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KEITH CONRAD

Let f : R→ S be a ring homomorphism, through which we can base extend R-modules to
S-modules: M  S ⊗RM and Λk(M) S ⊗R Λk(M). We will write Λk(M) as Λk

R(M) to
emphasize the dependence on the scalar ring, since we will be working with exterior powers
of both R-modules and S-modules.

Theorem 1. Base extension commutes with formation of exterior powers: for any R-
module M and integer k ≥ 1, there is a unique S-module isomorphism S ⊗R Λk

R(M) ∼=
Λk
S(S ⊗R M) where

s⊗ (m1 ∧R · · · ∧R mk) 7→ s((1⊗m1) ∧S · · · ∧S (1⊗mk)).

Moreover, if M
ϕ−−→ N is a linear map of R-modules then the diagram

S ⊗R Λk
R(M)

��

1⊗∧k(ϕ) // S ⊗R Λk
R(N)

��
Λk
S(S ⊗R M)

∧k(1⊗ϕ)
// Λk

S(S ⊗R N)

commutes.

For k = 0 the S-modules S ⊗R Λ0
R(M) = S ⊗R R and Λ0

S(S ⊗R M) = S are naturally
isomorphic, but the formula in Theorem 1 makes no sense for k = 0 so we omitted that
case from the theorem. If you consider an empty wedge product to be 1, then that formula
does make sense when k = 0 and is an isomorphism (s⊗ 1 7→ s).

Proof. For k = 1 the indicated function is S⊗RM → S⊗RM by s⊗m 7→ s(1⊗m) = s⊗m,
so it is just the identity map. From now on let k ≥ 2. We want to write down S-linear
maps S ⊗R Λk

R(M)→ Λk
S(S ⊗R M) and S ⊗R Λk

R(M)→ Λk
S(S ⊗R M) that are inverses of

each other.
To write down an S-linear map

S ⊗R Λk
R(M)→ Λk

S(S ⊗R M),

we first ignore the S-part on the left and concentrate on getting an R-linear map

(1) Λk
R(M)→ Λk

S(S ⊗R M),

which we will then turn into an S-linear map out of S⊗R Λk
R(M) using extension of scalars.

The function we want to use is this:

(2) m1 ∧R · · · ∧R mk 7→ (1⊗R m1) ∧S · · · ∧S (1⊗R mk).

Strictly speaking, the rule (2) on its own does not define an R-linear map out of Λk
R(M)

because the elements of Λk
R(M) are not all elementary wedge products, although there is at

most one R-linear map with the effect (2) since elementary wedge products additively span
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Λk
R(M). To construct an R-linear map (1), we write down an alternating R-multilinear map

out of Mk. Define Mk → Λk
S(S ⊗R M) by

(m1, . . . ,mk) 7→ (1⊗R m1) ∧S · · · ∧S (1⊗R mk).

This function is alternating and R-multilinear (treat the target Λk
S(S⊗RM) as an R-module

in the way every S-module is an R-module: restriction of scalars). Therefore the universal
mapping property of Λk

R(M) gives us an R-linear map Λk
R(M) → Λk

S(S ⊗R M) satisfying
(2) on elementary wedge products.

Now we use the universal mapping property of extension of scalars: from the R-linear
map Λk

R(M)→ Λk
S(S⊗RM) in (1) there is an S-linear map ϕ : S⊗RΛk

R(M)→ Λk
S(S⊗RM)

such that

(3) ϕ(s⊗R (m1 ∧R · · · ∧R mk)) = s((1⊗R m1) ∧S · · · ∧S (1⊗R mk)).

This is the formula we want in the theorem.
To get an S-linear map in the other direction, Λk

S(S ⊗RM)→ S ⊗R Λk
R(M), we want to

write down an appropriate alternating S-multilinear map (S ⊗R M)k → S ⊗R Λk
R(M) and

then use the universal mapping property of Λk
S(S ⊗R M). Consider the composite map

(4) (S ⊗R M)k
⊗S−−−→ (S ⊗R M)⊗Sk ∼= S ⊗R (M⊗Rk)

1⊗∧R−−−−−→ S ⊗R Λk
R(M).

The first map is the canonical multilinear map defining tensor powers (of S-modules), the
isomorphism in the middle is the inverse of the canonical one for base extensions of tensor
products (recall for two R-modules M and N that S⊗R (M⊗RN) ∼= (S⊗RM)⊗S (S⊗RN)
by s⊗ (m⊗n) 7→ s(1⊗m)⊗ (1⊗n)), and the third map is the base extension to S-modules
of the canonical R-linear map ∧R : M⊗Rk → Λk

R(M). The first map is S-multilinear and
the second and third are S-linear, so the composite map is S-multilinear. Its effect on a
k-tuple of elementary tensors is

(s1 ⊗R m1, . . . , sk ⊗R mk) 7→ (s1 ⊗R m1)⊗S · · · ⊗S (sk ⊗R mk)

7→ s1 · · · sk ⊗R (m1 ⊗R · · · ⊗R mk)

7→ s1 · · · sk ⊗R (m1 ∧R · · · ∧R mk).

Let α : (S ⊗R M)k → S ⊗R Λk
R(M) denote the composite map (4). We want to show α

is alternating: α(t1, t2, . . . , tk) = 0 when ti = tj for some i 6= j. Because α is multilinear,
it suffices to check such vanishing occurs when two coordinates are equal tensors and the
other coordinates are all elementary tensors. To keep the notation simple, we focus on the
case t1 = t2 (other equal coordinates run in the same way):

α(t, t, s3 ⊗R m3, . . . , sk ⊗R mk)
?
= 0.

Writing t = s′1 ⊗R m
′
1 + · · ·+ s′n ⊗R m

′
n, we expand the left side as

α(t, t, s3 ⊗R m3, . . . , sk ⊗R mk) =
n∑

i,j=1

α(s′i ⊗R m
′
i, s
′
j ⊗R m

′
j , s3 ⊗R m3, . . . , sk ⊗R mk)

=
n∑

i,j=1

s′is
′
js3 · · · sk ⊗R (m′i ∧R m′j ∧R m3 ∧R · · · ∧R mk).

In this sum, a term where i = j is 0 because m′i is repeated in the elementary wedge product.
For i 6= j, the two terms with i and j in both orders are negatives of each other and thus
cancel when added, so α(t, t, s3 ⊗R m3, . . . , sk ⊗R mk) = 0.
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Since α is alternating multilinear, there is an S-linear map ψ : Λk
S(S⊗RM)→ S⊗RΛk

R(M)
such that

ψ((s1⊗m1)∧S · · · ∧S (sk⊗mk)) = α(s1⊗m1, · · · , sk⊗mk) = s1 · · · sk⊗ (m1∧R · · · ∧Rmk).

It is left to the reader to show ϕ and ψ are inverses of each other. �

Example 2. For any ideal a, R/a⊗R Λk
R(M) ∼= Λk

R/a(R/a⊗RM) as R/a-modules, and for

any prime ideal p, Rp ⊗R Λk
R(M) ∼= Λk

Rp
(Rp ⊗R M) as Rp-modules.


