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1. Introduction

We want to describe a procedure, called complexification, that enlarges real vector spaces
to complex vector spaces in a natural way. For instance, the complexifications of Rn, Mn(R),
and R[X] are Cn, Mn(C) and C[X].

Why do we want to complexify real vector spaces? One reason is related to solving
equations. If we want to prove theorems about real solutions to a system of real linear
equations or a system of real linear differential equations, it can be convenient as a first
step to examine the complex solution space. Then we would try to use our knowledge of
the complex solution space (for instance, its dimension) to get information about the real
solution space. Going the other way, we may want to know if a subspace of Cn that is given
to us as the complex solution space to a system of complex linear equations has a basis
coming from the real solution space to a system of real linear equations. We will find a nice
way to describe such real subspaces once we understand the different ways that a complex
vector space can occur as the complexification of a real subspace.

We will give two descriptions of the complexification process, first in terms of a two-
fold direct sum (Section 2) and then in terms of tensor products (Section 3). The tensor
product viewpoint is the more far-reaching one, but seeing how the direct sum method of
complexification expresses everything may help convince the reader that there is nothing
unexpected about this use of tensor products. Moreover, idiosyncratic aspects of the direct
sum construction will turn out to be completely natural features of the tensor product
construction. After comparing the two constructions, we will see (Section 4) how to use
a special structure on a complex vector space, called a conjugation, to describe the real
subspaces that have the given complex vector space as its complexification.

References on this topic are [1, pp. 79–81], [2, §77], and [3, pp. 262–263]. In [1] and [3]
tensor products are used, while [2] uses direct sums.

2. Complexifying with Direct Sums

Let W be a real vector space. To create from W a naturally associated complex vector
space, we need to give a meaning to (a+ bi)w, where a+ bi ∈ C and w ∈W . Whatever it
might mean, we’d like to have

(a+ bi)w = aw + biw = aw + ibw,

and since there is no given meaning to ibw (that is, multiplying elements of W by i has no
definition since W is a real vector space), aw + ibw should be thought of as a formal sum
of aw and bw with the i factor keeping them apart. A legitimate way to make sense of this
is to treat aw+ ibw as the ordered pair (aw, bw), and that leads to the following definition.
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Definition 2.1. The complexification of a real vector space W is defined to be WC =
W ⊕W , with multiplication law (a+ bi)(w1, w2) = (aw1 − bw2, bw1 + aw2), where a and b
are real.

This rule of multiplication is reasonable if you think about a pair (w1, w2) in W ⊕W as
a formal sum w1 + iw2:

(a+ bi)(w1 + iw2) = aw1 + aiw2 + biw1 − bw2 = (aw1 − bw2) + i(bw1 + aw2).

In particular,

(2.1) i(w1, w2) = (−w2, w1).

It is left to the reader to check that WC is a complex vector space by the multiplication
rule in Definition 2.1 (e.g., z(z′(w1, w2)) = zz′(w1, w2)). Since

i(w, 0) = (0, w),

we have

(2.2) (w1, w2) = (w1, 0) + (0, w2) = (w1, 0) + i(w2, 0).

Thus elements of WC formally look like w1 + iw2, except iw2 has no meaning while i(w2, 0)
does: it is (0, w2).

The real subspaces W ⊕ {0} and {0} ⊕W of WC both behave like W , since addition is
componentwise and a(w, 0) = (aw, 0) and a(0, w) = (0, aw) when a is real. The R-linear
function w 7→ (w, 0) will be called the standard embedding of W into WC. So we treat
W ⊕ {0} as the “official” copy of W inside WC and with this identification made we can
regard WC as W + iW using (2.2).

Example 2.2. Taking W = R, its complexification RC is the set of ordered pairs of
real numbers (x, y) with (a + bi)(x, y) = (ax − by, bx + ay). Since (a + bi)(x + yi) =
(ax− by) + (bx+ ay)i, RC is isomorphic to C as C-vector spaces by (x, y) 7→ x+ yi.

Example 2.3. The complexifications of Rn, Mn(R), and R[X] are isomorphic to Cn,
Mn(C), and C[X], by sending an ordered pair (w1, w2) in Rn ⊕Rn, Mn(R) ⊕Mn(R), or
R[X]⊕R[X] to w1 + iw2 in Cn, Mn(C), or C[X].

For instance, we can identify the complexification (R2)C with C2 (as complex vector

spaces) by (w1, w2) 7→ w1 + iw2 ∈ R2 + iR2 = C2, and this sends the basis vectors
(
1
0

)
and(

0
1

)
of R2 ⊂ (R2)C to

(
1
0

)
and

(
0
1

)
in C2, which are the standard basis vectors of C2 as a

complex vector space. More generally, the identifications of (Rn)C,Mn(R)C, and R[X]C
with Cn, Mn(C), and C[X] turn every real basis of Rn, Mn(R), and R[X] (viewed inside
their complexifications by the standard embedding) into a complex basis of Cn, Mn(C),
and C[X].

Theorem 2.4. If W = 0 then WC = 0. If W 6= 0 and {ej} is an R-basis of W then
{(ej , 0)} is a C-basis of WC. In particular, dimC(WC) = dimR(W ) for all W .

Proof. That W being zero implies WC is zero is easy. Now take W 6= 0 with basis {ej}.
For (w1, w2) ∈ WC, writing w1 and w2 as R-linear combinations of the ej ’s shows every

element of WC is an R-linear combination of the (ej , 0)’s and (0, ej)’s. Since (0, ej) =
i(ej , 0), using C-linear combinations we can write every element of WC in terms of the
vectors (ej , 0). Therefore {(ej , 0)} is a C-linear spanning set of WC. To show it is linearly
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independent over C (and thus is a basis), suppose we can write (0, 0) as a (finite!) C-linear
combination of the vectors (ej , 0), say

(a1 + ib1)(e1, 0) + · · ·+ (am + ibm)(em, 0) = (0, 0)

for some real aj and bj . This is the same as

(a1e1 + · · ·+ amem, b1e1 + · · ·+ bmem) = (0, 0).

Therefore
∑
ajej = 0 and

∑
bjej = 0 in W . From linear independence of the ej ’s over R,

all the coefficients aj and bj are 0, so aj + ibj = 0 for all j. �

Example 2.5. Treating C as a real vector space, its complexification is not C. Indeed CC

has to have complex dimension 2 since C has real dimension 2 (Theorem 2.4). Explicitly,
CC = C ⊕ C with (a + bi)(z1, z2) = (az1 − bz2, bz1 + az2). More generally, if W is a
complex vector space the complexification WC does not know about the original complex
scaling on W ; the construction of WC only uses the real vector space structure of W and
all information in advance about being able to multiply by i on W is gone.

A real m × n matrix, as an R-linear transformation Rn → Rm, can be viewed in a
natural way as a function Cn → Cm and it becomes a C-linear transformation. The next
two theorems show how this process looks from the viewpoint of complexifications.

Theorem 2.6. Every R-linear transformation ϕ : W → W ′ of real vector spaces extends
in a unique way to a C-linear transformation of the complexifications: there is a unique
C-linear map ϕC : WC →W ′C making the diagram

W
ϕ //

��

W ′

��
WC ϕC

// W ′C

commute, where the vertical maps are the standard embeddings of real vector spaces into
their complexifications.

Proof. If such a C-linear map ϕC exists, then the commutativity of the diagram says
ϕC(w, 0) = (ϕ(w), 0) for all w ∈W . Therefore when (w1, w2) is an element of WC,

ϕC(w1, w2) = ϕC(w1, 0) + ϕC(0, w2)

= ϕC(w1, 0) + ϕC(i(w2, 0))

= ϕC(w1, 0) + iϕC(w2, 0)

= (ϕ(w1), 0) + i(ϕ(w2), 0)

= (ϕ(w1), 0) + (0, ϕ(w2))

= (ϕ(w1), ϕ(w2)).

This tells us what ϕC must be (notice the step where we used C-linearity). So now we just
turn around and define ϕC : WC →WC by

ϕC(w1, w2) := (ϕ(w1), ϕ(w2)).

We need to check ϕC is C-linear. Since ϕC is clearly R-linear, the only thing to check is
that ϕC commutes with multiplication by i. This is left to the reader, using (2.1). �

We call ϕC the complexification of ϕ.
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Theorem 2.7. Let W and W ′ be nonzero finite-dimensional real vector spaces. For an R-
linear transformation ϕ : W →W ′ and R-bases {ei} and {e′j} of W and W ′, the matrix for

ϕ with respect to these bases is the matrix for ϕC : WC → W ′C with respect to the C-bases
{(ei, 0)} and {(e′j , 0)} of the complexifications.

Proof. The columns of the matrix for ϕ with respect to the bases {ei} and {e′j} are the

coefficients that express the values of ϕ on each ek as an R-linear combination of the e′j ’s.

Similarly, the columns of the matrix for ϕC with respect to the bases {(ei, 0)} and {(e′j , 0)}
are the coefficients that express the values of ϕC on each (ei, 0) as a C-linear combination
of the (e′j , 0)’s. Since ϕC(ei, 0) = (ϕ(ei), 0), the linear combination of ϕ(ei) in terms of

the e′j ’s will give the same linear combination of ϕC(ei, 0) in terms of the (e′j , 0)’s. So the
matrices of ϕ and ϕC with respect to these bases are equal. �

Example 2.8. Let A ∈ M2(R) act on R2. The definition of AC on (R2)C is

AC(w1, w2) = (Aw1, Aw2),

and the isomorphism f : (R2)C → C2 by f(w1, w2) = w1 + iw2 identifies AC with the
function

w1 + iw2 7→ Aw1 + iAw2

on C2. Since A as a matrix acting on complex vectors satisfies Aw1 + iAw2 = A(w1 + iw2),
the diagram

(R2)C
AC //

f
��

(R2)C

f
��

C2 A // C2

commutes. This is the sense in which the complexification AC is just the matrix A acting
on C2.

It is straightforward to check from the definitions that if ϕ : W →W ′ and ψ : W ′ →W ′′

are R-linear transformations then (ψ ◦ ϕ)C = ψC ◦ ϕC, so complexification of linear maps
commutes with composition, and easily (idW )C = id(WC).

If U is a real subspace of W , then UC is a complex subspace of WC (check). In particular,
associated to an R-linear map ϕ : W →W ′ are the real subspaces kerϕ ⊂W and imϕ ⊂W ′.
We also have the complexified C-linear map ϕC : WC →W ′C and its kernel and image, which
are C-subspaces of WC and W ′C. The construction of kernels and images behaves nicely
with respect to complexification:

Theorem 2.9. If ϕ : W →W ′ is R-linear, its complexification ϕC : WC →W ′C has kernel
and image

ker(ϕC) = (kerϕ)C, im(ϕC) = (imϕ)C.

Proof. Since ϕC(w1, w2) = (ϕ(w1), ϕ(w2)), the condition (w1, w2) ∈ kerϕC is equivalent to
w1 and w2 lying in kerϕ, so

ker(ϕC) = (kerϕ)⊕ (kerϕ) ⊂W ⊕W = WC.

Thus ker(ϕC) = (kerϕ)C as a subset of WC.
The image of ϕC is ϕ(W )⊕ ϕ(W ), which is the complexification of ϕ(W ) = imϕ. �

Corollary 2.10. If ϕ : W → W ′ is R-linear, then ϕC is injective if and only if ϕ is
injective, and ϕC is surjective if and only if ϕ is surjective.
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Proof. Injectivity of ϕC is equivalent to ker(ϕC) = (kerϕ)C being 0, and a real vector space
has complexification 0 if and only if it is 0. If ϕ is surjective then im(ϕC) = (imϕ)C = W ′C,
so ϕC is surjective. If ϕ is not surjective then its image ϕ(W ) is a proper subspace of
W ′, so im(ϕC) = ϕ(W ) ⊕ ϕ(W ) is a proper subspace of W ′ ⊕W ′ and therefore ϕC is not
surjective. �

As with most important constructions, we can describe the complexification WC of a
real vector space W by a universal mapping property. We have a standard embedding
W →WC, which is an R-linear transformation. Consider now all R-linear transformations

W
f−−→ V of the particular real vector space W into complex vector spaces V . The standard

embedding W → WC is just one example, but it is really the most basic one, as the next
theorem shows.

Theorem 2.11. For each R-linear map W
f−−→ V from W into a complex vector space V ,

there is a unique C-linear map WC
f̃−−→ V making the diagram

WC

f̃

��

W

77

f
''
V

commute, where the map W →WC is the standard embedding.

Proof. This is quite similar to the proof of Theorem 2.6, so we just sketch the idea. Assuming

f̃ exists, show it satisfies

f̃(w1, w2) = (f(w1), f(w2))

by C-linearity. Now define f̃ by this formula and check it is C-linear and makes the diagram
commute. �

To put this in the language of universal mapping properties, if we take as objects all

R-linear maps W
f−−→ V from the fixed R-vector space W to varying C-vector spaces V , a

morphism from W
f1−−→ V1 to W

f2−−→ V2 is a C-linear (not just R-linear!) map V1
f ′−−→ V2

such that the diagram

V1

f ′

��

W

f1

88

f2 &&
V2

commutes. Then Theorem 2.11 says W → WC is an initial object (it admits a unique
morphism to all other objects), so it is determined up to a unique isomorphism by the
mapping property in Theorem 2.11.
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3. Complexifying with Tensor Products

While the definition of WC does not depend on a choice of basis for W , it implicitly
depends on a choice of the real basis {1, i} of C instead of other bases. This can be seen
in the way multiplication by C scales pairs (w1, w2) ∈WC, which we want to think of as a
formal version of w1+ iw2. Although the universal mapping property in Theorem 2.11 gives
the complexification construction a basis-free meaning (within the framework of mapping
real vector spaces to complex vector spaces), it is also possible to give a completely basis-free
construction of the complexification using tensor products. The idea is that WC behaves
like C ⊗R W and the complexification ϕC : WC → W ′C of an R-linear map ϕ : W → W ′

behaves like the C-linear map 1 ⊗ ϕ : C ⊗R W → C ⊗R W ′. Here are some similarities
between WC and C⊗R W :

(1) There are standard embeddings W → WC by w 7→ (w, 0) and W → C ⊗R W by
w 7→ 1 ⊗ w, and with these embeddings we have WC = W + iW and C ⊗R W =
W + iW .

(2) For a nonzero real vector space W , each R-basis {ej} of W gives us a C-basis
{1⊗ ej} of C⊗RW , so the C-dimension of C⊗RW equals the R-dimension of W .
This looks like Theorem 2.4.

(3) The identifications of (Rn)C, Mn(R)C, and R[X]C with Cn, Mn(C), and C[X] in
Example 2.3 remind us of the effect of base extension to C of Rn, Mn(R), and
R[X].

(4) In the finite-dimensional case, the matrices for ϕ and 1 ⊗ ϕ are equal when using
compatible bases, just as in Theorem 2.7.

(5) Theorem 2.9 is similar to the formulas

ker(1⊗ ϕ) = C⊗R kerϕ, im(1⊗ ϕ) = C⊗R (imϕ)

for kernels and images under base extension.

The constructions of both WC and C ⊗R W from W should be two different ways of
thinking about the same thing. Let’s make this official.

Theorem 3.1. For every real vector space W , there is a unique isomorphism fW : WC →
C⊗R W of C-vector spaces that makes the diagram

W

}} $$
WC

fW // C⊗R W

commute, where the two arrows out of W are its standard embeddings. Explicitly,

(3.1) fW (w1, w2) = 1⊗ w1 + i⊗ w2.

Moreover, if ϕ : W →W ′ is an R-linear map of real vector spaces, the diagram of C-linear
maps

(3.2) WC
ϕC //

fW
��

W ′C

fW ′
��

C⊗R W
1⊗ϕ // C⊗R W ′

commutes.
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Proof. Assuming fW exists, we must have

fW (w1, w2) = fW ((w1, 0) + i(w2, 0))

= fW (w1, 0) + ifW (w2, 0)

= 1⊗ w1 + i(1⊗ w2)

= 1⊗ w1 + i⊗ w2.

Now if we define fW by this last expression, it is easy to see fW is R-linear. To see fW is
in fact C-linear, we compute

fW (i(w1, w2)) = fW (−w2, w1) = 1⊗ (−w2) + i⊗ w1 = −1⊗ w2 + i⊗ w1

and

ifW (w1, w2) = i(1⊗ w1 + i⊗ w2) = i⊗ w1 + (−1)⊗ w2 = −1⊗ w2 + i⊗ w1.

To show fW is an isomorphism, we write down the inverse map C⊗RW →WC. We’d like
1⊗w to correspond to (w, 0), so we expect z⊗w = z(1⊗w) should go to z(w, 0). With this
in mind, we construct such a map by first letting C×W →WC by (z, w) 7→ z(w, 0). This is
R-bilinear, so it induces an R-linear map gW : C⊗RW →WC where gW (z ⊗w) = z(w, 0)
on elementary tensors. To show gW is C-linear, it suffices to check gW (zt) = zgW (t) when
t is an elementary tensor, say t = z′ ⊗ w:

gW (z(z′ ⊗ w)) = gW (zz′ ⊗ w) = zz′(w, 0), zgW (z′ ⊗ w) = z(z′(w, 0)) = zz′(w, 0).

Finally, to show fW and gW are inverses, first we have

gW (fW (w1, w2)) = gW (1⊗ w1 + i⊗ w2) = (w1, 0) + i(w2, 0) = (w1, 0) + (0, w2) = (w1, w2).

To show fW (gW (t)) = t for all t ∈ C⊗RW , it suffices to verify this on elementary tensors,
and this is left to the reader. The commutativity of (3.2) is also left to the reader. �

Since WC and C ⊗R W are both the direct sum of subspaces W and iW (using the
standard embedding of W into WC and C ⊗R W ), this suggests saying a complex vector
space V is the complexification of a real subspace W when V = W + iW and W ∩ iW = {0}.
For example, in this sense Cn is the complexification of Rn. The distinction from the
preceding meaning of complexification is that now we are talking about how a pre-existing
complex vector space can be a complexification of a real subspace of it, rather than starting
with a real vector space and trying to create a complexification out of it.

Theorem 3.2. Let V be a nonzero complex vector space and W be a nonzero real subspace.
The following are equivalent:

(1) V is the complexification of W ,
(2) every R-basis of W is a C-basis of V ,
(3) some R-basis of W is a C-basis of V ,
(4) the C-linear map C⊗R W → V given by z ⊗ w 7→ zw on elementary tensors is an

isomorphism of complex vector spaces,

Proof. (1)⇒ (2): Let {ej} be an R-basis of W . Since V = W + iW , V is spanned over R
by {ej , iej}, so V is spanned over C by {ej}. To show linear independence of {ej} over C,
suppose

∑
(aj + ibj)ej = 0. Then

∑
ajej = i

∑
(−bj)ej ∈ W ∩ iW = {0}, so aj = 0 and

bj = 0 for all j.
(2)⇒ (3): Obvious.
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(3)⇒ (4): If some R-basis {ej} of W is a C-basis of V , then the C-linear map C⊗RW →
V given by z ⊗ w 7→ zw sends 1 ⊗ ej to ej so it identifies C-bases of two complex vector
spaces. Therefore this map is an isomorphism of complex vector spaces.

(4)⇒ (1): Since C⊗RW = 1⊗W+i(1⊗W ) and (1⊗W )∩i(1⊗W ) = 0, the isomorphism
with V shows V is a complexification of W . �

By Theorem 3.2, every complex vector space V is the complexification of some real
subspace W : if V 6= 0, pick a C-basis {ej} of V and take for W the real span of the ej ’s in
V . This is trivial if V = 0.

Example 3.3. Two real subspaces of M2(C) having M2(C) as their complexification are
M2(R) and {( a b+ci

b−ci d ) : a, b, c, d ∈ R}: both are 4-dimensional real subspaces containing
a C-basis of M2(C) (check!).

Note that saying V has some R-basis of W as a C-basis is stronger than saying V has
a C-spanning set from W , even though “a spanning set contains a basis”: a spanning set
for V in W means C-coefficients, while a basis of W means R-coefficients, so there is a
mismatch. As an example, let V = W = C. Then V has a C-spanning set in W , e.g.,
{1}, but no R-basis of W is a C-basis of V . In general, a spanning set for V from W need
not be a basis of W . But see Corollary 4.12 for conditions where a spanning set plays an
important role.

Since both WC and C⊗RW have the same properties relative to W insofar as complex-
ifications are concerned, we can use the label “complexification” for either construction. In
particular, when referring to the complexification of an R-linear map ϕ : W →W ′, we can
mean either ϕC : WC →W ′C or 1⊗ ϕ : C⊗R W → C⊗R W ′.

4. Conjugations on Complex Vector Spaces

Real subspaces with a given complexification have a name:

Definition 4.1. If V is a complex vector space, an R-form of V is a real subspace W of V
having V as its complexification.

Concretely, an R-form of V is the R-span of a C-basis of V .

Example 4.2. Two R-forms of M2(C) are M2(R) and{( a b+ci
b−ci d ) : a, b, c, d ∈ R}.

There is a way to keep track of all the R-forms of a complex vector space by using a
generalization of complex conjugation. When we base extend a real vector space W to the
complex vector space C⊗RW , complex conjugation can be extended from C to the tensor
product: let τW : C⊗R W → C⊗R W by

(4.1) τW (z ⊗ w) := z ⊗ w.
This is R-linear, and we can recover W (or rather 1⊗W inside C⊗RW ) from τW by taking
fixed points. If w ∈ W thenτW (1 ⊗ w) = 1 ⊗ w. In the other direction, if τW (t) = t for
some t ∈ C⊗R W , we want to show t ∈ 1⊗W . Write t = 1⊗ w1 + i⊗ w2; every element
of C ⊗R W has this form in a unique way. Then τW (t) = 1 ⊗ w1 − i ⊗ w2, so τW (t) = t if
and only if i ⊗ w2 = −i ⊗ w2, which is the same as 2i ⊗ w2 = 0, and that implies w2 = 0,
so t = 1⊗w1 ∈ 1⊗W . That the real vector space W (really, its isomorphic standard copy
1 ⊗W in C ⊗R W ) is the set of fixed points of τW generalizes the fact that R is the set
of fixed points of complex conjugation on C: whatever is fixed by something like complex
conjugation should be thought of as a “real” object.
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Remark 4.3. If we think of the complexification of W as WC = W ⊕W , it is natural to
call the complex conjugate of (w1, w2) = (w1, 0) + i(w2, 0) the vector (w1, 0) − i(w2, 0) =

(w1,−w2), so we set (w1, w2) = (w1,−w2). The reader can check the diagram

WC
fW //

v 7→v
��

C⊗R W

τW
��

WC
fW // C⊗R W

commutes, where fW is the isomorphism in Theorem 3.1. It is easy to see on WC that the
fixed points of the conjugation are {(w, 0)}, which is the standard copy of W in WC.

Abstracting the function τW on C⊗RW to a complex vector space V , we are led to the
following coordinate-free concept.

Definition 4.4. A conjugation on a complex vector space V is a function c : V → V such
that

• c(v + v′) = c(v) + c(v′) for all v and v′ in V ,
• c(zv) = zc(v) for all z ∈ C and v ∈ V ,
• c(c(v)) = v for all v ∈ V .

A conjugation is R-linear (take z ∈ R in the second property) but is not C-linear:
c(iv) = −ic(v). The first and second properties together are called conjugate-linearity.

Example 4.5. On Cn, the function c(z1, . . . , zn) = (z1, . . . , zn), where every coordinate
gets replaced by its complex conjugate, is a conjugation. In terms of the standard basis
e1, . . . , en of Cn, this conjugation is given by c(

∑
zjej) =

∑
zjej . Its fixed points are Rn.

Example 4.6. On C[X], the function c(
∑d

j=0 ajX
j) =

∑d
j=0 ajX

j is a conjugation. Its

fixed points are R[X].

Example 4.7. On M2(C), two examples of conjugations are c( α β
γ δ ) = ( α β

γ δ
) and c( α β

γ δ ) =

(
α γ

β δ
). The first one conjugates all the matrix entries, and the second one is the conjugate-

transpose operation. The fixed points of these conjugations are M2(R) and{( a b+ci
b−ci d ) :

a, b, c, d ∈ R}, which we met before (Example 3.3) as two R-forms of M2(C).

Example 4.8. For a real vector space W , the function τW in (4.1) is called the standard
conjugation on C⊗R W .

Example 4.9. Under the usual C-vector space isomorphisms C ⊗R Rn ∼= Cn and C ⊗R

R[X] ∼= C[X], the standard conjugations on the tensor products are identified with the
conjugations on Cn and C[X] from Examples 4.5 and 4.6. That is, the diagrams

C⊗R Rn −→ Cny y
C⊗R Rn −→ Cn

C⊗R R[X] −→ C[X]y y
C⊗R R[X] −→ C[X]

commute, where the horizontal maps are the usual isomorphisms, the left vertical arrows
are the standard conjugations, and the right vertical arrows are the conjugations introduced
on Cn and C[X] in Examples 4.5 and 4.6. .
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Example 4.10. If f : V1 → V2 is an isomorphism of complex vector spaces then a conjuga-
tion on V1 determines a unique conjugation on V2 such that f transforms the conjugation
on V1 into that on V2. That is, if the left vertical arrow c1 in the diagram

V1
f //

c1
��

V2

c2
��

V1
f
// V2

is a conjugation on V1 then there is exactly one conjugation c2 on V2 that makes the diagram
commute: f(c1(v)) = c2(f(v)) for all v ∈ V1. Indeed, for each v′ ∈ V2 there is v ∈ V1 such
that v′ = f(v). Then c2(v

′) = c2(f(v)) = f(c1(v)) = f(c1(f
−1(v′))), so we must have

c2 = fc1f
−1. Check this formula does define a conjugation on V2. In particular, if c is a

conjugation on a complex vector space V and A ∈ GL(V ) then A is an isomorphism of V
with itself and c′(v) := Ac(A−1v) is another conjugation on V : the diagram

(4.2) V
A //

c
��

V

c′

��
V

A
// V

commutes and c′ is the only conjugation for which that is true.

Example 4.7 reinforces the point that a complex vector space does not have a unique
conjugation on it. Still, you may feel that the conjugation in Example 4.5 is the most
natural choice on Cn. And you may think Rn is the most natural R-form of Cn. These
two feelings are related! Here is the link between them, in the most general case:

Theorem 4.11. Let V be a complex vector space. There is a bijection between the following
data on V :

(1) R-forms of V ,
(2) conjugations on V .

Proof. First we will explain what the maps are in both directions. Then we check the maps
are inverses.

If we start with an R-form W of V , so there is an isomorphism f : C ⊗R W → V by
f(z ⊗ w) = zw, we can use this isomorphism to transport the standard conjugation τW on
C ⊗R W to a conjugation cW on V (Example 4.10). That is, we can uniquely fill in the
arrow on the right of the diagram

C⊗R W
f //

τW
��

V

cW
��

C⊗R W
f
// V

to make it commute. Explicitly, cW (
∑

i ziwi) =
∑

i ziwi where zi ∈ C and wi ∈ W .
(Considering the many ways of writing an element of V in the form

∑
i ziwi – the wi’s

need not be a basis – the fact that this formula for cW is well-defined depends crucially on
C ⊗R W being isomorphic to V by z ⊗ w 7→ zw, which is what the two horizontal arrows
are in the diagram.) So from an R-form W of V we get a conjugation cW on V .
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If instead we start with a conjugation c on V , an R-form of V is

(4.3) Vc = {v ∈ V : c(v) = v}.

To check this is an R-form of V , first note Vc is an R-subspace of V since c is R-linear.
Then we define an R-linear map f : C⊗R Vc → V by f(z⊗w) = zw. We want to show this
is a C-linear isomorphism. It’s C-linear since

f(z′(z ⊗ w)) = f(z′z ⊗ w) = (z′z)w = z′(zw) = z′f(z ⊗ w),

so f(z′t) = z′f(t) for all t ∈ C⊗R Vc by additivity.
To check f is onto, we can write each v ∈ V as v = w1 + iw2, where w1 = (v + c(v))/2

and w2 = (v − c(v))/2i are both fixed by c, so each lies in Vc. (Compare with the formulas
(z + z)/2 and (z − z)/2i for the real and imaginary parts of a complex number z.) Then
v = w1 + iw2 = f(1⊗ w1 + i⊗ w2).

To check f is one-to-one, suppose f(t) = 0 for some t ∈ C ⊗R Vc. We can write
t = 1 ⊗ w + i ⊗ w′ for some w and w′ in Vc, so the condition f(t) = 0 says w + iw′ = 0
in V . Applying c to this yields w − iw′ = 0 because w and w′ are fixed by c. Adding and
subtracting the equations w + iw′ = 0 and w − iw′ = 0 shows w = 0 and w′ = 0, so t = 0.
Thus f is one-to-one, so Vc is an R-form of V .

It remains to check that our correspondences between R-forms of V and conjugations on
V are inverses of one another.

R-form to conjugation and back: If we start with an R-form W of V , we get a conjuga-
tion cW on V by cW (

∑
i ziwi) :=

∑
i ziwi for zi ∈ C and wi ∈ W . The subspace VcW is

{v ∈ V : cW (v) = v}, so we need to check this is W . Certainly W ⊂ Vc.
Since C⊗R W ∼= V by z ⊗ w 7→ zw, every v ∈ V is w1 + iw2 for some w1 and w2 in W .

Then cW (v) = cW (w1 + iw2) = cW (w1) + cW (iw2) = w1 − iw2, so cW (v) = v if and only if
iw2 = −iw2, which is equivalent to w2 = 0, which means v = w1 ∈ W . Thus VcW ⊂ W , so
W = Vc.

Conjugation to R-form and back: If we start with a conjugation c on V , so C⊗RVc ∼= V
by z⊗w 7→ zw, then we have to check this isomorphism transports the standard conjugation
τVc on C⊗RVc to the original conjugation c on V (and not some other conjugation on V ). A
tensor

∑
i zi⊗wi in C⊗RVc is identified with

∑
i ziwi in V , and τVc(

∑
i zi⊗wi) =

∑
i zi⊗wi

goes over to
∑

i ziwi in V . Since the wi’s are in Vc,
∑

i ziwi =
∑

i zic(wi) = c(
∑

i ziwi), so
the isomorphism from C⊗R Vc to V does transport τVc on C⊗R Vc to c on V . �

Corollary 4.12. Let V be a complex subspace of Cn and c be the usual conjugation on Cn.
The following conditions are equivalent:

(1) V has a C-spanning set in Rn,
(2) c(V ) = V ,
(3) V has an R-form in Rn,
(4) dimR(V ∩Rn) = dimC(V )

When this happens, the only R-form of V in Rn is V ∩Rn.

Proof. This is all clear when V is 0, so take V 6= 0.

(1)⇔ (2): If V has a C-spanning set {vj} in Rn, c(V ) = c(
∑d

j=1 Cvj) =
∑d

j=1 Cc(vj) =∑d
j=1 Cvj = V . Conversely, if c(V ) = V then c is a conjugation on V and the corresponding

R-form of V is Vc ⊂ (Cn)c = Rn. An R-basis of Vc is a C-basis of V , so V has a C-basis
in Rn.
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(2) ⇔ (3): In the proof that (2) implies (1) we showed (2) implies (3). In the other
direction, if (3) holds then there is an R-subspace W ⊂ Rn such that V is the C-span of
W . That implies c(V ) = V , since V has a C-spanning in Rn.

(1)⇔ (4): If V has a C-spanning set in Rn then V has a C-basis in Rn. Let d = dimC(V ),
and v1, . . . , vd be a C-basis of V in Rn. Then every v ∈ V has the form v =

∑
ajvj with

aj ∈ C. If v ∈ Rn then c(v) = v, so aj = aj (from linear independence of the vj ’s over
C). Therefore v is in the R-span of the vj ’s, so V ∩ Rn =

∑
Rvj has R-dimension d.

Conversely, if dimR(Rn∩V ) = dimC(V ), let v1, . . . , vd be an R-basis of V ∩Rn. Vectors in
Rn that are linearly independent over R are linearly independent over C, so the C-span of
the vj ’s has C-dimension d. Since this C-span is in V , whose C-dimension is d, the C-span
of the vj ’s is V .

It remains to show under these 4 conditions that V ∩Rn is the unique R-form of V in
Rn. By the proof of (4)⇒ (1), V ∩Rn is an R-form of V . (This also follows from (2)⇒ (1)
since Vc = V ∩ (Cn)c = V ∩Rn.) Now suppose W ⊂ Rn is an R-form of V . Let w1, . . . , wd
be an R-basis of W . The conjugation on V corresponding to the R-form W is given by∑
ajwj 7→

∑
ajwj = c(

∑
ajwj) since wj ∈ Rn. By Theorem 4.11, W = V ∩Rn. �

To make Corollary 4.12 concrete, it says in part that the solutions to a homogeneous
system of complex linear equations is spanned by its real solutions if and only if the solution
space is preserved by the standard conjugation on Cn (in which case there is a homogeneous
system of real linear equations with the same solutions).

Corollary 4.12 says V ∩Rn is an R-form of V only when its R-dimension has the largest
conceivable size (since always dimR(V ∩Rn) ≤ dimC(V )). It is generally false that V ∩Rn

spans V over C, since the dimension of the intersection could be too small.

Example 4.13. Let V = C
(
i
1

)
in C2. Then V ∩R2 = {

(
0
0

)
}. An R-form of this V is R

(
i
1

)
,

but there is no R-form of V in R2.

There is a version of Corollary 4.12 for arbitrary C-vector spaces, not just subspaces of
Cn or finite-dimensional spaces:

Corollary 4.14. Let U be a complex vector space with a conjugation c on it. For a C-
subspace V ⊂ U , the following conditions are equivalent:

(1) V has a spanning set in Uc,
(2) c(V ) = V ,
(3) V has an R-form in Uc.

When these hold, the only R-form of V in Uc is V ∩Uc. If dimC(V ) <∞, these conditions
are the same as dimC(V ∩ Uc) = dimC(V ).

The proof is left as an exercise.
As another application of Theorem 4.11, we will prove a converse to the end of Example

4.10: all conjugations on a complex vector space are conjugate to each other by some (not
unique) automorphism of the vector space.
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Corollary 4.15. Let V be a complex vector space with conjugations c and c′. There is some
A ∈ GL(V ) such that the diagram

(4.4) V
A //

c
��

V

c′

��
V

A
// V

commutes.

Proof. Let W = Vc and W ′ = Vc′ . These are both R-forms of V by Theorem 4.11, so the
diagrams

C⊗R W //

τW
��

V

c

��
C⊗R W // V

C⊗R W ′ //

τW ′
��

V

c′

��
C⊗R W ′ // V

both commute, where the horizontal isomorphisms are given by z ⊗ w 7→ zw and the left
vertical maps are the standard conjugations (Example 4.8).

The real dimensions of W and W ′ are equal (since, as R-forms of V , their real dimensions
both equal dimC(V )1), so there is an R-linear isomorphism ϕ : W →W ′. The base extension
1⊗ϕ : C⊗RW → C⊗RW

′ is a C-linear isomorphism that respects the standard conjugation
on each of these tensor products. That is, the diagram

C⊗R W
1⊗ϕ //

τW
��

C⊗R W ′

τW ′
��

C⊗R W
1⊗ϕ
// C⊗R W ′

commutes. (It suffices to check commutativity on elementary tensors: running along the
top and right, τW ′((1 ⊗ ϕ)(z ⊗ w)) = τW ′(z ⊗ ϕ(w)) = z ⊗ ϕ(w), and running along the
left and bottom (1⊗ϕ)(τW (z ⊗w)) = (1⊗ϕ)(z ⊗w) = z ⊗ϕ(w).) Now combine the three
diagrams in this proof to get

V //

c

��

C⊗R W

τW
��

1⊗ϕ // C⊗R W ′

τW ′
��

// V

c′

��
V // C⊗R W

1⊗ϕ
// C⊗R W ′ // V.

The maps along the top and bottom are C-linear isomorphisms. Call the (common) com-
posite map along the top and bottom A, so A ∈ GL(V ), and remove the middle vertical
maps to be left with a commutative diagram of the form (4.4). �

Conjugations can be used to describe how the complexifications of R-linear maps W1 →
W2 sit inside the C-linear maps C⊗R W1 → C⊗R W2:

1This could be an infinite cardinal number, but what we do is still correct in that case.
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Theorem 4.16. A C-linear map Φ: C ⊗R W1 → C ⊗R W2 has the form 1 ⊗ ϕ for some
R-linear map ϕ : W1 →W2 if and only if

(4.5) Φ(τW1(t)) = τW2(Φ(t))

for all t ∈ C ⊗R W1. Here τW1 and τW2 are the standard conjugations on C ⊗R W1 and
C⊗R W2.

Proof. Suppose Φ = 1⊗ϕ for some ϕ. To check Φ(τW1(t)) = τW2(Φ(t)) for all t, we only have
to check it on elementary tensors t = z⊗w1: Φ(τW1(z⊗w1)) = (1⊗ϕ)(z⊗w1) = z⊗ϕ(w1)
and τW2(Φ(z ⊗ w1)) = τW2(z ⊗ ϕ(w1)) = z ⊗ ϕ(w1), so (4.5) holds.

Conversely, if Φ satisfies (4.5) then at t = 1 ⊗ w1 we get Φ(1 ⊗ w1) = τW2(Φ(1 ⊗ w1)).
Thus Φ(1⊗w1) is fixed by the standard conjugation on C⊗R W2, so Φ(1⊗w1) ∈ 1⊗W2.
Every element of 1⊗W1 has the form 1⊗w2 for exactly one w2, so we can define ϕ(w1) ∈W2

by
Φ(1⊗ w1) = 1⊗ (ϕ(w1)).

This serves to define a function ϕ : W1 →W2. Since Φ(w1 + w′1) = Φ(w1) + Φ(w′1),

1⊗ (ϕ(w1 + w′1)) = 1⊗ (ϕ(w1)) + 1⊗ (ϕ(w′1)) = 1⊗ (ϕ(w1) + ϕ(w′1)),

so ϕ(w1 + w′1) = ϕ(w1) + ϕ(w′1). In a similar way one can show ϕ commutes with scaling
by real numbers, so ϕ is R-linear.

Now we want to show Φ = 1 ⊗ ϕ as functions on C ⊗R W1. Both are C-linear, so it
suffices to compare them on elementary tensors of the form 1⊗ w, where

Φ(1⊗ w1) = 1⊗ (ϕ(w1)) = (1⊗ ϕ)(1⊗ w1).

�

Theorem 4.16 is related to Theorem 4.11. Define c : HomC(C ⊗R W1,C ⊗R W2) →
HomC(C⊗R W1,C⊗R W2) by

c(Φ) := τW2 ◦ Φ ◦ τW1 .

Check c is a conjugation on the complex vector space HomC(C⊗RW1,C⊗RW2). Theorem
4.16 says c has a naturally associated R-form: {Φ : c(Φ) = Φ}. Saying c(Φ) = Φ is the
same as Φ ◦ τW1 = τW2 ◦ Φ (since τ−1W2

= τW1), which is (4.5). So Theorem 4.16 says the

R-form of HomC(C ⊗R W1,C ⊗R W2) corresponding to the conjugation c is {1 ⊗ ϕ : ϕ ∈
HomR(W1,W2)}, which is HomR(W1,W2) under the usual identifications.

Here is a more general version of Theorem 4.16, starting from complex vector spaces
equipped with conjugations.

Theorem 4.17. Let V1 and V2 be complex vector spaces equipped with conjugations c1 and
c2. A C-linear map Φ: V1 → V2 has the form 1 ⊗ ϕ for some R-linear map ϕ : (V1)c1 →
(V2)c2 if and only if

Φ(c1(t)) = c2(Φ(t))

for all t ∈ V1
The proof is left as an exercise.
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