
SOLVING LINEAR RECURSIONS OVER ALL FIELDS

KEITH CONRAD

1. Introduction

A sequence {an} = (a0, a1, a2, . . . ) in a field K satisfies a linear recursion if there are
c1, . . . , cd ∈ K such that

(1.1) an = c1an−1 + c2an−2 + · · ·+ cdan−d

for all n ≥ d. For example, the Fibonacci sequence {Fn} = (0, 1, 1, 2, 3, 5, 8, . . . ) is defined
by the linear recursion Fn = Fn−1+Fn−2 with initial values F0 = 0 and F1 = 1. (Often F0 is
ignored, but the values F1 = F2 = 1 and the recursion force F0 = 0.) We will assume cd 6= 0
and then say the recursion has order d; this is analogous to the degree of a polynomial. For
instance, the recursion an = an−1 + an−2 has order 2.

The sequences in K satisfying a common recursion (1.1) are a K-vector space under
termwise addition. The initial terms a0, a1, . . . , ad−1 determine the rest and if cd 6= 0 then
we can set the initial d terms arbitrarily1, so solutions to (1.1) form a d-dimensional vector
space in K. We seek an explicit basis for the solutions of (1.1) described by nice formulas.

Example 1.1. Solutions to an = an−1 + an−2 in R are a 2-dimensional space. A power
sequence λn with λ 6= 0 satisfies it when λn = λn−1+λn−2, which is equivalent to λ2 = λ+1.

That makes λ a root of x2 − x− 1, so λ = 1±
√
5

2 . The sequences (1+
√
5

2 )n and (1−
√
5

2 )n are
not scalar multiples, so they are a basis: in R if an = an−1 + an−2 for all n ≥ 2 then

an = α

(
1 +
√

5

2

)n
+ β

(
1−
√

5

2

)n
for unique α and β in R. The Fibonacci sequence {Fn} is the special case where a0 = 0 and

a1 = 1. Solving α + β = 0 and α(1+
√
5

2 ) + β(1−
√
5

2 ) = 1 we get α = 1/
√

5 and β = −1/
√

5

when an = Fn. The solution with a0 = 1 and a1 = 0 uses α = −1−
√
5

2
√
5

and β = 1+
√
5

2
√
5

.

If we replace R by any field K in which x2−x−1 has roots, even a field of characteristic

p, the computations above still work if we replace 1±
√
5

2 by the roots in K unless K has

characteristic 5: there x2 − x − 1 = x2 + 4x + 4 = (x + 2)2 so 3 is the only root and the
only power sequence satisfying an = an−1 + an−2 is {3n} = (1, 3, 4, 2, 1, 3, 4, 2 . . . ).

Example 1.2. Let K have characteristic 5. What nice formula fits an = an−1 + an−2 and
is linearly independent of {3n} = (1, 3, 4, . . . )? The sequence an = n3n−1 works since

an−1 + an−2 = 3n−3((n− 1)3 + (n− 2)) = 3n−3(4n) = n3n
4

27
= n3n−1 = an.

This starts out as (0, 1, 1, 2, 3, 0, 3, 3, . . . ), so it is Fn mod 5 and is not a multiple of {3n}.
1What if cd = 0? If an = 2an−1 then the first term determines the rest, so the solution space is 1-

dimensional. Writing the recursion as an = 2an−1 + 0an−2 doesn’t make the solution space 2-dimensional
unless we insist the recursion is for n ≥ 2 rather than for n ≥ 1. We will not address this option.
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How is {n3n−1} found? If {λn} and {µn} satisfy the same linear recursion, so does any
linear combination. If λ 6= µ a linear combination is (λn − µn)/(λ− µ), and as µ→ λ this
“becomes” {nλn−1}, which up to scaling is {nλn}.2 This suggests that since 3 is a double
root of x2 − x− 1 in characteristic 5, {n3n−1} should be a solution and we saw it really is.
The formula Fn ≡ n3n−1 mod 5 goes back at least to Catalan [3, p. 86] in 1857.

Our goal is to prove the following theorem about a basis for solutions to a linear recursion
over a general field K.

Theorem 1.3. Let an = c1an−1 + c2an−2 + · · · + cdan−d be a linear recursion of order d
with ci ∈ K. Assume 1− c1x− c2x2 − · · · − cdxd factors in K[x] over its reciprocal roots –
the λ such that 1/λ is a root – as

(1− λ1x)e1 · · · (1− λrx)er ,

where the λi are distinct and ei ≥ 1. A basis for the solutions of the linear recursion in K
is given by the ei sequences {λni }, {nλni }, {

(
n
2

)
λni }, . . . , {

(
n

ei−1
)
λni } for i = 1, . . . , r.

Example 1.4. The simplest case of Theorem 1.3 is when each reciprocal root has multiplic-
ity 1: if 1− c1x− c2x2−· · ·− cdxd = (1−λ1x) · · · (1−λdx) has d distinct reciprocal roots λi
then the solutions of (1.1) are unique linear combinations of the λni : an = α1λ

n
1 + · · ·+αdλnd .

Example 1.5. The recursion an = 8an−1−24an−2 +32an−3−16an−4 has order 4 if K does
not have characteristic 2. Since 1− 8x+ 24x2− 32x3 + 16x4 = (1− 2x)4, the solutions have
basis {2n}, {n2n}, {

(
n
2

)
2n}, and {

(
n
3

)
2n}, so every solution is (b0 + b1n + b2

(
n
2

)
+ b3

(
n
3

)
)2n

for unique bi ∈ K.

The classical version of Theorem 1.3 in C, or more generally characteristic 0, is due to
Lagrange and says a basis of the solutions is the sequences {nkλni } for k < ei and i = 1, . . . , r.
This works in characteristic p if all ei ≤ p but breaks down if any ei > p, so it’s essential to
use {

(
n
k

)
λni } to have a result valid in all fields. While nk mod p has period p in n,

(
n
k

)
mod p

has a longer period if k ≥ p. For instance, in characteristic 2 the sequence
(
n
2

)
mod 2 has

period 4 with repeating values 0, 0, 1, 1 when n runs through the nonnegative integers.
We will prove Theorem 1.3 in two ways: by generating functions and by an analogy with

differential equations. Anna Medvedovsky brought this problem in characteristic p to my
attention and the second proof is a variation on hers. After writing this up I found a result
equivalent to Theorem 1.3 in a paper of Fillmore and Marx [4, Thm. 1, 2] and the case of
finite K in McEliece’s Ph.D. thesis [5, p. 19]. The earliest paper I found mentioning the
basis {

(
n
k

)
λni } in characteristic p is by Engstrom [2, p. 215] in 1931 when max ei = p, but

{nkλni } still works in that case. In 1933, Milne-Thomson [7, p. 388] in characteristic 0 gave

the basis {nkλni } and remarked that the alternative {
(
n−1
k

)
λni } “is sometimes convenient.”

2. First Proof: Generating Functions

It is easy to show the sequence {λn} fits (1.1) if λ is a reciprocal root of 1−c1x−· · ·−cdxd:
λn = c1λ

n−1 + c2λ
n−2 + · · ·+ cdλ

n−d for all n ≥ 0 ⇐⇒ λd = c1λ
d−1 + c2λ

d−2 + · · ·+ cd

⇐⇒ λd − c1λd−1 − · · · − cd = 0,

⇐⇒ 1− c1
λ
− · · · − cd

λd
= 0.

2There is an analogous result in differential equations: the solution space to y′′(t) +ay′(t) + by(t) = 0 has
basis {eλt, eµt} if λ and µ are different roots of x2 + ax+ b. If x2 + ax+ b has a double root λ then a basis
of the solution space is {eλt, teλt}. So λn ↔ eλt and nλn ↔ teλt. We’ll return to this analogy in Section 3.
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It’s more difficult to show
(
n
k

)
λn for a k ≥ 1 satisfies (1.1) if λ is a reciprocal root of

1−c1x−· · ·−cdxd with multiplicity greater than k. To do this, we will rely on the following
theorem characterizing linearly recursive sequences in terms of their generating functions.

Theorem 2.1. If the linear recursion (1.1) has cd 6= 0 then a sequence {an} in K satisfies
(1.1) if and only if the generating function

∑
n≥0 anx

n is a rational function of the form

N(x)/(1− c1x− c2x2 − · · · − cdxd) where N(x) = 0 or degN(x) < d.

Proof. Set F (x) =
∑

n≥0 anx
n. Using (1.1),

F (x) = a0 + a1x+ · · ·+ ad−1x
d−1 +

∑
n≥d

anx
n

= a0 + a1x+ · · ·+ ad−1x
d−1 +

∑
n≥d

(c1an−1 + c2an−2 + · · ·+ cdan−d)x
n

= a0 + a1x+ · · ·+ ad−1x
d−1 +

d∑
i=1

∑
n≥d

cian−ix
n

= a0 + a1x+ · · ·+ ad−1x
d−1 +

d∑
i=1

cix
i

∑
n≥d

an−ix
n−i


= a0 + a1x+ · · ·+ ad−1x

d−1 +
d∑
i=1

cix
i

 ∑
n≥d−i

anx
n


= a0 + a1x+ · · ·+ ad−1x

d−1 +

d∑
i=1

cix
i

(
F (x)−

d−i−1∑
n=0

anx
n

)
.

The term in the sum at i = d is just cdx
dF (x); the inner sum from n = 0 to n = −1 in this

case is 0. Bringing
∑d

i=1 cix
iF (x) over to the left side, we can solve for F (x) as a rational

function:

F (x) =
N(x)

1− c1x− c2x2 − · · · − cdxd

where N(x), if not identically 0, is a polynomial of degree at most d− 1.
Conversely, assume for {an} in K that

∑
n≥0 anx

n = N(x)/(1− c1x− · · · − cdxd) where

N(x) = 0 or degN(x) < d. Then

N(x) =

∑
n≥0

anx
n

 (1− c1x− c2x2 − · · · − cdxd).

Equating the coefficient of xn on both sides for n ≥ d,

0 = an − c1an−1 − c2an−2 − · · · − cdan−d,

which is the linear recursion (1.1). �

Corollary 2.2. In the linear recursion (1.1) suppose cd 6= 0. For λ ∈ K×, if 1 − λx is a
factor of 1 − c1x − · · · − cdxd with multiplicity e ≥ 1 then for 0 ≤ k ≤ e − 1 the sequence
{
(
n
k

)
λn} satisfies (1.1).
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Proof. Theorem 2.1 tells us that our task is equivalent to showing the generating function∑
n≥0

(
n
k

)
λnxn can be written in the form N(x)/(1− c1x− · · · − cdxd) where N(x) = 0 or

degN(x) < d. We’ll do this with an N(x) of degree d− 1.
In Z[[x]], differentiating the geometric series formula

∑
n≥0 x

n = 1/(1 − x) a total of k
times and then dividing both sides by k! gives us the formal power series identity

(2.1)
∑
n≥k

(
n

k

)
xn−k =

1

(1− x)k+1
.

Since Z has a (unique) homomorphism to any commutative ring, (2.1) is true in K[[x]].3

Multiply both sides by xk:

(2.2)
∑
n≥0

(
n

k

)
xn =

xk

(1− x)k+1
.

We changed the sum on the left to run over n ≥ 0 instead of n ≥ k, which is okay since(
n
k

)
= 0 for 0 ≤ n ≤ k − 1. Replacing x with λx in (2.2),

(2.3)
∑
n≥0

(
n

k

)
λnxn =

λkxk

(1− λx)k+1
.

Since k ≤ e− 1, (1−λx)k+1 is a factor of (1−λx)e, which is a factor of 1− c1x−· · ·− cdxd.
Set 1 − c1x − · · · − cdxd = (1 − λx)eg(x). If we multiply the top and bottom of the right

side of (2.3) by (1− λx)e−(k+1)g(x), which has degree d− (k + 1) because cd 6= 0, we get∑
n≥0

(
n

k

)
λnxn =

N(x)

1− c1x− c2x2 − · · · − cdxd

where degN(x) = k + (d− (k + 1)) = d− 1 < d. �

We proved in Corollary 2.2 that the sequences {
(
n
k

)
λni } for 1 ≤ i ≤ r and 0 ≤ k ≤ ei − 1

satisfy (1.1) when cd 6= 0. The number of these sequences is4
∑r

i=1 ei = d, which is the
dimension of the solution space, so to finish the proof of Theorem 1.3 we will show these d
sequences are linearly independent: if bik ∈ K satisfy

(2.4)
r∑
i=1

ei−1∑
k=0

bik

(
n

k

)
λni = 0 for all n ≥ 0

then we want to show each bik is 0. The sequence {
∑r

i=1

∑ei−1
k=0 bik

(
n
k

)
λni } for n ≥ 0 has

generating function

∑
n≥0

(∑
i

∑
k

bik

(
n

k

)
λni

)
xn =

∑
i

∑
k

bik

∑
n≥0

(
n

k

)
λni x

n

 (2.3)
=
∑
i

∑
k

bikλ
k
i x

k

(1− λix)k+1
,

3We can’t prove (2.1) in K[[x]] directly for all fields K using repeated differentiation, since in fields of
characteristic p the pth and higher-order derivatives are identically 0. It could be proved directly in K[[x]]
if K has characteristic p by using Hasse derivatives.

4Here we require that the linear recursion has order d, or equivalently that cd 6= 0.
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so this double sum is 0, since it’s the generating function of the zero sequence. For each i,
the inner sum over k is

(2.5)
bi0

1− λix
+

bi1λix

(1− λix)2
+

bi2λ
2
ix

2

(1− λix)3
+ · · ·+

bi ei−1λ
ei−1
i xei−1

(1− λix)ei
.

Putting these terms over a common denominator, the sum is qi(x)/(1 − λix)ei for a poly-
nomial qi(x) and the vanishing generating function for (2.4) becomes

(2.6)
q1(x)

(1− λ1x)e1
+ · · ·+ qr(x)

(1− λrx)er
= 0.

By construction, each qi(x) is 0 or deg qi(x) < ei. What can we say about each qi(x)?

Lemma 2.3. Let λ1, . . . , λr in K× be distinct such that (2.6) is satisfied, where e1, . . . , er
are positive integers and q1(x), . . . , qr(x) are in K[x] with qi(x) = 0 or deg qi(x) < ei for all
i. Then every qi(x) is 0.

Proof. We argue by induction on r. The case r = 1 is obvious. If r ≥ 2 and the result is
true for r − 1 then multiply (2.6) through by the product (1− λ1x)e1 · · · (1− λrx)er :

r∑
i=1

qi(x)(1− λ1x)e1 · · · ̂(1− λix)ei · · · (1− λrx)er = 0,

where the hat indicates an omitted factor in the ith term, for every i. Each term in this sum
is a polynomial, and all the terms besides the one for i = r have (1−λrx)er as a factor. Thus
the term at i = r is divisible by (1−λrx)er . That term is qr(x)(1−λ1x)e1 · · · (1−λr−1x)er−1 .
Since λ1, . . . , λr−1 are distinct from λr, (1 − λrx)er must divide qr(x). But qr(x), if not 0,
has degree less than er by hypothesis. Therefore qr(x) = 0, so the rth term in (2.6) is 0,
which makes every other qi(x) equal to 0 by induction. �

Remark 2.4. This lemma becomes obvious if a term in (2.6) is moved to the other side,
say qr(x)/(1 − λrx)er . If qr(x) 6= 0 then the right side blows up at x = 1/λr since the
numerator can’t completely cancel the denominator (because deg qr(x) < er), but the left
side without the term qr(x)/(1− λrx)er has a finite value at x = 1/λr. Thus qr(x) = 0.

Theorem 2.5. For λ1, . . . , λr ∈ K× and positive integers e1, . . . , er, the sequences {
(
n
k

)
λni }

for i = 1, . . . , r and k = 0, . . . , ei − 1 are linearly independent over K.

Proof. If the sequences satisfy a K-linear relation (2.4) then applying Lemma 2.3 to (2.6)
shows each qi(x) vanishes, so (2.5) vanishes for each i. Since (2.5) is the generating function

of the sequence with nth term
∑ei−1

k=0 bik
(
n
k

)
λni , we get

(2.7)

ei−1∑
k=0

bik

(
n

k

)
λni = 0 for each i and all n ≥ 0.

We passed from a linear relation (2.4) involving several λi’s to a linear relation (2.7) that
involves just a single λi that is one of the inner sums in (2.4). In (2.7) we can cancel the
common nonzero factor λni :

ei−1∑
k=0

bik

(
n

k

)
= 0 for all n ≥ 0.
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Let’s write this out as a system of linear equations at n = 0, 1, . . . , ei − 1:

(2.8)


1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 · · · 0
...

...
...

. . .
...

1 n
(
n
2

)
· · · 1




bi0
bi1
bi2
...

bi ei−1

 =


0
0
0
...
0

 .

The matrix is invertible in K, so bik = 0 for all i and k. �

Remark 2.6. Linear recursions over finite fields are of interest to coding theorists because
of their close relation to cyclic codes, a special type of linear code. The important construc-
tions of cyclic codes, like Reed–Solomon and BCH codes, are related to linear recursions
whose characteristic polynomial5 has distinct roots. Cyclic codes where the characteristic
polynomial has repeated roots have been studied [1], and for a number of reasons they are
not competitive with the standard “distinct root” cyclic codes.

3. Interlude: Analogy with Differential Equations

Linear recursions are analogous to linear differential equations, and our second proof of
Theorem 1.3 will be motivated by this analogy, which we set up in this section.

A sequence {an} satisfying an = c1an−1 + c2an−2 + · · ·+ cdan−d can be compared with a
function y(t) satisfying

(3.1) y(d)(t) = c1y
(d−1)(t) + c2y

(d−2)(t) + · · ·+ cdy(t),

which is a dth-order linear ODE with constant coefficients. The solution space to such an
ODE is d-dimensional. How similar are solutions to the recursion and the ODE?

Example 3.1. A first-order linear recursion an = can−1 has general solution an = a0c
n,

while a first-order ODE of the form y′(t) = cy(t) has general solution y(t) = y(0)ect. The
geometric progression cn is analogous to the exponential function ect.

Example 3.2. A second-order linear recursion an = ban−1 + can−2 has a general solution
that depends on whether or not the factorization 1−bx−cx2 = (1−λx)(1−µx) has distinct
or repeated reciprocal roots:

an =

{
αλn + βµn, if λ 6= µ,

αλn + βnλn, if λ = µ.

A second-order ODE of the form y′′(t) = by′(t) + cy(t) has a general solution that depends
on whether or not the factorization x2 − bx − c = (x − λ)(x − µ) has distinct or repeated
roots:

y(t) =

{
αeλt + βeµt, if λ 6= µ,

αeλt + βteλt, if λ = µ.

Letting D = d/dt, the differential equation (3.1) can be written as

(3.2) (Dd − c1Dd−1 − · · · − cd)(y(t)) = 0,

so solutions of (3.1) are the nullspace of the differential operator

(3.3) Dd − c1Dd−1 − · · · − cd,
5This is xd − c1xd−1 − · · · − cd in our notation.
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which acts on the real vector space of smooth functions R→ R. On sequences, the analogue
of D is the left-shift operator L: if a = (a0, a1, a2, . . . ) then L(a) = (a1, a2, a3, . . . ), or
equivalently L({an}) = {an+1}. This is a linear operator on the K-vector space Seq(K)
of sequences with coordinates in K. Here is the analogue of (3.2) that can serve as a
characterization of sequences satisfying a linear recursion in place of Theorem 2.1.

Theorem 3.3. A sequence a = {an} in Seq(K) satisfies the linear recursion (1.1) if and
only if (Ld − c1Ld−1 − · · · − cdI)(a) = 0, where I is the identity operator on Seq(K) and
0 = (0, 0, 0, . . . ).

Proof. For i ≥ 0, the sequence Li(a) has nth component an+i, so the sequence ciL
i(a)

has nth component cian+i. The nth component of (Ld − c1Ld−1 − · · · − cdI)(a) is an+d −
c1an+d−1 − · · · − cdan, which is 0 for all n if and only if a satisfies (1.1). �

Example 3.4. If a sequence a satisfies an = an−1 + an−2 then (L2 − L − I)(a) has nth
component an+2 − an+1 − an, which is 0 for all n, so (L2 − L− I)(a) = 0.

To solve the differential equation (3.2), factor the polynomial xd− c1xd−1− · · · − cd over
C to get a factorization of the differential operator (3.3):

xd − c1xd−1 − · · · − cd =

r∏
i=1

(x− λi)ei =⇒ Dd − c1Dd−1 − · · · − cd =

r∏
i=1

(D − λi)ei ,

where λ1, . . . , λr are distinct and ei ≥ 1. We have to allow λi ∈ C, so for compatibility
let D = d/dt act on the smooth functions R → C (functions whose real and imaginary
parts are ordinary smooth functions R → R). The operators (D − λi)ei for i = 1, 2, . . . , r
commute, so C-valued solutions y(t) to the differential equation (D − λi)ei(y(t)) = 0 are
solutions to (3.1). This is enough to describe all solutions of (3.1):

Theorem 3.5. Using the above notation, a C-basis of solutions to (D − λi)ei(y(t)) = 0
is eλit, teλit, . . . , tei−1eλit, and putting these together for i = 1, . . . , r gives a C-basis of
solutions to (3.1).

We omit a proof of this theorem, which for us serves only as motivation. In the simplest

case that each ei is 1, so xd− c1xd−1−· · ·− cd =
∏d
i=1(x−λi), a basis of the solution space

to (3.1) is eλ1t, . . . , eλdt, which is analogous to Example 1.4.

Remark 3.6. Since the λi in Theorem 3.5 are in C, the solution space in the theorem is
the complex-valued solutions of (3.1). If the coefficients ci in (3.1) are all real, then even if
some λi in Theorem 3.5 is not real and therefore some tkeλit is not a real-valued function,
it can be proved that the R-valued solution space to (3.1) is d-dimensional over R.

4. Second Proof: Linear Operators

We will apply the ideas from Section 3 to the linear operator Ld − c1Ld−1 − · · · − cdI in
Theorem 3.3 to reprove Theorem 1.3 using an argument of Anna Medvedovsky [6, App. B].

Our first approach to proving Theorem 1.3 involved the polynomial 1− c1x− · · · − cdxd
and its reciprocal roots (and their multiplicities). By analogy with the method of solving
differential equations, we will now use the polynomial xd− c1xd−1− · · · − cd instead. These
two polynomials are reciprocal in the sense that

xd − c1xd−1 − · · · − cd = xd
(

1− c1
x
− · · · − cd

xd

)
.
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Therefore

xd − c1xd−1 − · · · − cd =
r∏
i=1

(x− λi)ei ⇐⇒ 1− c1x− · · · − cdxd =
r∏
i=1

(1− λix)ei ,

where λi 6= λj for i 6= j, so reciprocal roots of 1− c1x− c2x2− · · · − cdxd are ordinary roots

of xd − c1xd−1 − · · · − cd, with matching multiplicities. Since cd 6= 0, no λi is 0.
Theorem 3.3 tells us that a sequence a ∈ Seq(K) satisfies (1.1) precisely when a is in the

kernel of Ld − c1Ld−1 − · · · − cdI. Since

(4.1) xd − c1xd−1 − · · · − cd =
r∏
i=1

(x− λi)ei =⇒ Ld − c1Ld−1 − · · · − cdI =
r∏
i=1

(L− λiI)ei

and the operators (L−λiI)ei for different λi commute, any a in the kernel of some (L−λiI)ei

is a solution of (1.1). Solutions to (L−λiI)ei(a) = 0 belong to the generalized λi-eigenspace
of L, which is the set of a killed by some positive integer power of L − λiI. If ei = 1,
such a form the λi-eigenspace of L: (L − λiI)(a) = 0 if and only if L(a) = λia. The
λi-eigenvectors are the nonzero vectors in the λi-eigenspace, and the nonzero vectors in a
generalized eigenspace are called generalized eigenvectors.

Our second proof of Theorem 1.3, like the first, is established in two steps by proving
results like Corollary 2.2 and Theorem 2.5.

Theorem 4.1. If λ ∈ K× is a root of xd − c1xd−1 − · · · − cd with multiplicity e ≥ 1 then
the sequence {

(
n
k

)
λn} for k = 0, 1, . . . , e− 1 satisfies (1.1).

Proof. Since (x − λ)e is a factor of xd − cd−1xd−1 − · · · − cd, it suffices by Theorem 3.3 to
show the sequence {

(
n
k

)
λn} for 0 ≤ k ≤ e− 1 is killed by (L− λI)e to make it satisfy (1.1).

First we treat k = 0. Since L({λn}) = {λn+1} = λ{λn}, we get (L − λI)({λn}) = 0.
Therefore (L− λI)e({λn}) = 0.

Let k ≥ 1. Applying L− λI to {
(
n
k

)
λn}, we get the sequence

(L− λI)

{(
n

k

)
λn
}

= L

{(
n

k

)
λn
}
− λ

{(
n

k

)
λn
}

=

{(
n+ 1

k

)
λn+1 −

(
n

k

)
λn+1

}
.

For k ≥ 1,
(
n+1
k

)
=
(
n
k−1
)

+
(
n
k

)
, so

(L− λI)

{(
n

k

)
λn
}

=

{(
n

k − 1

)
λn+1

}
.

By induction,

(L− λI)i
{(

n

k

)
λn
}

=

{(
n

k − i

)
λn+i

}
for 1 ≤ i ≤ k. Thus (L − λI)k({

(
n
k

)
λn}) = {λn+k} = λk{λn}. The sequence {λn} is a

λ-eigenvector of L, and hence is in the kernel of L − λI, so applying L − λI more than k
times to the sequence {

(
n
k

)
λn} kills it. Thus (L− λI)e({

(
n
k

)
λn}) = 0 for e > k. �

Second proof of Theorem 2.5. Suppose a K-linear combination of these sequences van-
ishes, say

(4.2)

r∑
i=1

ei−1∑
k=0

bik

{(
n

k

)
λni

}
= 0.
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with bik ∈ K. We want to show each bik is 0.
For each i, the sequences {

(
n
k

)
λni } for 0 ≤ k ≤ ei − 1 are all killed by (L − λiI)ei by

Theorem 4.1, so the inner sum vi :=
∑ei−1

k=0 bik{
(
n
k

)
λni } in (4.2) belongs to the generalized

λi-eigenspace of L. A standard theorem in linear algebra says that eigenvectors of a linear
operator associated to different eigenvalues are linearly independent, and this extends to
generalized eigenvectors of a linear operator associated to different eigenvalues; a proof of
that is in the appendix and serves as an analogue of Lemma 2.3. Since v1, . . . ,vr belong to
generalized eigenspaces associated to different eigenvalues of L, and v1+· · ·+vr = 0, each vi
must be 0; if any vi were not 0 then the vanishing sum over the nonzero vi would be a linear
dependence relation among generalized eigenvectors associated to distinct eigenvalues.

The equation vi = 0 says

(4.3)

ei−1∑
k=0

bik

{(
n

k

)
λni

}
= 0.

The passage from (4.2) to (4.3) is an analogue of the passage from (2.4) to (2.7), and (4.3)
for i = 1, . . . , r is exactly the same as (2.7), so we can finish off this proof in the same way
that we did before: equating the coordinates on both sides of (4.3) for n = 0, . . . , ei− 1 and
dividing by λni leads to the matrix equation (2.8) so all bik are 0.

�

Appendix A. Linear Independence of Generalized Eigenvectors

Theorem A.1. Let V be a K-vector space, A : V → V be a linear operator, and v1, . . . , vr
in V be generalized eigenvectors of A associated to distinct respective eigenvalues λ1, . . . , λr.
Then v1, . . . , vr are linearly independent over K.

Proof. Since vi is a generalized eigenvector of A associated to the eigenvalue λi, vi 6= 0 and
(A− λiI)ei(vi) = 0 for some ei ≥ 1. Suppose there is a linear relation

b1v1 + · · ·+ brvr = 0

for some b1, . . . , br ∈ K. We want to prove each bi is 0, and will argue by induction on r.
The result is clear if r = 1, since v1 6= 0, so suppose r ≥ 2 and the lemma is proved for r−1
generalized eigenvectors associated to distinct eigenvalues.

The operators (A−λiI)ei commute, so applying the product (A−λ1I)e1 · · · (A−λr−1)er−1

to the linear relation kills the first r − 1 terms and leaves us with

br(A− λ1I)e1 · · · (A− λr−1)er−1(vr) = 0.

If br 6= 0 then vr is killed by (A− λ1I)e1 · · · (A− λr−1)er−1 . It is also killed by (A− λrI)er .
In K[x] the polynomials (x − λ1)e1 · · · (x − λr−1)er−1 and (x − λr)er are relatively prime
(since λr 6= λ1, . . . , λr−1), so there’s a polynomial identity

g(x)(x− λ1)e1 · · · (x− λr−1)er−1 + h(x)(x− λr)er = 1

for some g(x) and h(x) in K[x]. Thus

g(A)(A− λ1I)e1 · · · (A− λr−1I)er−1 + h(A)(A− λrI)er = I,

and applying both sides to vr implies 0 = vr, which is a contradiction. Thus br = 0. The
linear relation among the vi simplifies to b1v1 + · · ·+ br−1vr−1 = 0, so by induction all the
remaining bi equal 0. �
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