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KEITH CONRAD

1. Introduction

We develop some results about linear differential equations with constant coefficients
using linear algebra. Our concern is not cookbook methods to find all the solutions to a
differential equation, but the computation of the dimension of the solution space.

Consider a homogeneous linear differential equation with constant (real) coefficients:

(1.1) y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0.

The “homogeneous” label means if y fits the equation then so does cy for all constants c.
(If the right side were a nonzero function then cy would no longer be a solution and (1.1)
is then called “inhomogeneous.”) The “linear” part refers to the linear operator

(1.2) Dn + an−1D
n−1 + · · ·+ a1D + a0I,

where D = d/dt is the basic differentiation operator on functions. (The j-th derivative
operator, for j ≥ 1, is Dj , and we consider the identity operator I as D0, since it is
standard to regard the zero-th derivative of a function as the function itself: D0(y) = y for
all functions y.) We call (1.2) an n-th order linear differential operator since the highest
derivative appearing in it is the n-th derivative. We want to show the solution space to
(1.1) is n-dimensional.

2. Passage to the Complex Case

A solution to (1.1) has to have at least n derivatives for the equation to make sense.

Then, by using (1.1) to write y(n) in terms of lower-order derivatives of y, induction shows
every solution to (1.1) has to be infinitely differentiable. Let C∞(R) be the space of all
functions R → R that are infinitely differentiable. This is an infinite-dimensional vector
space, and it is this space in which we search for solutions of (1.1) because every solution
to (1.1) must be in here.

Let

(2.1) p(t) = tn + an−1t
n−1 + · · ·+ a1t + a0

be the polynomial having the coefficients from (1.1).

Example 2.1. If y′′ − 2y′ − 3y = 0 then p(t) = t2 − 2t− 3.

The equation (1.1) can be written in the condensed form

p(D)(y) = 0.

That is, solutions y to (1.1) form the kernel of the differential operator p(D) on C∞(R).
This viewpoint, that solutions to a differential equation are the kernel of a linear operator
on C∞(R), is the link between differential equations and linear algebra. Warning: There
are many nonlinear differential equations, like y′′ = yy′ + y3, and the methods of linear
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algebra are not sufficient for their study. In particular, solutions to a nonlinear differential
equation do not form a vector space (e.g., the sum of two solutions is not a solution in
general).

When the polynomial p(t) factors, the operator p(D) factors in a similar way: if

(2.2) p(t) = (t− c1) · · · (t− cn),

then

(2.3) p(D) = (D − c1I) · · · (D − cnI).

Here D − cI is the operator sending y to y′ − cy.

Example 2.2. The polynomial p(t) = t2 − 2t − 3 factors as (t + 1)(t − 3) and p(D) =
(D + I)(D − 3I):

(D + I)(D − 3I)(y) = (D + I)(y′ − 3y)

= (y′ − 3y)′ + (y′ − 3y)

= y′′ − 2y′ − 3y

= p(D)(y).

Equation (2.3) expresses p(D) as a composite of first-order differential operators D −
cjI. This decomposition of p(D) will reduce the study of n-th order constant-coefficient
differential equations to the study of first-order constant-coefficient differential equations
by a clever use of linear algebra on an infinite-dimensional space.

Real polynomials do not always factor into linear factors with real coefficients, but the
fundamental theorem of algebra tells us that complex polynomials always factor into linear
factors with complex coefficients (so, in particular, real polynomials always factor into
linear factors with complex coefficients). Therefore we generalize our point of view and
consider equations like (1.1) with complex coefficients in order to have the factorization (2.3)
available. For example, if y′′+y = 0 then (D2+I)(y) = 0 and the corresponding polynomial
is t2 + 1, which factors as (t + i)(t− i). We want to regard y′′ + y as (D + iI)(D − iI)(y),
and a meaning has to be given to D + iI and D − iI.

When we allow complex coefficients in (1.1), we should no longer restrict solutions y to
real-valued functions. For instance, the differential equation y′ − iy = 0 has the interesting
complex solution y(t) = cos t+ i sin t, while the only real-valued solution of y′− iy = 0 is the
zero function y(t) = 0. Even if we only started out caring about real-valued solutions with
real coefficients in (1.1), factoring p(t) into complex linear factors forces the complex case
on us for mathematical reasons. From now on, we consider (1.1) with complex coefficients.

Let C∞(R,C) be the set of infinitely-differentiable functions f : R → C. The domain
is still R; only the range has been enlarged. From now on D = d/dt is the differentiation
operator on C∞(R,C): if f(t) = g(t) + ih(t), where g(t) and h(t) are real-valued, then
f ′(t) = g′(t) + ih′(t). Differentiation on complex-valued functions f : R → C satisfies the
sum rule and the product rule. Moreover, if f has derivative 0 then f is constant (since
g and h have derivative 0, so they are constant from real calculus). Every complex-valued
solution to (1.1) has at least n derivatives, and by induction all solutions are in fact infinitely
differentiable just as in the real case, so solutions to (1.1) lie in C∞(R,C). Equation (2.2)
implies (2.3) when the roots cj are complex.

For c ∈ R, the real solutions to the differential equation y′ = cy are the real scalar
multiples of ect. A similar result holds if c ∈ C:



DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA 3

Theorem 2.3. For c ∈ C, the solutions to y′ = cy are the functions y(t) = rect for r ∈ C.

Proof. Since (ect)′ = cect, every function y = rect satisfies y′ = cy. Conversely, suppose y′ =
cy. Then the ratio y/ect has derivative (ecty′ − y(ect)′)/(ect)2 = (ectcy − ycect)/(ect)2 = 0,
so y/ect is a constant. Call the constant r, so y = rect. �

The equation y′ = cy is the same as y′ − cy = 0, so D − cI on C∞(R,C) has a one-
dimensional kernel with ect as a basis:

ker(D − cI) = Cect.

For example, the solution space of y′ = y is Cet and not just Ret. For other differen-
tial equations like y′ = iy, with honest complex coefficients, there may be no real-valued
solutions besides the zero function while there are nonzero complex solutions.

Our study of (1.1) currently stands as follows. Solutions to (1.1), which lie in C∞(R,C),
form the kernel of the differential operator p(D). By the fundamental theorem of algebra
and (2.3), p(D) factors into a product of first-order operators. We know the kernel of the
first-order differential operator D − cI: it is one-dimensional with basis ect.

Our goal is to prove, roughly, that the complex solution space to (1.1) has dimension
n over C. In down-to-earth terms, this means there are n “basic” solutions to (1.1) in
C∞(R,C) such that the general solution is a linear combination of these n basic solutions
and none of these n basic solutions is a linear combination of the other basic solutions.
In linear algebra terms, this means an n-th order constant-coefficient linear differential
operator p(D) has an n-dimensional kernel in C∞(R,C). While this second description
sounds more technical, it is the right way to think about the solutions of (1.1) in order to
reach our goal. (Our goal does not include the explicit description of all solutions to (1.1).
All we want to do is compute the dimension of the solution space.)

3. The Complex Case

To bootstrap our knowledge from the first-order differential operators D− cI to the n-th
order differential operators p(D), we will use the following property of the operators D−cI.

Lemma 3.1. For each c ∈ C, D− cI is onto. That is, for every f ∈ C∞(R,C), there is a
u ∈ C∞(R,C) such that u′ − cu = f .

Proof. First, we check the special case c = 0, which says for every f there is a u such that
u′ = f . This is just a matter of antidifferentiating real and imaginary parts. Indeed, write

f(t) = a(t) + ib(t) and choose antiderivatives for a(t) and b(t), say A(t) =
∫ t
0 a(x) dx and

B(t) =
∫ t
0 b(x) dx. Then u(t) = A(t) + iB(t) has derivative a(t) + ib(t) = f(t), Since f(t) is

infinitely differentiable and u′ = f , so is u. We’re done with the case c = 0.
Now we show each D − cI is onto, i.e., the differential equation u′ − cu = f , where f is

given, has a solution u in C∞(R,C). The strategy is to reduce to the previously treated
case c = 0 by a “change of coordinates.” Multiply through the equation by e−ct (which is
an invertible procedure, since ect is a nonvanishing function):

e−ctu′ − ce−ctu = e−ctf.

By the product rule, this equation is the same as

(e−ctu)′ = e−ctf.

This equation has the form v′ = g, where g = e−ctf is given and v is sought. That is the
case treated in the previous paragraph: pick antiderivatives for the real and imaginary parts
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of g(t) to get an antiderivative v(t) for g(t), and then multiply v(t) by ectto find a solution
u. �

Lemma 3.1 tells us the first-order inhomogeneous differential equation u′ − cu = f can
always be solved when f ∈ C∞(R,C).

The next lemma has nothing to do with differential equations. It is only about linear
algebra.

Lemma 3.2. Let V be a vector space over a field F . Let T : V → V and U : V → V be
linear operators on V such that ker(T ) and ker(U) are finite-dimensional. Assume U is
onto. Then ker(TU) is finite-dimensional and

dim ker(TU) = dim ker(T ) + dim ker(U).

This lemma is tricky because your first guess about how to prove it does not work: it is
not the case that a basis of ker(T ) and a basis of ker(U) combine to give a basis of ker(TU).
For instance, let T and U both be D = d/dt on C∞(R,C) (or even on C∞(R), if you want
to work in a more familiar setting). Both ker(T ) and ker(U) consist of constant functions,
but the kernel of TU = D2 = d2/dt2 has basis {1, t}, so it is not spanned by constant
functions.

Proof. This proof might at first appear overly technical. If you need motivation to care
about the proof, see below how this lemma is applied to differential equations. Then come
back and read the proof.

Write m = dim ker(T ) and n = dim ker(U). We want to prove dim ker(TU) = m + n.
Notice we do not even know yet that ker(TU) is finite-dimensional. First we will prove
ker(TU) is finite-dimensional, with a spanning set of m + n vectors, so dim ker(TU) ≤
m+n. Then we will prove the spanning set we find for ker(TU) is linearly independent, so
dim ker(TU) = m + n.

Let v1, . . . , vm be a basis of ker(T ) and w1, . . . , wn be a basis of ker(U).
For v ∈ ker(TU), the equation (TU)(v) = 0 says T (Uv) = 0, so Uv is in the kernel of T :

Uv = c1v1 + · · ·+ cmvm

for some c1, . . . , cm ∈ F .
To get anywhere with this equation, we use the hypothesis that U is onto to write the

vi’s in another way. Since U : V → V is onto, we can write vi = U(ṽi) for some ṽi in V .
Then the above equation becomes

Uv = c1U(ṽ1) + · · ·+ cmU(ṽm)

= U(c1ṽ1 + · · ·+ cmṽm).

When U takes the same value at two vectors, the difference of those vectors is in the kernel
of U (just subtract and compute). Therefore

(3.1) v = c1ṽ1 + · · ·+ cmṽm + v′,

where v′ ∈ ker(U). Writing v′ in terms of the basis w1, . . . , wn of ker(U) and feeding this
into (3.1), we have

v = c1ṽ1 + · · ·+ cmṽm + d1w1 + · · ·+ dnwn

for some d1, . . . , dn ∈ F .
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We have written a general element v of ker(TU) as a linear combination of m+n vectors:
the ṽi’s and the wj ’s. Moreover, the ṽi’s and wj ’s are in ker(TU):

(TU)(ṽi) = T (Uṽi) = T (vi) = 0, (TU)(wj) = T (Uwj) = T (0) = 0.

Since we have shown the ṽi’s and wj ’s are a spanning set for ker(TU), this kernel has
dimension at most m + n.

To prove ṽ1, . . . , ṽm, w1, . . . , wn is a linearly independent set, suppose some F -linear com-
bination is 0:

(3.2) c1ṽ1 + · · ·+ cmṽm + d1w1 + · · ·+ dnwn = 0.

Applying U to this equation turns each ṽi into U(ṽi) = vi and turns each wj into U(wj) = 0,
so we find

c1v1 + · · ·+ cmvm = 0.

The vi’s are (by their definition) linearly independent, so each ci is 0. This turns (3.2) into

d1w1 + · · ·+ dnwn = 0.

Now, since the wj ’s are (by their definition) linearly independent, each dj is 0. Thus the
set {ṽ1, . . . , ṽm, w1, . . . , wn} spans ker(TU) and is linearly independent, so ker(TU) has
dimension m + n. �

Remark 3.3. If V is finite-dimensional, there is another proof of Lemma 3.2, using the
rank-nullity theorem. However, we will not discuss this alternate proof for finite-dimensional
V because Lemma 3.2 for finite-dimensional V is useless for our intended application to
differential equations: the basic space of interest, C∞(R,C), is not finite-dimensional. This
is a good reason that linear algebra must not be developed exclusively on finite-dimensional
vector spaces: important applications of the ideas of linear algebra occur in contexts where
the spaces are infinite-dimensional. This is especially true in applications of linear algebra
to analysis (differential equations, integral equations, Fourier series) and physics (quantum
mechanics).

There is a version of Lemma 3.2 even if U is not onto. However, a new idea has to be
introduced, the notion of the index of a linear operator. Lemma 3.2 generalizes to: the index
of a product of operators is the sum of the indices. You can read about this in textbooks
on functional analysis (specifically, look up Fredholm operators).

Now we are ready to prove our goal: the dimension of the solution space of (1.1) is n.
The proof is deceptively short. All the hard work has gone into the preliminary results.

Theorem 3.4. Let p(t) be a polynomial of the form (2.1) with complex coefficients of
degree n ≥ 1 and let p(D) be the corresponding n-th order linear differential operator with
constant coefficients. The solution space to p(D)(y) = 0 in C∞(R,C) is n-dimensional, or
equivalently ker(p(D)) has dimension n.

Proof. We induct on n, the degree of the polynomial p(t). The case n = 1 says: for c ∈ C,
the operator D − cI on C∞(R,C) has a one-dimensional kernel. That is, the equation
y′ − cy = 0 has a one-dimensional solution space. We saw this before by explicit methods:
the solution space is Cect and has dimension 1.

Now assume the theorem is proved whenever p(t) has degree n. Let p(t) have degree
n + 1. We will prove ker(p(D)) has dimension n + 1.

By the fundamental theorem of algebra,

p(t) = (t− c1)(t− c2) · · · (t− cn)(t− cn+1)
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for some complex numbers c1, . . . , cn+1. (Some of the cj ’s may be equal, but that doesn’t
matter for our purposes.) Set q(t) = (t− c1) · · · (t− cn), so p(t) = q(t)(t− cn+1). Therefore

p(D) = q(D)(D − cn+1I).

By the inductive hypothesis, ker(q(D)) has dimension n. By the base case, ker(D− cn+1I)
has dimension 1.

We now apply Lemma 3.2, taking V = C∞(R,C), T = q(D) and U = D − cn+1I. The
hypothesis in Lemma 3.2 that U is onto is true by Lemma 3.1. Thus, Lemma 3.2 tells us
p(D) has a finite-dimensional kernel, with

dimC(p(D)) = dimC(q(D)) + dimC(D − cn+1I) = n + 1.

We’re done! �

This a rather curious state of affairs. We have computed the size (i.e., the dimension)
of the complex solution space to each constant-coefficient linear differential equation of the
form (1.1), but we have not indicated what the solutions are when n > 1! A careful rereading
will show the proofs of Lemmas 3.1 and 3.2 are constructive, so the proof of Theorem 3.4
really can be used to list a basis for the solution space of (1.1) when we factor p(t). We will
now see in some examples how to follow the method of proof of Lemma 3.2 to build a basis
of ker(TU) from bases of ker(T ) and ker(U).

Example 3.5. Consider y′′−2y′−3y = 0. The polynomial is p(t) = t2−2t−3 = (t+1)(t−3).
Take T = D + I and U = D − 3I, so p(D) = TU . A basis of ker(T ) is e−t and a basis
of ker(U) is e3t. As in the proof of Lemma 3.2, we write e−t = U(ṽ) = ṽ′ − 3ṽ and want
to solve for ṽ. First try ṽ = e−t: (e−t)′ − 3(e−t) = 2e−t. This didn’t work, but if we scale
and instead use ṽ = (1/2)e−t then it works. So a basis of ker(p(D)) is {e3t, (1/2)e−t}, and
by scaling another basis is {e3t, e−t}. The general solution to y′′ − 2y′ − 3y = 0 is a linear
combination of e3t and e−t.

Example 3.6. Consider y′′ − 2y′ + y = 0. The polynomial is p(t) = t2 − 2t + 1 = (t− 1)2,
which has 1 as a double root. Take T = D − I and U = D − I, so p(D) = TU . A basis of
ker(T ) = ker(U) is et. Writing et = U(ṽ) = ṽ′ − ṽ, the function ṽ = tet works (check!) and
therefore a basis of ker(p(D)) is {et, tet}.

Example 3.7. Consider y′′ + y = 0. The polynomial is p(t) = t2 + 1 = (t + i)(t − i).
Take T = D + iI and U = D − iI, so p(D) = TU . A basis of ker(T ) is e−it and a
basis of ker(U) is eit. Writing e−it = U(ṽ) = ṽ′ − iṽ, we first try ṽ = e−it. However,
(e−it)′ − i(e−it) = −2ie−it 6= e−it. If we scale and use ṽ = −(1/2i)e−it then it works. Thus
a basis of ker(TU) is {eit,−(1/2i)e−it}, and by scaling again another basis is {eit, e−it}.
Another basis obtained from this one is {(eit +e−it)/2, (eit−e−it)/2i} = {cos t, sin t}, which
looks more familiar as the basic real solution of y′′+y = 0. The general solution to y′′+y = 0
is a linear combination of cos t and sin t.

Remark 3.8. A general constant-coefficient linear differential operator could have a co-
efficient an 6= 1 in front of Dn. Since scaling a linear differential operator by a nonzero
constant (like 1/an) does not change the kernel or the order of the differential operator,
and makes the coefficient of Dn equal to 1, our treatment of the “special” case an = 1 was
more or less a treatment of the general case.
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4. The Real Case

If the differential equation (1.1) has real coefficients, we are naturally interested in the
real solutions, not all complex solutions. The above examples suggest that the complex
solution space will have a basis of real-valued functions (although in the last example we
had to work a little to find it), so one may hope that the real solution space has dimension
n. This is true:

Theorem 4.1. Let p(t) be a polynomial with real coefficients of degree n ≥ 1 and let p(D)
be the corresponding n-th order linear differential operator with constant coefficients. The
solution space to p(D)(y) = 0 in C∞(R) is n-dimensional.

The basic idea behind Theorem 4.1 is that under fairly general circumstances a “real”
linear operator acting on a complex vector space has a real kernel of the same dimension
(over R) as the dimension of its complex kernel (over C). For example, a differential
operator with real coefficients sends real functions to other real functions, so it should be
considered a “real” operator. An example of a differential operator that is not “real” is
D − iI, which sends y(t) to y′(t)− iy(t). Real functions don’t get sent to real functions by
this operator (in general), and the differential equation y′ − iy = 0 has complex solution
space Ceit of dimension 1 over C and real solution space {0} of dimension 0 over R. So
the two dimensions don’t match!

To determine the dimension of the real solution space from the dimension of the complex
solution space requires another detour back through linear algebra. We temporarily forget
about differential equations and will return to them after Lemma 4.8 below.

Let V be a vector space over the complex numbers. We can consider V as a real vector
space by considering scaling by real numbers only. For instance, the complex scalar multiple
(2 + 3i)v is viewed as 2v + 3(iv), which is a real linear combination of v and iv.

Lemma 4.2. A complex vector space V is finite dimensional over C if and only if it is finite
dimensional over R, in which case dimR(V ) = 2 dimC(V ). More precisely, if V 6= {0} and
{v1, . . . , vn} is a C-basis of V , then

(4.1) {v1, iv1, v2, iv2, . . . , vn, ivn}
is an R-basis of V .

Proof. The result is clear if V is 0, so take V nonzero.
If V is finite dimensional over R then a finite basis of V as a real vector space is a

spanning set of V as a complex vector space, so V is finite dimensional over C.
Conversely, suppose V is finite dimensional over C with basis {v1, . . . , vn}. We will show

the set in (4.1) is a basis of V as a vector space over R, so dimR(V ) = 2n.
Spanning set: Each v ∈ V is a C-linear combination of {v1, v2, . . . , vn}, say

v = (a1 + b1i)v1 + (a2 + b2i)v2 + · · ·+ (an + bni)vn

for some complex numbers aj + ibj . Distributing the scalar multiplication,

v = a1v1 + b1(iv1) + a2v2 + b2(iv2) + · · ·+ anvn + bn(ivn).

This exhibits v as a real linear combination of {v1, iv1, . . . , vn, ivn}, so this set is a spanning
set of V over R.

Linear Independence: Suppose in V that

c1v1 + c′1(iv1) + c2v2 + c′2(iv2) + · · ·+ cnvn + c′n(ivn) = 0
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for real cj and c′j . We want to show each cj and c′j is 0. Rewrite the equation as

(c1 + ic′1)v1 + (c2 + ic′2)v2 + · · ·+ (cn + ic′n)vn = 0.

Since {v1, . . . , vn} are linearly independent over C, each cj + ic′j is 0. Therefore each cj and

c′j is 0 because a complex number is 0 only when its real and imaginary parts are 0. �

Definition 4.3. Let V be a vector space over C. A conjugation on V is an operation
V → V , denoted v 7→ v∗, with the following three properties:

• For all v1, v2 ∈ V , (v1 + v2)
∗ = v∗1 + v∗2.

• For all v ∈ V and z ∈ C, (zv)∗ = zv∗ (not zv∗).
• For all v ∈ V , (v∗)∗ = v.

In the following examples, you will see that a conjugation on a concrete complex vector
space is typically just the operation of taking the complex conjugate of the coordinates
(when the vector space is defined through a device like coordinates).

Example 4.4. Take V = Cn. For v = (z1, . . . , zn) in Cn, set v∗ = (z1, . . . , zn). That is,
v∗ is just the vector with coordinates that are complex conjugates of the coordinates of v.

Example 4.5. Take V = Mn(C). For A = (aij) in Mn(C), set A∗ = (aij). That is, A∗ is
the matrix with components that are complex conjugates of those for A.

Example 4.6. A second conjugation on Mn(C) is (aij)
∗ = (aji). Here A∗ is the conjugate

of the transposed matrix.

Example 4.7. Take V = C∞(R,C). For y(t) = a(t) + ib(t) ∈ C∞(R,C), let y∗ be the

function y∗(t) = y(t) = a(t)−ib(t). For example, if f(t) = sin t+iet, then f∗(t) = sin t−iet.

When V is a complex vector space with a conjugation operation, set

V + = {v ∈ V : v∗ = v}.
Here is what this means in the above examples. When V = Cn, V + is the set of n-tuples
whose coordinates are real, so V + = Rn. When V = Mn(C) in Example 4.5, V + is the
set of n × n matrices with real entries: V + = Mn(R). When V = Mn(C) in Example
4.6, V + is the set of matrices (aij) such that aji = aij . These are the complex matrices
whose diagonal terms are real and whose components symmetric across the main diagonal
are complex conjugates of each other. (Examples 4.5 and 4.6 remind us that the meaning
of V + depends on the specific conjugation used on V .) Finally, when V = C∞(R,C), V +

is the set of functions y(t) = a(t) + ib(t) such that b(t) = 0. That is, V + = C∞(R).
Notice V + is not a complex vector space since V + is not closed under complex scaling.

For instance, in Example 4.4, Rn is not a complex subspace of Cn. (In general, for all
nonzero v ∈ V +, iv is not in V + since (iv)∗ = iv∗ = −iv is not iv again.) However, V + is
a subspace of V as a real vector space. For instance, Rn is a subspace of Cn when we view
Cn as a real vector space.

Lemma 4.8. Suppose V is a vector space over C and has a conjugation defined on it. Then
V is finite-dimensional over C if and only if V + is finite-dimensional over R, and when
the spaces are finite dimensional each R-basis of V + is a C-basis of V . In other words,
dimR(V +) = dimC(V ).

Don’t confuse the conclusions of Lemmas 4.2 and 4.8. Consider V = C with conjugation
z 7→ z: it has real dimension 2 and V + = R has real dimension 1.
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Proof. First suppose dimC(V ) is finite. Then if we view V as a real vector space, it is
finite-dimensional with dimR(V ) = 2 dimC(V ) by Lemma 4.2. Since V + is a subspace of V
as a real vector space, it follows that V + is a finite-dimensional real vector space.

Conversely, suppose dimR(V +) is finite and v1, . . . , vn is a basis of V + over R. We will
prove v1, . . . , vn is a basis of V over C.

First we treat linear independence over C. Suppose

(4.2) c1v1 + · · ·+ cnvn = 0,

where cj = aj + ibj . Applying the conjugation operation,

c1v
∗
1 + · · ·+ cnv

∗
n = 0.

Since each vj is in V +, v∗j = vj , so the above equation becomes

(4.3) c1v1 + · · ·+ cnvn = 0.

Write cj = aj + ibj (aj , bj ∈ R). Adding (4.2) and (4.3) kills off the imaginary parts of the
cj ’s, and leaves us with

2a1v1 + · · ·+ 2anvn = 0.

Since the vj ’s are linearly independent over R, each aj is 0. Similarly, subtracting (4.3)
from (4.2) gives

i2b1v1 + · · ·+ i2bnvn = 0.

Dividing by i converts this into a real linear combination of the vj ’s equal to 0, and therefore
each bj is 0. That proves cj = aj + ibj is 0 for j = 1, 2, . . . , n, which settles the linear
independence.

Now we want to show {v1, . . . , vn} spans V over the complex numbers. Choose v ∈ V .
We want to find complex c1, . . . , cn such that

v = c1v1 + · · ·+ cnvn.

To show this can be done, notice that the conjugation operation on V is R-linear (but not
C-linear) and satisfies (v∗)∗ = v, so we can write

v = w1 + iw2,

where w∗1 = w1 and w∗2 = w2. Concretely, w1 = (1/2)(v + v∗) and w2 = (1/2i)(v − v∗).
(This is like the formulas for the real and imaginary parts of a complex number z = x+ iy:
x = (1/2)(z + z) and y = (1/2i)(z − z).) Thus, w1 and w2 are in V +. Using the basis
v1, . . . , vn of V +,

w1 = a1v1 + · · ·+ anvn, w2 = b1v1 + · · ·+ bnvn,

where aj , bj ∈ R. Thus,

v = w1 + iw2

= (a1v1 + · · ·+ anvn) + i(b1v1 + · · ·+ bnvn)

= (a1 + ib1)v1 + · · ·+ (an + ibn)vn,

so each v ∈ V is a C-linear combination of the vj ’s. That shows the vj ’s span V over C. �

Finally we are ready to prove Theorem 4.1.
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Proof. Let p(D) be a constant-coefficient linear differential operator of order n with real
coefficients. We want to show the real solution space to p(D)(y) = 0, which is a real vector
space, has dimension n over R.

Let V be the complex solution space to p(D)(y) = 0 in C∞(R,C). Therefore V has
dimension n as a complex vector space, by Theorem 3.4.

Write p(D) = Dn + an−1D
n−1 + · · · + a1D + a0I, with real aj . Then the differential

equation p(D)(y) = 0, when written out in full, is (1.1). When y satisfies (1.1), so does

the conjugate function y. Indeed, y(j) = y(j) and aj = aj , so conjugating the differential
equation shows y satisfies the differential equation. (This is false if the aj are not all real,
e.g., solutions to y′ − iy = 0 are usually not again solutions to the same equation after
conjugation.)

Since conjugates of complex solutions to p(D)(y) = 0 are again solutions, we can apply
Lemma 4.8 to V = C∞(R,C) with its conjugation operation: it tells us the subset V + is
an n-dimensional real vector space. Since y = y if and only if y is in C∞(R), V + is the
real solution space to p(D)(y) = 0, so we have proved the real solution space to (1.1) is
n-dimensional (over R). �

Theorem 4.1 is a good example of the benefits of first working over C. Even if we are
only interested in real solutions of real differential equations, the way that one computes
the dimension of the real solution space is to first prove a corresponding result for complex
solutions (as a complex vector space) and then use that to determine the dimension of the
real solution space.

5. Equations With Initial Conditions

Now that we have existence of solutions, we can prove uniqueness of solutions given
enough initial conditions. We will consider as initial conditions a specification of the values
y(0), y′(0), . . . , y(n−1)(0). These are n pieces of information.

Lemma 5.1. If y satisfies (1.1) and y(j)(0) = 0 for 0 ≤ j ≤ n− 1 then y(t) = 0 for all t.

Proof. We argue by induction on the order of the differential equation. When n = 1, the
equation is y′ + ay = 0, whose general solution is y(t) = re−at for some constant r. So if
y(0) = 0 then r = 0 and y(t) = 0 for all t.

Now suppose n ≥ 2 and the lemma is proved for constant-coefficient linear differential
equations of order n− 1. Write (1.1) as p(D)(y) = 0 and split off one linear factor from the
polynomial p(t): p(t) = q(t)(t−c), where q(t) has degree n−1. Then p(D) = q(D)(D−cI),
so p(D)(y) = q(D)(D − cI)(y) = q(D)(y′ − cy). The differential equation (1.1) now looks
like

q(D)(y′ − cy) = 0,

which may look more complicated, but it really helps because it tells us that y′ − cy is the
solution of a differential equation of order n−1 (since q(D) is a differential operator of order

n−1). Moreover, for 0 ≤ j ≤ n−2 we have (y′−cy)(j)(0) = y(j+1)(0)−cy(j)(0) = 0−c·0 = 0.

(We needed j ≤ n − 2 so j + 1 ≤ n − 1 and therefore y(j+1)(0) = 0. So y′ − cy has its
derivatives at 0 through order n − 2 equal to 0, hence by induction y′ − cy is the zero
function. Now by the base case we get from this that y(t) is the zero function. �

Theorem 5.2. For every b0, b1, . . . , bn−1 ∈ C, there is a unique solution to (1.1) satisfying

y(j)(0) = cj for 0 ≤ j ≤ n− 1.
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Proof. First we check uniqueness, and then existence.
Uniqueness. If y and z are two solutions to (1.1) satisfying the same initial conditions,

then the difference y − z is a solution whose initial conditions are all 0, so by Lemma 5.1
we have y(t)− z(t) = 0 for all t, hence y and z are the same function.

Existence. Consider the linear map that turns a solution of (1.1) into its initial conditions:

y(t) 7→ (y(0), y′(0), . . . , y(n−1)(0)) ∈ Cn. This is a C-linear transformation from the n-
dimensional solution space to Cn. Lemma 5.1 tells us the transformation has kernel 0, so it
is injective. Both the solution space and Cn have the same dimension, so injectivity implies
surjectivity. That’s a fancy way of saying any given set of initial conditions is satisfied by
some solution of (1.1). So we’re done. �

This treatment of linear differential equations has only covered equations with (real)
constant coefficients. The coefficients of a linear differential equation could be functions:

(5.1) y(n) + an−1(t)y
(n−1) + · · ·+ a1(t)y

′ + a0(t)y = 0.

A particular example is
y′′ + (t2 − t)y′ − (sin t)y = 0.

Even if the coefficients are varying with t, this differential equation is still linear in y:
solutions to such a differential equation form a vector space under addition and scaling: the
real solutions form a real vector space and the complex solutions form a complex vector
space. When the coefficients aj(t) are continuous functions I → R on an open interval
I in R, the complex solution space is n-dimensional over C and the real solution space
is n-dimensional over R. (By Lemma 4.8, these dimension calculations for the real and
complex solution spaces are equivalent.)

Our proof of the dimension calculation in the constant-coefficient case does not apply to
the case of non-constant coefficients (why?), so analyzing (5.1) requires ideas from analysis
such as fixed-point theorems. This result is found in many general treatments of differential
equations, e.g., Section 3 of http://www.science.unitn.it/∼bagagiol/noteODE.pdf. It
is usually called a global existence and uniqueness theorem for (5.1) subject to initial condi-

tions on y and its first n−1 derivatives: y(t0) = c0, y
′(t0) = c1, y

′′(t0) = c2, . . . , y
(n−1)(t0) =

cn−1, where t0 ∈ I. That is, there is exactly one solution y(t) satisfying (5.1) together with
those initial conditions at t0, and this solution is defined for all t ∈ I. The reason this
implies the solution space of (5.1) is n-dimensional (for real or complex solutions) is that
the collection of n initial conditions (read each row separately)

y(t0) = 1, y′(t0) = 0, y′′(t0) = 0, . . . , y(n−1)(t0) = 0,

y(t0) = 0, y′(t0) = 1, y′′(t0) = 0, . . . , y(n−1)(t0) = 0,

...

y(t0) = 0, y′(t0) = 0, y′′(t0) = 0, · · · , y(n−1)(t0) = 1

leads to n solutions y0(t), y1(t), . . . , yn−1(t) of (5.1), and an arbitrary set of initial conditions

(5.2) y(t0) = c0, y
′(t0) = c1, y

′′(t0) = c2, . . . , y
(n−1)(t0) = cn−1

is satisfied by c0y0(t) + c1y1(t) + · · ·+ cn−1yn−1(t), so the uniqueness for solutions of (5.1)
implies the only solution satisfying (5.2) is c0y0(t) + c1y1(t) + · · ·+ cn−1yn−1(t). Therefore
y0(t), . . . , yn−1(t) form a basis of the solution space of (5.1).

http://www.science.unitn.it/~bagagiol/noteODE.pdf
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