
NOETHERIAN MODULES

KEITH CONRAD

1. Introduction

In a finite-dimensional vector space, every subspace is finite-dimensional and the dimen-
sion of a subspace is at most the dimension of the whole space. Unfortunately, the naive
analogue of this for modules and submodules is wrong:

(1) A submodule of a finitely generated module need not be finitely generated.
(2) Even if a submodule of a finitely generated module is finitely generated, the minimal

number of generators of the submodule is not bounded above by the minimal number
of generators of the original module.

Example 1.1. Every commutative ring R is finitely generated as an R-module, namely
with the generator 1, and the submodules of R are its ideals. Therefore a commutative ring
that has an ideal that is not finitely generated gives us an example of a finitely generated
module and non-finitely generated submodule.

Let R = R[X1, X2, . . . ] be the polynomial ring over R (or another field) in countably
many variables. Inside R let I = (X1, X2, . . . ) be the ideal generated by the variables: this
is the set of polynomials with constant term 0. To prove I is not finitely generated as an
R-module, we will show each finitely generated ideal Rf1 + Rf2 + · · · + Rfk in R doesn’t
contain Xi for all large i, so this ideal is not I.

Since each of the polynomials f1, . . . , fk involves only a finite number of variables, there’s
a large n such that all Xi appearing in one of f1, . . . , fk have i < n. The substitution homo-
morphism R→ R that sends Xi to 0 for i < n and Xi to 1 for i ≥ n sends f1, . . . , fk to 0 and
therefore it sends every R-linear combination of f1, . . . , fk to 0. Since this homomorphism
sends Xi to 1 for i ≥ n, such Xi do not lie in Rf1 + · · ·+ Rfk.

Example 1.2. Here is an interesting example from complex analysis. Let R be the ring of
entire functions on C, i.e., R consists of power series with complex coefficients and infinite
radius of convergence. It turns out that every finitely generated ideal in R is a principal
ideal, but that does not mean all ideals in R are principal: one example of an ideal in R
that is not finitely generated is the ideal of entire functions vanishing on all but finitely
many integers (the integers where the function doesn’t vanish can vary with the function).
Proofs of these facts about R require hard theorems in complex analysis about the existence
of holomorphic functions with prescribed zeros. See [1, Remark 3.5.4, Corollary 3.5.8].

Example 1.3. An example of a finitely generated module and finitely generated submodule
requiring more generators than the larger module is R = Z[X] and I = (2, X). As an R-
module, R requires the single generator 1. The ideal I is not principal, so the fewest number
of generators needed for I as an R-module is 2.

Another example is R = R[X,Y ] and I = (X,Y ) since I is a non-principal ideal in R.

The property of being finitely generated is not well-behaved on passage to submodules
(that is, a finitely generated module can have non-finitely generated submodules), so we
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will give a name to the modules in which every submodule is finitely generated. Emmy
Noether was the first mathematician to make a systematic study of this property, in her
major paper [6] on ring theory in 1921, so these modules are named after her.1

Definition 1.4. Let R be a commutative ring. An R-module is called Noetherian if every
submodule is finitely generated.

The significance of the Noetherian condition2 on modules is twofold: (1) many modules
that arise in algebra satisfy this condition and (2) this condition behaves well under many
standard constructions on modules. Imposing the Noetherian condition on modules in a
theorem is often regarded as a rather mild restriction.

Example 1.5. If F is a field, a finite-dimensional F -vector space V is a Noetherian F -
module, since the submodules of V are its subspaces and they are all finite-dimensional by
standard linear algebra.

Example 1.6. Generalizing the previous example, if R is a PID then every finitely gener-
ated R-module is a Noetherian module. This will be a consequence of Theorem 2.6.

An example of a non-Noetherian module is a module that is not finitely generated. For
example, an infinite-dimensional vector space over a field F is a non-Noetherian F -module,
and for a nonzero ring R the countable direct sum

⊕
n≥1R is a non-Noetherian R-module.

If a ring R has an ideal that is not finitely generated then R is a non-Noetherian R-module.
The next theorem gives standard equivalent conditions for being a Noetherian module.

We will use the second condition at the end of Section 2 and will not use the third one.

Theorem 1.7. The following conditions on an R-module M are equivalent:

(1) all submodules of M are finitely generated (i.e., M is a Noetherian R-module).
(2) each infinite increasing sequence of submodules N1 ⊂ N2 ⊂ N3 ⊂ · · · in M eventu-

ally stabilizes: Nk = Nk+1 for all large k.3

(3) Every nonempty collection S of submodules of M contains a maximal element with
respect to inclusion: there’s a submodule in S not strictly contained in another
submodule in S.

Proof. (1) ⇒ (2): If N1 ⊂ N2 ⊂ · · · is an increasing sequence of submodules, let N =⋃
i≥1Ni. This is a submodule since each pair of elements in N lies in a common Ni, by

the increasing condition, so N is closed under addition and multiplication by elements of
R. By (1), N is finitely generated. Using the increasing condition again, each finite subset
of N lies in a common Ni, so a finite generating set of N is in some Ni. Thus N ⊂ Ni, and
of course also Ni ⊂ N , so N = Ni. Then for all j ≥ i, Ni ⊂ Nj ⊂ N = Ni, so Nj = Ni.

(2) ⇒ (1): We prove the contrapositive. Suppose (1) is false, so M has a submodule N
that is not finitely generated. Pick n1 ∈ N . Since N is not finitely generated, N 6= Rn1, so
there is an n2 ∈ N−Rn1. Since N 6= Rn1+Rn2, there is an n3 ∈ N−(Rn1+Rn2). Proceed
in a similar way to pick nk in N for all k ≥ 1 by making nk 6∈ N − (Rn1 + . . . + Rnk−1)
for k ≥ 2. Then we have an increasing sequence of submodules Rn1 ⊂ Rn1 + Rn2 ⊂ · · · ⊂

1Strictly speaking, in [6] Noether focused mostly on rings whose ideals are all finitely generated. This is
a special type of Noetherian module, namely a ring that is a Noetherian module over itself (its submodules
are its ideals).

2Noether did not use the label “Noetherian”, but referred in her paper [6] to “the finiteness condition”
(die Endlichkeitsbedingung).

3The notation ⊂ only means containment, not strict containment.
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Rn1 + . . .+Rnk ⊂ · · · in M where each submodule is strictly contained in the next one, so
(2) is false.

(2) ⇒ (3): We will prove the negation of (3) implies the negation of (2). If (3) is false
then there is a nonempty collection S of submodules of M containing no maximal member
with respect to inclusion. Therefore if we start with a module N1 in S, we can recursively
find modules N2, N3, . . . such that Nk strictly contains Nk−1 for all k ≥ 2. (If there were
no submodule in S strictly containing Nk−1 then Nk−1 would be a maximal element of S,
which doesn’t exist.)

(3) ⇒ (1): Let N be a submodule of M . To prove N is finitely generated, let S be the

set of all finitely generated submodules of N . By (3), there is an Ñ ∈ S that’s contained

in no other element of S, so Ñ is a finitely generated submodule of N and no other finitely

generated submodule of N contains Ñ . We will show Ñ = N by contradiction, which would

prove N is finitely generated. If Ñ 6= N , pick n ∈ N − Ñ . Since Ñ is finitely generated,

also Ñ + Rn is finitely generated, so Ñ + Rn ∈ S. However, Ñ + Rn strictly contains Ñ ,

which contradicts maximality of Ñ as a member of S. Thus Ñ = N . �

Condition (2) is called the ascending chain condition (ACC)4 and there is an analogous
descending chain condition that defines the class of Artinian modules. Condition (3) leads
to the idea of “Noetherian induction”, which is useful in algebraic geometry.

2. Properties of Noetherian modules

Theorem 2.1. If M is a Noetherian R-module then every submodule of M is Noetherian.

Proof. This is an immediate consequence of the definition of a Noetherian module, since a
submodule of a submodule is a submodule. �

Theorem 2.2. If M is a Noetherian R-module then every quotient module M/N is Noe-
therian.

Proof. Every submodule of M/N has the form L/N where L is a submodule of M with
N ⊂ L ⊂ M . Since M is Noetherian, L is finitely generated, and the reduction of those
generators mod N will generate L/N as an R-module. �

Theorem 2.3. Let M be an R-module and N be a submodule. Then M is Noetherian if
and only if N and M/N are Noetherian.

Proof. If M is Noetherian then N and M/N are Noetherian by Theorems 2.1 and 2.2.
Conversely, suppose N and M/N are Noetherian. To prove M is Noetherian, let L be a
submodule of M . Then the image of L in M/N is finitely generated and L ∩N is finitely
generated. Let x1, . . . , xk ∈ L generate the image of L in M/N and let y1, . . . , y` generate
L ∩ N . For each x ∈ L, we have x ≡ r1x1 + · · · + rkxk mod N for some ri ∈ R, so
x−

∑
rixi ∈ L ∩N . Therefore x−

∑
rixi =

∑
sjyj with sj ∈ R, so x =

∑
rixi +

∑
sjyj .

Therefore L is spanned by x1, . . . , xk, y1, . . . , y`. �

Make sure to remember the ideas in this proof, as it’s the only property of Noetherian
modules we discuss here that involves a real idea (how to pass from a property of submodules
of N and M/N to that property for submodules of M).

Theorem 2.4. If M and N are Noetherian R-modules then their direct sum M ⊕N is a
Noetherian R-module.

4Noether called the result (1)⇒ (2) the “theorem of the finite chain” (Satz von der endlichen Kette).



4 KEITH CONRAD

Proof. A fake proof would say that a submodule of M⊕N has the form P⊕Q for submodules
P of M and Q of N , so P and Q are each finitely generated, and the union of those generating
sets is a finite generating set for P ⊕ Q. The reason this proof is fake is that submodules
of M ⊕N need not be of the form P ⊕Q. For example, inside Z ⊕ Z is the Z-submodule
Z(1, 1) = {(n, n) : n ∈ Z}.

For a valid proof, apply Theorem 2.3 to the module M ⊕N and submodule M ⊕ 0 ∼= M ,
where (M ⊕N)/(M ⊕ 0) ∼= N . �

Corollary 2.5. If M1, . . . ,Mk are Noetherian R-modules then M1⊕· · ·⊕Mk is a Noetherian
R-module.

Proof. Induct on k, with k = 2 being Theorem 2.4. �

Theorem 2.6. If R is a PID then every finitely generated R-module is a Noetherian R-
module.

Proof. Let M be a finitely generated R-module with generators m1, . . . ,mk. Then there
is a surjective R-linear map f : Rk → M by f(c1, . . . , ck) = c1m1 + · · · + ckmk, so M is
isomorphic to a quotient module of Rk. Since R is a PID it is a Noetherian R-module, and
therefore so is the k-fold direct sum Rk (Theorem 2.5) and so are quotient modules of Rk

(Theorem 2.2). �

Remark 2.7. When R is a PID, the number of generators in a finitely generated R-
module behaves like vector spaces: if M is a module over a PID with n generators then
every submodule of M needs at most n generators. We don’t discuss a proof here.

The next theorem applies the second condition of Theorem 1.7 (ascending chain condi-
tion).

Theorem 2.8. For a Noetherian R-module M , each surjective R-linear map M → M is
injective and thus is an isomorphism.

Proof. Let ϕ : M → M be a surjective R-linear map. For the nth iterate ϕn (the n-fold
composition of ϕ with itself), let Kn = ker(ϕn). This is a submodule of M and these
submodules form an increasing chain:

K1 ⊂ K2 ⊂ K3 ⊂ · · ·
since m ∈ Kn ⇒ ϕn(m) = 0 ⇒ ϕn+1(m) = ϕ(ϕn(m)) = ϕ(0) = 0, so m ∈ Kn+1. Since M
is a Noetherian R-module, Kn = Kn+1 for some n. Pick m ∈ kerϕ, so ϕ(m) = 0. The map
ϕn is surjective since ϕ is surjective, so m = ϕn(m′) for some m′ ∈ M . Thus 0 = ϕ(m) =
ϕ(ϕn(m′)) = ϕn+1(m′). Therefore m′ ∈ ker(ϕn+1) = ker(ϕn), so m = ϕn(m′) = 0. That
shows kerϕ = {0}, so ϕ is injective. �

Theorem 2.8 does not have an analogue for injective R-linear maps. For example, Z is a
Noetherian Z-modules (its submodules are all principal, and thus finitely generated), and
the mapping ϕ : Z→ Z where ϕ(m) = 2m is Z-linear and injective but not surjective.

3. Noetherian rings

Definition 3.1. A commutative ring R is called Noetherian5 if all ideals of R are finitely
generated.

5The label “Noetherian ring” is due to Chevalley [2] in 1943.
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A simple (and boring) example of a Noetherian ring is a field. A more general class of
examples are PIDs, since all of their ideals are singly generated. Noetherian rings can be
regarded as a good generalization of PIDs: the property of all ideals being singly generated
is often not preserved under common ring-theoretic constructions (e.g., Z is a PID but
Z[X] is not), but the property of all ideals being finitely generated does remain valid under
many constructions of new rings from old rings. For example, we will see below that every
quadratic ring Z[

√
d] is Noetherian; many of these rings are not PIDs.

The standard example of a non-Noetherian ring is a polynomial ring K[X1, X2, . . . ] in
infinitely many variables over a field K The ring of entire functions on C is also non-
Noetherian since it has an ideal that is not finitely generated (Example 1.2). Non-Noetherian
rings need not be “really huge”, there is a non-Noetherian ring contained in Q[X]: the ring
of integral-valued polynomials

Int(Z) = {f ∈ Q[X] : f(Z) ⊂ Z}

is not Noetherian. This ring is bigger than Z[X], e.g.,
(
X
2

)
= X(X−1)

2 is in Int(Z) − Z[X],

as is
(
X
n

)
= X(X−1)···(X−n+1)

n! for all n ≥ 2.
The equivalent conditions for being a Noetherian module in Theorem 1.7 carry over to

conditions for being a Noetherian ring, as in the next theorem. We omit the proof.

Theorem 3.2. The following conditions on a commutative ring R are equivalent:

(1) R is Noetherian: all ideals of R are finitely generated.
(2) each infinite increasing sequence of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · in R eventually

stabilizes: Ik = Ik+1 for all large k.
(3) Every nonempty collection S of ideals of R contains a maximal element with respect

to inclusion: there’s an ideal in S not strictly contained in another ideal in S.

The following two theorems put the second condition of Theorem 3.2 (ascending chain
condition) to use.

Theorem 3.3. Let R be a Noetherian ring. Each surjective ring homomorphism R → R
is injective, and thus is an isomorphism.

Proof. An analogue of this theorem was proved for a linear self-map on a Noetherian module
in Theorem 2.8. We’ll check that the proof carries over to Noetherian rings.

Let ϕ : R→ R be a surjective ring homomorphism. Each iterate ϕn is surjective and the
kernels Kn = ker(ϕn) are ideals in R that form an increasing chain:

K1 ⊂ K2 ⊂ K3 ⊂ · · · .

Since R is Noetherian, Kn = Kn+1 for some n. Pick y ∈ kerϕ, so ϕ(y) = 0. Since ϕn is
surjective, y = ϕn(x), so 0 = ϕ(y) = ϕ(ϕn(x)) = ϕn+1(x). Then x ∈ ker(ϕn+1) = ker(ϕn),
so y = ϕn(x) = 0. Thus kerϕ is 0, so ϕ is injective. �

As with the module analogue in Theorem 2.8, Theorem 3.3 does not have a variant for
injective ring homomorphisms. For instance, R[X] is a Noetherian ring since it’s a PID and
the substitution homomorphism f(X) 7→ f(X2) on R[X] is an injective ring homomorphism
that is not surjective.

Theorem 3.4. If R is a Noetherian integral domain that is not a field, then every nonzero
nonunit in R can be factored into irreducibles.
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We assume R is not a field because irreducible factorizations don’t have a meaning for
units, so we want R to contain some nonzero elements that aren’t units.

Proof. This will be a proof by contradiction.
Suppose there is an element a in R that is not 0 or a unit and has no irreducible factor-

ization. We will find another nonzero nonunit b ∈ R that does not admit a factorization
into irreducibles and such that there is a strict inclusion of ideals (a) ⊂ (b).

Since a is not irreducible and it is not 0 or a unit, there is a factorization a = bc where b
and c are nonunits (and obviously they are not 0 either). If both b and c have an irreducible
factorization then so does a (just multiply together irreducible factorizations for b and c),
so at least one of b or c has no irreducible factorization. Without loss of generality, say b
has no irreducible factorization. Then since c is not a unit, the inclusion (a) ⊂ (b) is strict.

Rewriting a as a1 and b as a2, we have a strict containment of ideals

(a1) ⊂ (a2)

where a2 is a nonzero nonunit with no irreducible factorization. Using a2 in the role of a1
in the previous paragraph, there is a strict inclusion of ideals

(a2) ⊂ (a3)

for some nonzero nonunit a3 that has no irreducible factorization. This argument can be
repeated and leads to an infinite increasing chain of (principal) ideals

(3.1) (a1) ⊂ (a2) ⊂ (a3) ⊂ · · ·
where all inclusions are strict. This is impossible in a Noetherian ring, so we have a con-
tradiction. Therefore nonzero nonunits without an irreducible factorization do not exist in
R: all nonzero nonunits in R have an irreducible factorization. �

This theorem is not saying a Noetherian integral domain has unique factorization: just
because elements have irreducible factorizations doesn’t mean those are unique (up to the
order of multiplication and multiplication of terms by units). Many Noetherian integral
domains do not have unique factorization.

We now show that some basic operations on rings preserve the property of being Noe-
therian.

Theorem 3.5. If R is a Noetherian ring then so is R/I for each ideal I in R.

Proof. Every ideal in R/I has the form J/I for an ideal J of R such that I ⊂ J ⊂ R. Since
R is a Noetherian ring, J is a finitely generated ideal in R, and that finite generating set
for J reduces to a generating set for J/I as an ideal of R/I.

As an alternative proof, view R/I as an R-module in the natural way: r(x mod I) =
rx mod I. This equals (r mod I)(x mod I), so ideals in R/I are the same thing as R-
submodules of R/I. We know R/I is a Noetherian module over R: both R and I are
Noetherian R-modules, so their quotient R/I is a Noetherian R-module. Therefore R-
submodules of R/I are finitely generated, which means the same thing as ideals of R/I
being finitely generated. �

In the second proof we used the fact that a Noetherian ring is a Noetherian module over
itself. In fact a commutative ring is a Noetherian ring if and only if it is a Noetherian
module over itself. Make sure you understand this.

To create more examples of Noetherian rings we can use the following very important
theorem.
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Theorem 3.6 (Hilbert Basis Theorem). If R is a Noetherian ring then so is R[X].

The reason for the name “Basis Theorem” is that a generating set for an ideal may be
called a “basis” even if it’s not linearly independent (cf. the modern term “Gröbner basis”).
The theorem says if each ideal in R has a “finite basis” then this is true of ideals in R[X].

Proof. The theorem is clear if R = 0, so assume R 6= {0}. To prove each ideal I in R[X] is
finitely generated, we assume I is not finitely generated and will get a contradiction.

We have I 6= (0). Define a sequence of polynomials f1, f2, . . . in I as follows.

(1) Pick f1 to be an element of I − (0) with minimal degree. (It is not unique.)
(2) Since I 6= (f1), as I is not finitely generated, pick f2 in I−(f1) with minimal degree.

Note deg f1 ≤ deg f2 by the minimality condition on deg f1.
(3) For k ≥ 2, if we have defined f1, . . . , fk in I then I 6= (f1, . . . , fk) since I is not

finitely generated, so we may pick fk+1 in I − (f1, . . . , fk) with minimal degree.

We have deg fk ≤ deg fk+1 for all k: the case k = 1 was checked before, and for k ≥ 2,
fk and fk+1 are in I − (f1, . . . , fk−1) so deg fk ≤ deg fk+1 by the minimality condition on
deg fk.

For k ≥ 1, let dk = deg fk and ck be the leading coefficient of fk, so dk ≤ dk+1 and
fk(X) = ckX

dk+ lower-degree terms.
The ideal (c1, c2, . . . ) in R (an ideal of leading coefficients) is finitely generated since R

is Noetherian. Each element in this ideal is an R-linear combination of finitely many ck, so
(c1, c2, . . . ) = (c1, . . . , cm) for some m.

Since cm+1 ∈ (c1, c2, . . . , cm), we have

(3.2) cm+1 =
m∑
k=1

rkck

for some rk ∈ R. From the inequalities dk ≤ dm+1 for k ≤ m, the leading term in fk(X) =
ckX

dk + · · · can be moved into degree dm+1 by using fk(X)Xdm+1−dk = ckX
dm+1 + · · · , and

this is in I since fk(X) ∈ I and I is an ideal in R[X]. By (3.2), the R-linear combination

m∑
k=1

rkfk(X)Xdm+1−dk

is in the ideal (f1, . . . , fm) and its coefficient of Xdm+1 is
∑m

k=1 rkck, which equals the leading
coefficient cm+1 of fm+1(X) in degree dm+1. The difference

(3.3) fm+1(X)−
m∑
k=1

rkfk(X)Xdeg fm+1−deg fk

is in I, it is not 0 since fm+1 ∈ I − (f1, . . . , fm), and it has degree less than dm+1 since
the terms cm+1X

dm+1 cancel out. But fm+1(X) has minimal degree among polynomials in
I − (f1, . . . , fm), and (3.3) is in I − (f1, . . . , fm) with lower degree than dm+1. That’s a
contradiction. Thus I is finitely generated. �

To summarize this proof in a single phrase, “use an ideal of leading coefficients”.
In the proof, the Noetherian property of R is used where we said (c1, c2, . . . ) = (c1, . . . , cm)

for some m. All we need to get the contradiction in the proof is cm+1 ∈ (c1, . . . , cm) for
some m. Since (c1) ⊂ (c1, c2) ⊂ (c1, c2, c3) ⊂ · · · , what we need is the following property:
for each infinite increasing sequence of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · in R, Im = Im+1 for some
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m. Of course this is implied by the Noetherian property, but it also implies the Noetherian
property since a non-Noetherian ring has an infinite increasing sequence of ideals with strict
containments at each step: see the proof of (2) ⇒ (1) in Theorem 1.7 with M = R.

Remark 3.7. Our proof of the Hilbert Basis Theorem, which is due to Sarges [7], is by
contradiction and thus is not constructive. A constructive proof runs as follows. For R 6= 0,
I a nonzero ideal in R[X], and n ≥ 0, let Ln be the set of leading coefficients of polynomials
in I of degree at most n together with 0. This is an ideal in R by the way polynomials
add and get scaled by R. (While Ln might be (0) for small n, Ln 6= (0) for large n since I
contains a nonzero polynomial and multiplying that by powers of X gives us polynomials
in I of all higher degrees.) Since Ln ⊂ Ln+1, the ideals {Ln} in R stabilize at some point,
say Ln = Lm for n ≥ m. (Thus Lm is generated by the leading coefficients of all nonzero
polynomials in I, so we could have defined Lm that way.) Each Ln has finitely many
generators. When Ln 6= (0), let Pn be a finite set of polynomials of degree at most n in I
whose leading coefficients generate Ln. The union of the finite sets Pn for n ≤ m where
Ln 6= (0) is a generating set for I [5, Sect. 7.10]. This way of proving Hilbert’s basis theorem
is essentially due to Artin, according to van der Waerden [8].

Where in the proof of Theorem 3.6 did we use the assumption that R is Noetherian? It
is how we know the ideals (c1, . . . , ck) for k ≥ 1 stabilize for large k, so cm+1 ∈ (c1, . . . , cm)
for some m. The contradiction we obtain from that really shows cm+1 6∈ (c1, . . . , cm) for all
m, so the proof of Theorem 3.6 could be viewed as proving the contrapositive: if R[X] is
not Noetherian then R is not Noetherian.

The converse of Theorem 3.6 is true: if the ring R[X] is Noetherian then so is the ring
R by Theorem 3.5, since R ∼= R[X]/(X)

Corollary 3.8. If R is a Noetherian ring then so is R[X1, . . . , Xn].

Proof. We induct on n. The case n = 1 is Theorem 3.6. For n ≥ 2, write R[X1, . . . , Xn] as
R[X1, . . . , Xn−1][Xn], with R[X1, . . . , Xn−1] being Noetherian by the inductive hypothesis,
so we are reduced to the base case. �

Remark 3.9. Corollary 3.8 when R is a field was proved by Hilbert in 1890 [4, Theorem
1, p. 474] as a pure existence theorem in a few pages, not by an algorithmic process.6 This
is what first made Hilbert famous in mathematics. Earlier, Gordan [3] settled the case
n = 2 in 1868 by long calculations and spent 20 years unsuccessfully working on n = 3.
Hilbert’s proof for all n was revolutionary, as it illustrated the power of existence proofs
over laborious constructive methods, and this became characteristic of much of modern
mathematics. With the rise of fast computers in the late 20th century, generating sets for
polynomial ideals can be computed routinely with Gröbner bases, which are a multivariable
polynomial replacement for the Euclidean algorithm of polynomials in one variable.

Now we can build lots of Noetherian rings. The quadratic ring Z[
√
d] for a nonsquare

integer d is Noetherian: it’s isomorphic to Z[X]/(X2 − d), Z[X] is Noetherian by Hilbert’s
basis theorem, and Z[X]/(X2− d) is Noetherian by Theorem 3.5. Similarly, Z[

√
2,
√

3] and
Z[i, 3
√

2, 7
√

10] are Noetherian because they are isomorphic to Z[X,Y ]/(X2− 2, Y 2− 3) and
Z[X,Y, Z]/(X2+1, Y 3−2, Z7−10). The ring Z[X, 1/X] is Noetherian since it is isomorphic
to Z[X,Y ]/(XY − 1).

6Hilbert could not use the exact proof that we gave for his basis theorem, since he didn’t have the concept
of a Noetherian ring in full generality available to him.
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For a field K and ideal I in K[X1, . . . , Xn], the ring K[X1, . . . , Xn]/I is Noetherian since
K is trivially Noetherian. For instance, R[X,Y, Z]/(X2 + Y 3 − Z5, XY Z) is Noetherian.

Remark 3.10. In addition to polynomials in finitely many variables, formal power series
in finitely many variables are important. For a Noetherian ring R the formal power series
ring R[[X1, . . . , Xn]] is Noetherian, and as in the polynomial case writing R[[X1, . . . , Xn]] as
R[[X1, . . . , Xn−1]][[Xn]] reduces the proof to the case n = 1. A formal power series usually
doesn’t have a leading coefficient, so the proof in the polynomial case doesn’t work directly
for power series. What can be used with formal power series instead of a leading term is
a lowest degree term, so the proof of Theorem 3.5 can be adapted to formal power series
by changing highest-degree coefficients into lowest-degree coefficients, although an infinite
“limiting process” occurs in the proof since the multipliers on a generating set for the ideal
will be power series. See [5, Theorem 7.11].

4. Finitely generated modules over a Noetherian ring

Submodules of a finitely generated module need not be finitely generated; this in fact
motivated our definition of a Noetherian module. We prove in the next theorem that when
the scalar ring is Noetherian, the a priori weaker condition of a module being finitely
generated implies the stronger condition that all of its submodules are finitely generated.

Theorem 4.1. If R is a Noetherian ring then an R-module is Noetherian if and only if it
is finitely generated. That is, if all ideals in R are finitely generated then all submodules of
an R-module M are finitely generated if and only if M is finitely generated.

Proof. From the definition of a Noetherian module, an R-module that is Noetherian has to
be finitely generated. Now suppose an R-module M is finitely generated, so M is a quotient
module of some Rk. The module Rk is Noetherian by Corollary 2.5 and every quotient
module of Rk is Noetherian by Theorem 2.2. Thus M is Noetherian, so all submodules of
M are finitely generated. �

Remark 4.2. The part of this proof showing finitely generated modules over Noetherian
rings are Noetherian is very similar to the proof in Theorem 2.6 that finitely generated
modules over a PID are Noetherian. In fact, the proofs are exactly the same: the only
way the proof of Theorem 2.6 used that the ring is a PID is to be sure that the ring is a
Noetherian module over itself, and that property is exactly what a Noetherian ring is.

Here is a nice application of this theorem.

Theorem 4.3. If R is a Noetherian ring and M and N are finitely generated R-modules,
then HomR(M,N) is a finitely generated R-module.

Proof. Since M is finitely generated, it is isomorphic to a quotient module of some Rk, say
M ∼= Rk/L. Then HomR(M,N) ∼= HomR(Rk/L,N). The elements of HomR(Rk/L,N) are
the R-linear maps Rk/L→ N . Such a map is the same thing as an R-linear map Rk → N
that vanishes on L. (Make sure you understand that.) The set of all R-linear maps Rk → N
vanishing on L is a submodule of HomR(Rk, N), and the module HomR(Rk/L,N) can be
identified with it. Thus HomR(M,N) can be embedded into HomR(Rk, N).

Writing down an R-linear map Rk → N is the same thing as choosing a k-tuple in
N and sending the standard basis of Rk there and extending by linearity, so (check!)
HomR(Rk, N) ∼= Nk by f 7→ (f(e1), . . . , f(en)). Since N is a finitely generated R-module,
Nk is also a finitely generated R-module, and HomR(M,N) embeds as a submodule of Nk
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by work above. Since R is a Noetherian ring, Nk is a Noetherian R-module by Theorem
4.1, so its submodules are finitely generated. Thus HomR(M,N) is finitely generated. �

If we drop the condition that R is a Noetherian ring, it can be false that HomR(M,N)
is finitely generated when M and N are.

Example 4.4. For an ideal I in R we have HomR(R/I,R) ∼= {r ∈ R : Ir = 0} (an R-linear
map out of R/I is determined by where 1 goes), so we will give an example of an R and I
where {r ∈ R : Ir = 0} is not finitely generated. Both R and R/I are finitely generated
R-modules, since each is generated by 1.

Let K be a field and R = K[X1, X2, . . . ]/(. . . , XiXj , . . . ). Let I be the ideal of polynomial
cosets in R with constant term 0. (The constant term of a coset is well-defined since all
XiXj have constant term 0.) Then If = 0 if and only if f has constant term 0, so

{f ∈ R : If = 0} = I.

That the ideal I is not finitely generated is very similar to the proof that (X1, X2, . . . ) in
K[X1, X2, . . . ] is not finitely generated.

Corollary 4.5. If R is a Noetherian ring and M and N are Noetherian R-modules, then
HomR(M,N) is a Noetherian R-module.

Proof. Combine Theorems 4.1 and 4.3. �

Corollary 4.6. If R is a Noetherian ring and M is a finitely generated R-module then its
dual module M∨ is finitely generated.

Proof. Apply Theorem 4.3 with N = R. �

Without the Noetherian condition on R, Corollary 4.6 can break down. Example 4.4
uses a dual module, so a finitely generated module might not have a finitely generated dual
module when R is a non-Noetherian ring.
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