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1. Introduction

From commutativity of multiplication (for numbers), a product of two squares is a square:
x2y2 = (xy)2. A more interesting identity is the following one, which expresses a sum of
two squares times a sum of two squares as another sum of two squares:

(1.1) (x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)2 + (x1y2 + x2y1)

2.

There is also an identity like this for a sum of four squares:

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y23 + y24) = (x1y1 − x2y2 − x3y3 − x4y4)2 +(1.2)

(x1y2 + x2y1 + x3y4 − x4y3)2 +

(x1y3 + x3y1 − x2y4 + x4y2)
2 +

(x1y4 + x4y1 + x2y3 − x3y2)2.
This was discovered by Euler in the 18th century, forgotten, and then rediscovered in the
19th century by Hamilton in his work on quaternions. Shortly after Hamilton’s rediscovery
of (1.2) Cayley discovered a similar 8-square identity.

In all of these sum-of-squares identities, the terms being squared on the right side are all
bilinear expressions in the x’s and y’s: each such expression, like x1y2+x2y1 for sums of two
squares, is a linear combination of the x’s when the y’s are fixed and a linear combination
of the y’s when the x’s are fixed.

It was natural for mathematicians to search for a similar 16-square identity next, but they
were unsuccessful. At the end of the 19th century Hurwitz [3] proved his famous “1,2,4,8
theorem,” which says that further identities of this kind are impossible.

Theorem 1.1 (Hurwitz, 1898). If there is an identity

(1.3) (x21 + · · ·+ x2n)(y21 + · · ·+ y2n) = z21 + · · ·+ z2n

for x1, . . . , xn, y1, . . . , yn in C, where each zk is a C-bilinear function of the x’s and the y’s,
then n = 1, 2, 4 or 8.

To prove Theorem 1.1, we first show in Section 2 that the existence of a bilinear formula
like (1.3) leads to a set of equations in n× n matrices over C. Then we show that the ma-
trix equations can be solved only when n = 1, 2, 4, or 8. The method we use, based on [5],
depends on a linear independence property of certain matrix products we will see in Section
3 and is a simplified version of Hurwitz’s original argument. As an application of Hur-
witz’s theorem, in Section 4 we see which Euclidean spaces Rn can admit a multiplication
resembling the usual vector cross product on R3.
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2. The Hurwitz Matrix Equations

Lemma 2.1. Let V be a finite-dimensional vector space over C. If there is a pair of
invertible anti-commuting linear operators on V , then dimV is even.

Proof. Suppose L,L′ : V → V are linear, invertible, and LL′ = −L′L. Taking the determi-
nant of both sides, (detL)(detL′) = (−1)dimV (detL′)(detL). Since L and L′ have nonzero
determinants, 1 = (−1)dimV , so dimV is even. �

We return to (1.3). That zk is a bilinear functions of the x’s and y’s means

(2.1) zk =

n∑
i,j=1

aijkxiyj

for some aijk ∈ C. For example, in the case n = 2 we see by (1.1) that we can use

(2.2) z1 = x1y1 − x2y2, z2 = x1y2 + x2y1.

We can collect the two equations in (2.2) as components of the equation(
z1
z2

)
=

(
x1y1 − x2y2
x1y2 + x2y1

)
=

(
x1 −x2
x2 x1

)(
y1
y2

)
=

(
x1

(
1 0
0 1

)
+ x2

(
0 −1
1 0

))(
y1
y2

)
.

From (1.2), in the n = 4 case we can use

z1 = x1y1 − x2y2 − x3y3 − x4y4,
z2 = x1y2 + x2y1 + x3y4 − x4y3,
z3 = x1y3 + x3y1 − x2y4 + x4y2,

z4 = x1y4 + x4y1 + x2y3 − x3y2,

so 
z1
z2
z3
z4

 = (x1A1 + x2A2 + x3A3 + x4A4)


y1
y2
y3
y4

 ,

where A1, A2, A3, and A4 are 4× 4 matrices with entries 0, 1, and −1. For example,

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

The reader can work out A3 and A4.
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Such matrix equations can be developed in the n×n case too. The scalar equation (2.1)
for k = 1, . . . , n is the same as the single equation z1

...
zn

 =


∑

i,j aij1xiyj
...∑

i,j aijnxiyj

(2.3)

=


∑

j (
∑

i aij1xi) yj
...∑

j (
∑

i aijnxi) yj


=


∑

i ai11xi . . .
∑

i ain1xi
...

. . .
...∑

i ai1nxi . . .
∑

i ainnxi


 y1

...
yn

 .

The n× n matrix in the last expression can be expressed as a sum of n matrices, each one
containing only one xi which can then be pulled out as a coefficient:

x1

 a111 . . . a1n1
...

. . .
...

a11n . . . a1nn

+ · · ·+ xn

 an11 . . . ann1
...

. . .
...

an1n . . . annn

 .

This sum can be written as x1A1 + · · ·+xnAn, where Ai is an n×n matrix with (j, k)-entry
aikj . (Why the index reversal on the subscripts? That is in the nature of how matrix-vector
multiplication works: look at the n = 2 case to convince yourself in a concrete case that
this index reversal is not an error.) Now (2.3) reads as

z = (x1A1 + · · ·+ xnAn)y = Axy,

where we set Ax = x1A1 + · · ·+ xnAn.
The right side of (1.3) is

z21 + · · ·+ z2n = z · z,
where · is the dot product (a1, . . . , an) · (b1, . . . , bn) =

∑n
k=1 akbk on Cn (not the Hermitian

inner product!). Thus

z21 + · · ·+ z2n = z · z
= Axy ·Axy

= (A>xAxy) · y

The left side of (1.3) is (∑
x2i

)
y · y =

((∑
x2i

)
y
)
· y.

Therefore

(A>xAxy) · y =
((∑

x2i

)
y
)
· y.

Comparing the two sides as y varies shows

(2.4) A>xAx =
(∑

x2i

)
In.
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Expanding the left side of (2.4) using Ax = x1A1 + · · ·+ xnAn, we have

A>xAx =
n∑
i=1

(
A>i Ai

)
x2i +

∑
1≤i,j≤n

i 6=j

(
A>i Aj +A>j Ai

)
xixj ,

so (2.4) is equivalent to the system of matrix equations

(2.5) A>i Ai = In, A>i Aj +A>j Ai = O for i 6= j.

These are the Hurwitz matrix equations. The rest of the proof of Theorem 1.1 is now devoted
to showing these equations in n × n matrices can exist only if n is 1, 2, 4, or 8. Without
loss of generality we take n > 2.

We normalize the matrices Ai to make one of them the identity, as follows. By (2.5), Ai
is an invertible matrix whose inverse is A>i . Set

Bi = AiA
>
n .

Now (2.5) is easily seen to be equivalent to

(2.6) Bn = In, B>i Bi = In, B>i Bj +B>j Bi = O for i 6= j.

Taking j = n in the third equation shows B>i = −Bi for i 6= n. Therefore the n−1 matrices
B1, . . . , Bn−1 satisfy

(2.7) B>i = −Bi, B2
i = −In, BiBj = −BjBi for i 6= j.

We see immediately from (2.7) and Lemma 2.1 that n is even. Next we will prove that
(2.7) for even n > 2 forces n = 4 or 8.

Up to this point, although our scalars have been taken to be complex it is worth noting
that we have not used anything special about complex numbers. For example, if we had
a sum of squares identity (1.3) for real x’s and y’s and the z’s are real bilinear functions
of the x’s and y’s then the exact same argument as above would yield a set of Hurwitz
matrix equations with real matrices. Nothing has to be changed in the derivation at all.
(For example, Lemma 2.1 is valid for with real scalars in place of complex scalars using the
same proof.)

3. Conclusion via Linear Algebra

We will use a lemma about linear independence of certain matrix products. Let m be
a positive even integer and C1, . . . , Cm be matrices in some Md(C) which are pairwise
anticommuting and each C2

i is a nonzero scalar diagonal matrix. (For instance, in the
notation of (2.7), we can use B1, B2, . . . , Bn−2 in Mn(C). We take out Bn = In since it is
not anti-commuting with the other Bi’s, and we then take out Bn−1 because we need an
even number of anti-commuting matrices and n− 1 is odd.) While B2

i = −In for all i, for
the purpose of what we are going to do for now with these C’s, we don’t need to assume
C2
i is the same scalar for all i.) From the m matrices C1, . . . , Cm, we get 2m products of

different terms. Specifically, for an m-tuple δ = (δ1, . . . , δm) ∈ {0, 1}m, set

Cδ = Cδ11 · · ·C
δm
m .

Note Ci is Cδ where δi = 1 and other δj ’s are 0. The number of different δ’s is 2m.
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Lemma 3.1. With notation as in the previous paragraph, the 2m matrices Cδ are linearly
independent in Md(C). In particular, 2m ≤ d2 when m is even.

In the course of the proof, the condition that m is even will only be needed at the very
end.

Proof. This proof is a bit tedious, so the reader may want to skip the proof on a first reading
to see how it gets used and then return here later. Suppose there is a non-trivial linear
relation

(3.1)
∑
δ

bδC
δ = O,

where the bδ ’s are in C and are not all 0. Take such a relation with as few nonzero
coefficients as possible.

First we show that we can assume b0 6= 0. Since the Ci’s anti-commute and square to a

nonzero scalar matrix, Cδ
′
Cδ

′
is a nonzero scalar matrix for any δ′. Moreover, as δ varies

and δ′ is fixed,

{CδCδ
′

: δ ∈ {0, 1}m} = {(nonzero scalar)Cδ : δ ∈ {0, 1}m}.

Therefore, picking δ′ such that bδ′ 6= 0, multiplying (3.1) on the right by Cδ
′

gives a linear

relation with the same number of nonzero coefficients as in (3.1) but now the coefficient
of C0 = Id is nonzero. We may henceforth impose this condition on the minimal relation
(3.1).

Now we use conjugations to show most terms in (3.1) are zero. By anti-commutativity,

CiCjC
−1
i =

{
Cj , if i = j,

−Cj , if i 6= j.

Therefore

(3.2) CiC
δC−1i = ±Cδ .

What is the exact recipe for the ± sign? It depends on how many coordinates in δ equal
1. For δ ∈ {0, 1}m, let its weight w(δ) be the number of i’s with δi = 1. For instance,
w(0) = 0. We get the more precise version of (3.2):

(3.3) CiC
δC−1i = εδ,iC

δ ,

where

(3.4) εδ,i =

{
(−1)w(δ), if δi = 0,

(−1)w(δ)−1, if δi = 1.

For instance, ε0,i = 1 for all i.
Pick i from 1 to n and conjugate (3.1) by Ci. By (3.3), we get

(3.5)
∑
δ

εδ,ibδC
δ = O.
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Since ε0,i = 1, subtract (3.5) from (3.1) to get the linear relation

(3.6)
∑
δ

(1− εδ,i)bδC
δ = O.

Here the coefficient of the term for δ = 0 is 0, while we arranged for it to be nonzero in
(3.1). Therefore (3.6) is a linear relation with fewer nonzero terms than the nonzero relation
of minimal length. Hence all terms in (3.6) vanish. That is,

δ 6= 0, bδ 6= 0 =⇒ εδ,i = 1.

This holds for every i from 1 to n, so each δ 6= 0 with a nonzero coefficient in (3.1) has εδ,i
independent of i. Then δi is independent of i by (3.4), so δ = (1, 1, . . . , 1). Then w(δ) = m,
so εδ,i = (−1)m−1 = −1, since m is even. This is a contradiction since −1 6= 1. We have

shown bδ = 0 for δ 6= 0, but then the linear relation (3.1) has just one nonzero term, which
is impossible. �

Remark 3.2. Nothing is special about complex scalars for the matrices in this lemma. The
proof of Lemma 3.1 works for matrices in Md(F ) for any field F in which −1 6= 1.

Returning now to the setting of the proof of Theorem 1.1, apply Lemma 3.1 to the
matrices B1, . . . , Bn−2. (Recall n is even.) We conclude 2n−2 ≤ n2. It is easy to see this
inequality, for even n > 2, holds only for n = 4, 6, and 8. The possibility n = 6 in Theorem
1.1 will be eliminated by studying eigenspaces for B1. We will see that when n > 4, n/2 is
even, so n 6= 6.

Consider the Bj ’s as linear operators on Cn. Since B2
j = −In, the only eigenvalues of Bj

are ±i. Let U and W be the two eigenspaces of B1:

U = {v : B1v = iv}, W = {v : B1v = −iv}.

For any v ∈ Cn, the decomposition

v =
v − iB1v

2
+
v + iB1v

2

has the first term in U and the second term in W . (More generally, if B is an n× n matrix
and B2 = c2In then (1/2)(v + (1/c)Bv) is in the c-eigenspace of B for any v ∈ Cn. Take
c = i to get the displayed terms above.) Thus Cn = U+W . Since U and W are eigenspaces
of B1 for different eigenvalues, U∩W = {0}. Therefore Cn = U⊕W , so n = dimU+dimW .

Our goal is to show the eigenspaces U and W have the same dimension. Since Bj is
invertible for every j, dimU = dimBj(U) and dimW = dimBj(W ). Easily B1(U) ⊂ U
and B1(W ) ⊂ W . Of greater interest is that, for j = 2, 3, . . . , n − 1, Bj(U) ⊂ W and
Bj(W ) ⊂ U . To show this, pick u ∈ U . Then by anticommutativity,

B1(Bju) = −Bj(B1u) = −Bj(iu) = −iBju,

so Bju ∈W . Thus, Bj(U) ⊂W . That Bj(W ) ⊂ U is analogous. Then

dimU = dimBj(U) ≤ dimW and dimW = dimBj(W ) ≤ dimU,

so dimU = dimW . Therefore from the decomposition Cn = U ⊕ W we get dimU =
dimW = n/2.
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Although the maps Bj (j > 1) send U to W and vice versa, we can get self-maps on one
of these subspaces by composition of each Bj with, say, B2. For j = 2, 3, . . . , n − 1, the
composite Lj = B2 ◦ Bj is an invertible linear operator on Cn and Lj(U) = B2(Bj(U)) ⊂
B2(W ) ⊂ U , so Lj(U) ⊂ U . When n > 4, a calculation using (2.7) shows that L3 and L4

are anti-commuting on Cn:

L3L4 = (B2B3)(B2B4) = −B2
2B3B4 = B3B4

and

L4L3 = (B2B4)(B2B3) = −B2
2B4B3 = B4B3 = −B3B4 = −L3L4.

(More generally, Lj and Lk are anti-commuting for any different j, k > 2.) Viewing L3 and
L4 as linear operators not on Cn but on the vector space U 1, their anticommutativity on U
forces dimU = n/2 to be even by Lemma 2.1, so n must be a multiple of 4. This eliminates
the choice n = 6 and concludes the proof of Hurwitz’s theorem!

We stated and proved Hurwitz’s theorem over C, but the theorem goes through with
variables in R too. After all, if we have an n-term bilinear sum of squares identity over R
then it leads to n × n real matrices satisfying the Hurwitz matrix equations by the same
reasoning as above. By viewing these matrices as acting on Cn and running through the
above eigenspace argument we obtain n = 1, 2, 4, or 8. (By similar reasoning, the proof
goes through with C replaced by any field F in which −1 6= 1; if necessary we may have to
enlarge the field as we do when passing from R to C to contain square roots of −1 if they
are not already in F , in order for the eigenspace argument to make sense.)

While Hurwitz proved only the dimension constraints n = 1, 2, 4, and 8 for an n-
dimensional bilinear sum of squares identity, something stronger is true: up to a linear
change of variables there is only one bilinear sum of squares identity in each of these di-
mensions. For a proof, see [1], [4, §7.6], or [5, Appendix, Chap. 1]. (Such identities are
associated to multiplication in the real numbers, complex numbers, quaternions, and octo-
nions. Readers unfamiliar with the quaternions and octonions can look in [2].)

4. Vector products

We will use Hurwitz’s theorem to explore the following question: does the cross product
on R3 have an analogue on Rn for any n > 3? After we specify what properties we want
such a product to satisfy, we will see the choices are quite limited.

The multiplication on Rn should assign to any v and w in Rn a third vector in Rn, to
be denoted v × w. It is natural to insist that this product be R-bilinear in v and w:

(4.1) (v1 + v2)× w = v1 × w + v2 × w, v × (w1 + w2) = v × w1 + v × w2,

and

(4.2) (cv)× w = c(v × w), v × (cw) = c(v × w),

where c ∈ R. One consequence of bilinearity is that multiplication by 0 is 0:

(4.3) v × 0 = 0, 0× w = 0.

1At this step we need a theory of linear operators on general vector spaces and not just on the “column
spaces” Cd
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Let us also ask that, as with the cross product on R3, the product be orthogonal to both
factors: for all v and w in Rn,

(4.4) v · (v × w) = 0, w · (v × w) = 0.

(This property is not satisfied by other kinds of products in linear algebra, such as matrix

multiplication on Md(R) = Rd2 with · being the dot product on Md(R) given by (aij)·(bij) =∑
i,j aijbij .)

Lastly, we ask that the magnitude ||v × w|| be determined by the same formula which
works for the cross product in three dimensions:

(4.5) ||v × w||2 = ||v||2||w||2 − (v · w)2.

When n = 1, a product on Rn = R satisfying (4.5) must be identically zero. Indeed, the
dot product on R is the ordinary product, so (4.5) becomes |x× y|2 = x2y2− (xy)2 = 0, so
x× y = 0. So we only care about the case n > 1.

The assumption (4.5) looks more complicated than the earlier assumptions. The following
result expresses (4.5) in simpler terms, but it is in the form (4.5) that we will actually use
the assumption.

Theorem 4.1. Let × be a product on Rn which satisfies (4.1), (4.2), and (4.4). Then (4.5)
is equivalent to the following two conditions together:

(1) for all v ∈ Rn, v × v = 0,
(2) if ||v|| = 1, ||w|| = 1, and v ⊥ w, then ||v × w|| = 1.

Proof. It is easy to see that (4.5) implies the two conditions in the theorem. Now we assume
the two conditions and derive (4.5).

First suppose v and w are linearly dependent, say w = cv for some c ∈ R. Then

||v × w||2 = ||v × (cv)||2 = c2||v × v||2 = 0

and

||v||2||w||2 − (v · w)2 = c2||v||4 − c2(v · v)2 = c2||v||4 − c2||v||4 = 0,

so the two sides of (4.5) both equal 0.
Now suppose v and w are linearly independent. Let u = v − v·w

w·ww, so u · w = 0.
Then u/||u|| and w/||w|| are perpendicular unit vectors, so by assumption the product
(u/||u||)× (w/||w||) is a unit vector. By bilinearity, the unit length of this product implies

(4.6) ||u× w|| = ||u||||w||.

Since w × w = 0, u× w = v × w by bilinearity and (4.3). Squaring both sides of (4.6),

(4.7) ||v × w||2 = ||u||2||w||2
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From the definition of u,

||u||2 = u · u

=
(
v − v · w

w · w
w
)
·
(
v − v · w

w · w
w
)

= v · v − 2
(v · w)2

w · w
+

(v · w)2

w · w

= v · v − (v · w)2

w · w

= ||v||2 − (v · w)2

||w||2
.

Substituting this into (4.7) gives

||v × w||2 = ||v||2||w||2 − (v · w)2.

�

Theorem 4.2. For n ≥ 1, assume there is a multiplication × : Rn ×Rn → Rn satisfying
(4.1), (4.2), (4.4), and (4.5). Then n = 1, 3, or 7.

We have seen the n = 1 case is quite dull, so the only interesting cases in Theorem 4.2
are 3 and 7.

Proof. We use the multiplication × on Rn to define a product, say �, on Rn+1. Write
vectors in Rn+1 in the form (x, v), where x ∈ R and v ∈ Rn. Note that the dot product of
such vectors can be expressed in terms of dot products of the components:

(x, v) · (y, w) = xy + v · w.
For (x, v) and (y, w) in Rn+1, define

(4.8) (x, v)� (y, w) = (xy − v · w, xw + yv + v × w).

This formula makes sense (even if it seems a bit mysterious) since xy − v · w ∈ R and
xw + yv + v × w ∈ Rn. While (1,0) is a 2-sided identity for �, we won’t be using this
explicitly.

This product � on Rn+1 has two key properties. The first is that it is a bilinear function
of (x, v) and (y, w). That is, fixing one of these vector pairs in Rn+1, the right side of (4.8)
is a linear function of the other pair.

The second key property of � is that it is multiplicative for lengths:

(4.9) ||(x, v)� (y, w)||2 = ||(x, v)||2||(y, w)||2.
We verify this by writing the left side as a dot product and expanding:

||(x, v)� (y, w)||2 = (xy − v · w, xw + yv + v × w) · (xy − v · w, xw + yv + v × w)

= (xy − v · w)2 + (xw + yv + v × w) · (xw + yv + v × w)

By (4.4), v ×w is orthogonal to xw+ yv. Therefore (xw+ yv + v ×w) · (xw+ yv + v ×w)
equals

(xw + yv) · (xw + yv) + (v × w) · (v × w) = x2||w||2 + 2xy(v · w) + y2||v||2 + ||v × w||2.
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Adding this to (xy − v · w)2 = x2y2 − 2xy(v · w) + (v · w)2 gives

||(x, v)� (y, w)||2 = x2y2 + (v · w)2 + x2||w||2 + y2||v||2 + ||v × w||2.
By (4.5), this simplifies to

||(x, v)� (y, w)||2 = x2y2 + x2||w||2 + y2||v||2 + ||v||2||w||2

= (x2 + ||v||2)(y2 + ||w||2)
= ||(x, v)||2||(y, w)||2,

so we have established (4.9).
Now we show the connection between � and Hurwitz’s theorem. Pick two vectors

(x1, . . . , xn+1) and (y1, . . . , yn+1) in Rn+1. Their �-product is a third vector (z1, . . . , zn+1),
where the components are computed according to (4.8). Writing (4.9) with the terms moved
to opposite sides,

(4.10) (x21 + · · ·+ x2n+1)(y
2
1 + · · ·+ y2n+1) = z21 + · · ·+ z2n+1.

This identity holds for all real values of the variables. From the first key property of �, the
zk’s are bilinear functions of the xi’s and yj ’s. Thus, (4.10) and Hurwitz’s theorem over R
tell us n+1 is 1, 2, 4, or 8, so n is 0, 1, 3, or 7. Discard the case n = 0 and we are done. �

Up to a linear change of variables, it can be shown that the only product on R3 satisfying
the conditions of Theorem 4.2 is the usual cross product. To see the construction of a
product on R7 satisfying the conditions of Theorem 4.2, consult [2, pp. 278–279].

Appendix A. Lemma 3.1 revisited

The linear independence conclusion of Lemma 3.1 continues to hold under a weaker
assumption than the Ci’s having scalar squares: invertibility of the Ci’s is sufficient. How-
ever, the proof becomes more involved, since we can’t reduce immediately to the case when
b0 6= 0. Here is the general result along these lines for readers who have heard of rings.

Theorem A.1. Let F be a field and A be an associative ring with identity containing
F . Suppose a1, . . . , am are m pairwise anticommuting units in A, where m is even. For
δ ∈ {0, 1}m, set

aδ = aδ1 · · · aδm .
The 2m products aδ are linearly independent over F .

This has Lemma 3.1 as a special case taking A = Md(C) and ai = Ci.

Proof. Let w(δ) be the number of i’s with δi = 1. Then

aiaja
−1
i =

{
aj , if i = j,

−aj , if i 6= j,

so

(A.1) aia
δa−1i = εδ,ia

δ ,

where

εδ,i =

{
(−1)w(δ), if δi = 0,

(−1)w(δ)−1, if δi = 1.
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Since w(δ), by definition, is the number of i’s such that δi = 1, we get a global constraint
linking the signs εδ,1, . . . , εδ,m:

(A.2)
m∏
i=1

εδ,i = (−1)mw(δ)(−1)w(δ) = (−1)w(δ).

The last equality uses the evenness of m.

Suppose there is a nontrivial linear dependence relation among the aδ ’s, say

(A.3)
∑
δ

bδa
δ = 0,

for some coefficients bδ ∈ F not all zero. Pick such a nontrivial relation with a minimal
number of nonzero coefficients. Fixing i between 1 and n, conjugate (A.3) by ai. By (A.1),
we get ∑

δ

εδ,ibδa
δ = 0.

Adding and subtracting this from (A.3) gives

(A.4)
∑
δ

(1− εδ,i)bδa
δ = 0,

∑
δ

(1 + εδ,i)bδa
δ = 0.

Suppose δ′ has bδ′ 6= 0. Then one of the linear relations in (A.4) has no δ′-term, so it is
shorter than the minimal nontrivial relation. Thus all terms in the shorter relation have
coefficient 0. That is, any δ where bδ 6= 0 has 1 ± εδ,i = 0, taking − if εδ′,i = 1 and + if

εδ′,i = −1. In other words,

bδ 6= 0 =⇒ εδ,i = εδ′,i

for all i. Therefore, multiplying over all i and using (A.2) tells us (−1)w(δ) = (−1)w(δ
′
) for

all δ where bδ 6= 0.
This implies, when bδ 6= 0, that

(A.5) δi = 0 =⇒ εδ,i = (−1)w(δ
′
).

Since εδ,i = εδ′,i when bδ 6= 0, we can rewrite (A.5) as

δi = 0 =⇒ εδ′,i = (−1)w(δ
′
)

when bδ 6= 0. Thus, when bδ 6= 0,

δi = 0 =⇒ δ′i = 0.

Similarly,

δi = 1 =⇒ δ′i = 1,

so in fact δ = δ′. That is, the minimal nontrivial linear relation among the aδ ’s has just

one nonzero term. But then it reads bδ′a
δ′ = 0, which is impossible. �

For a further discussion of results of this kind, see [5, p. 37].
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