means and how semisimple operators are related to simple operators.

Definition 6. A linear operator A : V → V is called simple when V 6= {0} and the only
A-stable subspaces of V are {0} and V .

Example 7. A 90-degree rotation of R2 is simple because no 1-dimensional subspace of
R2 is brought back to itself under such a rotation. More generally, any rotation of R2 is
simple except by 0 degrees and 180 degrees.

Example 8. A scalar operator is simple only on a 1-dimensional space.

Example 9. On a complex vector space of dimension greater than 1, no linear operator is
simple since an eigenvector for the operator spans a 1-dimensional stable subspace.

If A : V → V is semisimple, it turns out that V = W1⊕· · ·⊕Wk where each Wi is A-stable
and A is simple as an operator on each Wi (that is, there are no A-stable subspaces of Wi

besides {0} and Wi). So a semisimple operator on V is a direct sum of simple operators
(acting on the different parts of a suitable direct sum decomposition of V ). We’ll see why
there is such a direct sum decomposition in Corollary 12.

The next theorem characterizes semisimplicity of an operator in terms of the minimal
polynomial.
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Theorem 10. The operator A : V → V is semisimple if and only if its minimal polynomial
in F [T ] is squarefree.

Proof. In the proof of Theorem 4, the property we used of mA(T ) is that it is a product of
distinct monic irreducibles, i.e., that it is squarefree in F [T ]. We did not really use that
mA(T ) is separable, which is a stronger condition than being squarefree. (For example,
in Fp(u)[T ], T p − u is irreducible, so squarefree, but is not separable.) Therefore in the
proof of Theorem 4 we already showed an operator with squarefree minimal polynomial is
semisimple and all the conclusions of Theorem 4 apply to such an operator.

Now assume A has a minimal polynomial which is not squarefree. We will construct a
subspace of V which is A-stable but has no A-stable complement. Let π(T ) be an irreducible
factor of mA(T ) with multiplicity greater than 1, say mA(T ) = π(T )eg(T ) where e ≥ 2 and
g(T ) is not divisible by π(T ). Since mA(A) = O, every vector in V is killed by π(A)eg(A),
but not every vector is killed by π(A)g(A) since π(T )g(T ) is a proper factor of the minimal
polynomial mA(T ). Set

W = {v ∈ V : π(A)g(A)(v) = 0},

so W is a proper subspace of V . Since A commutes with π(A) and g(A), W is A-stable.
Assume there is an A-stable complement to W in V . Call it W ′, so V = W ⊕W ′. We will
get a contradiction.

The action of π(A)g(A) on W ′ is injective: if w′ ∈ W ′ and π(A)g(A)(w′) = 0 then w′ ∈
W ′ ∩W = {0}. Therefore π(A) is also injective on W ′: if π(A)(w′) = 0 then applying g(A)
gives 0 = g(A)π(A)(w′) = π(A)g(A)(w′), so w′ = 0. Then π(A)eg(A) = π(A)e−1(π(A)g(A))
is also injective on W ′ since π(A) and π(A)g(A) are injective on W ′ and a composite of
injective operators is injective. But π(T )eg(T ) = mA(T ) is the minimal polynomial for A,
so π(A)eg(A) acts as O on V , and thus acts as O on W ′ as well. A vector space on which
the zero operator acts injectively must be zero, so W ′ = {0}. Then W = V , but W is a
proper subspace of V so we have a contradiction. �

Corollary 11. If the characteristic polynomial of A : V → V is squarefree then A is
semisimple and mA(T ) = χA(T ).

Proof. The polynomial mA(T ) is a factor of χA(T ), so if χA(T ) is squarefree so is mA(T ).
Since mA(T ) and χA(T ) share the same irreducible factors, if χA(T ) is squarefree we must
have mA(T ) = χA(T ); if mA(T ) were a proper factor it would be missing an irreducible
factor of χA(T ). �

Corollary 12. Let V be a nonzero finite-dimensional vector space.

(1) If the operator A : V → V is semisimple and W is a proper nonzero A-stable subspace
of V , the induced linear operators AW : W → W and AV/W : V/W → V/W are
semisimple.

(2) If V = W1 ⊕ · · · ⊕Wk and Ai : Wi → Wi, the direct sum
⊕k

i=1Ai acting on V is
semisimple if and only if each Ai acting on Wi is semisimple.

(3) If the operator A : V → V is semisimple, there is a direct sum decomposition V =
W1 ⊕ · · · ⊕ Wk where each Wi is a nonzero A-stable subspace and A is a simple
operator on each Wi.

Proof. (1) The minimal polynomials of AW and AV/W divide the minimal polynomial of
A, and any factor of a squarefree polynomial is squarefree.
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(2) The minimal polynomial of
⊕k

i=1Ai is the least common multiple of the minimal
polynomials of the Ai’s, and the least common multiple of polynomials is squarefree if and
only if each of the polynomials is squarefree (why?).

(3) If A is a simple operator on V then the result is trivial. In particular, the case when
dimV = 1 is trivial. If A does not act as a simple operator on V , there is a nonzero proper
subspace W ⊂ V which is A-stable. Because A is semisimple, we can write V = W ⊕W ′
where W ′ is A-stable (and nonzero). Both W and W ′ have smaller dimension than V , and
by part (1) both AW and AW ′ are semisimple. Therefore by induction on the dimension
of the vector space, we can write W and W ′ as direct sums of nonzero A-stable subspaces
on which A acts as a simple operator. Combining these direct sum decompositions of W
and W ′ gives the desired direct sum decomposition of V , and A is the direct sum of its
restrictions to these subspaces on which it acts simply. �

Part 3 says that a semisimple operator is a direct sum of simple operators, and a special
case of part 2 says a direct sum of simple operators is semisimple, so semisimplicity is the
same as “direct sum of simple operators.”

Since the proof of Theorem 4 applies to semisimple operators (as noted at the start of
the proof of Theorem 10), it is natural to ask if the direct sum decomposition of V in
Theorem 4(1) is the “simple” decomposition of V : does A act as a simple operator on
each Vi = kerπi(A), where the πi(T )’s are the (monic) irreducible factors of mA(T )? Not
necessarily! After all, consider the case of a diagonalizable operator A. The Vi’s in Theorem
4 are the eigenspaces of A, and A acts on each Vi as a scaling transformation, which is not
simple if dimVi > 1. So if A is diagonalizable with some eigenspace of dimension larger
than 1, A doesn’t act simply on some Vi. The decomposition V =

⊕r
i=1 Vi in Theorem 4

has to be refined further, in general, to get subspaces on which A is a simple operator.
The converse of part 1 of Corollary 12 is false: if A : V → V is an operator, W ⊂ V is

A-stable, and AW and AV/W are semisimple then A need not be semisimple on V . Consider

A = ( 1 1
0 1 ) acting on V = F 2 and let W = F

(
1
0

)
. Both W and V/W are 1-dimensional,

so AW and AV/W are semisimple (even simple!), but A is not semisimple since W has no
A-stable complement (Example 2 again).

It is natural to ask how we can detect whether a linear operator is simple in terms of its
minimal polynomial.

Theorem 13. The following conditions on a linear operator A : V → V are equivalent:

(1) A is simple: A 6= O and the only A-stable subspaces of V are {0} and V ,
(2) the minimal polynomial of A has degree dimV and is irreducible in F [T ],
(3) the characteristic polynomial of A is irreducible in F [T ],
(4) χA(T ) = mA(T ) is irreducible in F [T ].

Proof. Since mA(T )|χA(T ) and χA(T ) has degree dimV , the equivalence of the last three
conditions is straightforward and left to the reader. We will show conditions 1 and 4 are
equivalent.

(4) ⇒ (1): We will show, contrapositively, that an operator A which is not simple has
a reducible characteristic polynomial. When there is a nonzero proper A-stable subspace
W ⊂ V , A acts on W and V/W . Using a basis for W and the lift to V of a basis from
V/W as a combined basis for V , the matrix representation of A is block upper-triangular
(M ∗
O M ′ ), where M is a matrix for A on W and M ′ is a matrix for A on V/W . Then

χA(T ) = χM (T )χM ′(T ), so χA(T ) is reducible in F [T ].
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(1) ⇒ (4): Now we show a simple operator A : V → V has an irreducible characteristic
polynomial. Pick any v0 6= 0 in V and set W = {f(A)v0 : f(T ) ∈ F [T ]}. This is an A-stable
subspace and W 6= {0} since v0 ∈W (use f(T ) = 1). Therefore, since A is simple, we must
have W = V . Thus the F -linear map F [T ] → V given by f(T ) 7→ f(A)v0 is surjective.
Since χA(T ) is in the kernel, we get an induced F -linear map F [T ]/(χA(T )) → V . Both
sides have the same dimension and the map is onto, so it is an F -linear isomorphism. In
particular, if f(A) = O then f(A)v0 = 0 so χA(T )|f(T ). Hence f(A) = O if and only if
χA(T )|f(T ). 1 We will show any proper factor of χA(T ) is constant, so χA(T ) is irreducible.

Let g(T ) be a proper factor of χA(T ), with χA(T ) = g(T )h(T ). Since χA(T ) doesn’t

divide g(T ), g(A)v0 6= 0. Therefore W̃ = {f(A)g(A)v0 : f(T ) ∈ F [T ]} is a nonzero A-

stable subspace. Because A is simple, W̃ = V . The F -linear map F [T ] → V given by
f(T ) 7→ f(A)g(A)v0 is surjective and χA(T ) is in the kernel, so we get an induced F -linear
map F [T ]/(χA(T )) → V . Both sides have the same dimension, so from surjectivity we
get injectivity: if f(A)g(A)v0 = 0 then χA(T )|f(T ). In particular, since h(A)g(A)v0 =
χA(A)v0 = O(v0) = 0, χA(T )|h(T ). Since h(T )|χA(T ) too, we see that h(T ) and χA(T )
have the same degree, so g(T ) must have degree 0. �

This is not saying A is simple if and only if mA(T ) is irreducible; the degree condition
has to be checked too. Just think about idV , which is not simple if dimV > 1 and its
minimal polynomial is T − 1 (irreducible) but its characteristic polynomial is (T − 1)dimV

(reducible).
Descriptions of diagonalizable, potentially diagonalizable, semisimple, and simple linear

operators in terms of the minimal polynomial are in Table 1.

Property Minimal Polynomial
Diagonalizable Splits, distinct roots

Potentially Diagonalizable Separable
Semisimple Squarefree

Simple Irreducible of degree dimV
Table 1

A polynomial which splits with distinct roots is separable, and a polynomial which is sep-
arable has no repeated irreducible factors, so it is squarefree. Thus diagonalizability implies
potential diagonalizability, which implies semisimplicity. Simplicity implies semisimplicity,
but simplicity is not related in a uniform way to potential diagonalizability (except over a
perfect field, where all irreducibles are separable; there all simple operators are potentially
diagonalizable). These implications are not reversible. The 90-degree rotation on R2 is
potentially diagonalizable and not diagonalizable. Any diagonal matrix ( a 0

0 b ) with distinct
diagonal entries is semisimple but not simple.

To give an example of an operator which is semisimple but not potentially diagonalizable
is more subtle: we need its minimal polynomial to be squarefree yet not be separable. This
is impossible when the scalar field has characteristic 0 or is an algebraically closed field,
or more generally is a perfect field. Semisimplicity and potential diagonalizability are the
same concept in vector spaces over perfect fields, and over an algebraically closed field

1Incidentally, this proves mA(T ) = χA(T ), although our eventual conclusion that χA(T ) is irreducible
already tells us we are going to have mA(T ) = χA(T ) since mA(T ) is a nonconstant monic factor of χA(T ).
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semisimplicity is the same thing as diagonalizability. (It is common for mathematicians to
use the more technical-sounding term semisimple instead of diagonalizable when working
over an algebraically closed field, but in that context the terms mean exactly the same
thing.) We will construct an operator on a 2-dimensional vector space whose minimal
polynomial has degree 2 and is irreducible but not separable, so the operator is simple (and
thus semisimple) but not potentially diagonalizable.

Example 14. Let F be a field of characteristic 2 which is not perfect, such as F2(u). There
is an α ∈ F such that α is not a square in F . The matrix A = ( 0 α

1 0 ) has characteristic
polynomial T 2 − α. This polynomial is irreducible in F [T ], since it has degree 2 without
roots in F , so it is squarefree and therefore A acts semisimply on F 2. (In fact, the only A-
stable subspaces of F 2 are {0} and F 2.) The polynomial T 2−α has a double root when we
pass to a splitting field, since we’re in characteristic 2, so A is not potentially diagonalizable.

If we replace F with the quadratic extension E = F (
√
α) then A does not act semisimply

on E2. The only eigenvalue of A is
√
α, and the

√
α-eigenspace of A in E2 is the line

spanned by
(√

α
1

)
. This line is an A-stable subspace with no A-stable complement in E

since an A-stable complement would be 1-dimensional and thus spanned by an eigenvector

of A, but all the eigenvectors of A are scalar multiples of
(√

α
1

)
.

What this example shows us is that semisimplicity need not be preserved under insep-
arable field extensions. In this respect semisimplicity is not as well-behaved as potential
diagonalizability, which is preserved under all field extensions.


