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Let K be a field and V be a K-vector space. The dual space V ∨ is the set of all K-linear
functions ϕ : V → K, with a natural concept of addition and K-scaling of functions with
values in K. If dimK(V ) is finite then dimK(V ) = dimK(V ∨), so V and V ∨ are isomorphic
K-vector spaces (non-canonically) and there is a canonical isomorphism from V to its double
dual V ∨∨ by v 7→ [ϕ 7→ ϕ(v)]. If dimK(V ) is infinite, however, there is no isomorphism
between V and V ∨∨ because their dimensions are not equal by the following result.

Theorem. If V is an infinite-dimensional K-vector space then dimK(V ) < dimK(V ∨).

By replacing V with V ∨ in this theorem, we get dimK(V ) < dimK(V ∨) < dimK(V ∨∨)
when V is infinite-dimensional over K, so V 6∼= V ∨∨ as K-vector spaces.

It is important to realize that this theorem uses the algebraic notion of dimension as the
cardinality of a linearly independent spanning set, where the allowed linear combinations
use finitely many nonzero vectors at a time. This is a contrast to vector spaces over R or
C having a notion of convergence (topological vector spaces), such as Banach or Hilbert
spaces, where linear combinations with infinitely many nonzero terms occur. The meaning
of dimension using such linear combinations is more restrictive than the algebraic meaning
of dimension since the meaning of a basis changes (linear dependence relations can have
infinitely many nonzero terms) and the meaning of the dual space also changes: it is the
space of all continuous linear functionals to R or C, not all linear functionals to R or C.

For example, each infinite-dimensional Hilbert space (e.g., `2 or L2([0, 1])) is isomorphic
to its (continuous) dual space and to its double (continuous) dual space. That does not
contradict the theorem above, since the meaning of dimension and dual space in analysis
is not the algebraic meaning of those terms: the analyst’s dimension and dual space are
smaller than the algebraist’s dimension and dual space when the dimension is infinite.

Proof. This argument is based on an answer by Andrea Ferretti on MathOverflow [1].
Let {ei}i∈I be a K-basis of V , so I is infinite and V =

⊕
i∈I Kei. Each member of V ∨

is determined by its values on the basis. For every collection of scalars ci ∈ K (i ∈ I) there
is a unique K-linear functional ϕ ∈ V ∨ where ϕ(ei) = ci for all i ∈ I, and this gives an
isomorphism V ∨ ∼=

∏
i∈I K by ϕ 7→ (ϕ(ei))i∈I . Therefore we can view V ∨ as all functions

I → K and V is the functions I → K with finite support (vanishing outside a finite subset).
By definition, dimK(V ) = card(I). It is plausible that

∏
i∈I K has a larger dimension than⊕

i∈I K when I is infinite, and this is what we will prove.
Step 1: dimK(V ) ≤ dimK(V ∨).
To each ei we can associate the functional δei ∈ V ∨ that is 1 at ei and 0 at elements of

the basis besides ei. Linear independence of the ei in V implies linear independence of the
δei in V ∨, so dimK(V ) = card(I) ≤ dimK(V ∨).

Step 2: If the field K is finite or countably infinite then card(V ) = card(I).
Note the left side is card(V ): the cardinality of the whole set V and not just the cardinality

of a basis of V , which is card(I).
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Looking at coefficients of elements of V in its basis {ei : i ∈ I} lets us think of V as the set
of functions I → K with finite support. For n ≥ 1, let Sn(I) be the n-element subsets of I.
By ordering each n-element subset of I in some way, Sn(I) can be viewed (non-canonically)
as a subset of In. Since I is infinite, card(In) = card(I). Thus card(Sn(I)) ≤ card(In) =
card(I). (In fact, card(Sn(I)) = card(I), but we won’t use this.)

The functions I → K with support of size n can be viewed (non-canonically) as a subset
of Sn(I)×Kn. Since card(Sn(I)) ≤ card(I) and K is at most countable, card(Sn(I)×Kn) ≤
card(I). Thus the set of functions I → K with support of size n has cardinality at most
card(I), and taking a countable union tells us the set of functions I → K with finite support
has cardinality at most card(I), so card(V ) ≤ card(I).

Inside V , the basis {ei : i ∈ I} tells us card(I) ≤ card(V ). From card(V ) ≤ card(I) and
card(I) ≤ card(V ), we get card(V ) = card(I) by the Schroeder–Bernstein theorem.

Step 3: If the field K is finite or countably infinite then dimK(V ) < dimK(V ∨).
Since V ∨ is the set of all functions I → K and {0, 1} ⊂ K, card(V ∨) is at least as large as

the cardinality of the set of all functions I → {0, 1}. Such functions naturally correspond to
the subsets of I, so card(V ∨) ≥ card(2I) > card(I), where the strict inequality follows from
Cantor’s diagonalization argument. Thus card(V ∨) > card(I). We have card(I) = card(V )
by Step 2, so card(V ∨) > card(V ). Therefore V 6∼= V ∨ since isomorphic vector spaces have
the same cardinality. A K-vector space is determined up to isomorphism by its dimension
over K, so dimK(V ) 6= dimK(V ∨). Since dimK(V ) ≤ dimK(V ∨) by Step 1, we have
dimK(V ) < dimK(V ∨).

Step 4: If the field K is arbitrary then dimK(V ) < dimK(V ∨).
Inside the field K is a finite or countably infinite subfield, namely its (unique) minimal

subfield

F ∼=

{
Q, if K has characteristic 0,

Fp, if K has characteristic p.

Let W be the F -span of the K-basis ei of V :

V =
⊕
i∈I

Kei, W =
⊕
i∈I

Fei ⊂ V.

By definition, dimF (W ) = card(I) = dimK(V ). Using Step 3 with F in place of K tells us
dimF (W ) < dimF (W∨), where W∨ is the F -dual space of W . We will show dimF (W∨) ≤
dimK(V ∨), so

dimK(V ) = dimF (W ) < dimF (W∨) ≤ dimK(V ∨),

and thus dimK(V ) < dimK(V ∨). Our proof is reduced to showing dimF (W∨) ≤ dimK(V ∨).
We construct an F -linear mapping W∨ → V ∨. For ϕ ∈ W∨, meaning ϕ : W → F is

F -linear, define ϕ̃ : V → K as follows: for v ∈ V we can write v uniquely as
∑
aiei with

ai ∈ K where all but finitely many ai are 0. Set ϕ̃(v) =
∑
aiϕ(ei), which makes sense since

it is a finite sum in K. This construction ϕ ϕ̃ has the following properties:

(1) Each function ϕ̃ : V → K is K-linear: writing v′ =
∑
a′iei with a′i ∈ K and picking

α in K,

ϕ̃(v + v′) =
∑

(ai + a′i)ϕ(ei) = ϕ̃(v) + ϕ̃(v′), ϕ̃(αv) =
∑

(αai)ϕ(ei) = αϕ̃(v).

(2) For w ∈W we have ϕ̃(w) = ϕ(w): write w =
∑
aiei with ai ∈ F , so by F -linearity

of ϕ,

ϕ̃(w) =
∑

aiϕ(ei) = ϕ
(∑

aiei

)
= ϕ(w).
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(3) The mapping W∨ → V ∨ given by ϕ 7→ ϕ̃, from an F -dual space to a K-dual space,

is F -linear: ϕ̃+ ψ = ϕ̃+ ψ̃ and c̃ϕ = cϕ̃ for c ∈ F . Details are left to the reader.

Property (2) tells us that ϕ̃ remembers ϕ, since ϕ̃|W = ϕ, so the mapping W∨ → V ∨

given by ϕ 7→ ϕ̃ is injective. Therefore we can view W∨ as an F -linear subspace of V ∨,
which implies dimF (W∨) ≤ dimF (V ∨). Our goal was to show dimF (W∨) ≤ dimK(V ∨),
which is stronger1. Here is a situation where that stronger inequality is valid.

Claim: Let F be a subfield of K and U be a K-vector space with an F -linear subspace
U ′. If every finite F -linearly independent subset of U ′ is K-linearly independent, then
dimF (U ′) ≤ dimK(U).

Proof of Claim: We’ll prove the contrapositive. Assume dimF (U ′) > dimK(U). Let
{u′j}j∈J be an F -basis of U ′. It is a subset of U , so the dimension inequality tells us that

{u′j}j∈J is not K-linearly independent: there is some finite nontrivial (= not all coefficients

are 0) K-linear combination from this F -basis that is 0. That gives us a finite F -linearly in-
dependent subset of U ′ that is not K-linearly independent, which proves (the contrapositive
of) the claim.

We will apply this claim to U = V ∨ and U ′ = W∨, where W∨ is embedded into V ∨

as the mappings ϕ̃ for ϕ ∈ W∨. To use the claim, we will show for each finite F -linearly
independent subset {ϕ1, . . . , ϕn} of W∨ that the set {ϕ̃1, . . . , ϕ̃n} is K-linearly independent
in V ∨.

Suppose
∑n

j=1 cjϕ̃j = 0 in V ∨, where cj ∈ K. We want to show c1, . . . , cn are all 0. For
every w ∈W ,

(1) 0 =

n∑
j=1

cjϕ̃j(w) =

n∑
j=1

cjϕj(w).

If, for each k from 1 to n, there is a wk ∈W such that ϕk(wk) = 1 and ϕj(wk) = 0 if j 6= k,
then using this wk for w in (1) tells us ck = 0, so all the coefficients c1, . . . , cn are 0 and
we’d be done. Finding the wk is entirely a problem about linear algebra in an F -vector
space W and its F -dual space W∨.

To prove such wk exist, we’ll show the mapping W → Fn where w 7→ (ϕ1(w), . . . , ϕn(w))
is surjective. This mapping is F -linear since ϕ1, . . . , ϕn are each F -linear, so the image is a
subspace of Fn. The ordinary dot product on Fn is a non-degenerate bilinear form (we use
non-degeneracy because positive-definiteness would make no sense if F = Fp), so to show
the image of the mapping W → Fn is all of Fn it suffices to show the only element of Fn

with dot product 0 against all elements in the image is the zero vector. Let (a1, . . . , an) ∈ Fn

have dot product 0 with the image, so for all w ∈W we have

(a1, . . . , an) · (ϕ1(w), . . . , ϕn(w)) = 0

or equivalently
∑n

j=1 ajϕj(w) = 0. This being true for all w ∈ W makes
∑n

j=1 ajϕj = 0 in

W∨, so a1, . . . , an are all 0 because {ϕ1, . . . , ϕn} is an F -linearly independent subset of W .
�
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