BILINEAR FORMS

KEITH CONRAD

The geometry of R™ is controlled algebraically by the dot product. We will abstract
the dot product on R” to a bilinear form on a vector space and study algebraic and geo-
metric notions related to bilinear forms (especially the concept of orthogonality in all its
manifestations: orthogonal vectors, orthogonal subspaces, and orthogonal bases).

Section (1] defines a bilinear form on a vector space and offers examples of the two most
common types of bilinear forms: symmetric and alternating bilinear forms. In Section
we will see how a bilinear form looks in coordinates. Section [3| describes the important
condition of nondegeneracy for a bilinear form. Orthogonal bases for symmetric bilinear
forms are the subject of Section Symplectic bases for alternating bilinear forms are
discussed in Section [f] Quadratic forms are in Section [f] (characteristic not 2) and Section
(characteristic 2). The tensor product viewpoint on bilinear forms is briefly discussed in
Section [8l

Vector spaces in Section [I| are arbitrary, but starting in Section [2| we will assume they are
finite-dimensional. It is assumed that the reader is comfortable with abstract vector spaces
and how to use bases of (finite-dimensional) vector spaces to turn elements of a vector space
into column vectors and linear maps between vector spaces into matrices. It is also assumed
that the reader is familiar with duality on finite-dimensional vector spaces: dual spaces, dual
bases, the dual of a linear map, and the natural isomorphism of finite-dimensional vector
spaces with their double duals (which identifies the double dual of a basis with itself and
the double dual of a linear map with itself). For a vector space V' we denote its dual space
as VV. The dual basis of a basis {e1,...,e,} of V is denoted {e},... ey}, so the e’s are
the coordinate functions on V relative to that basis: e)(e;) is 1 for i = j and 0 for i # j.

Although V is naturally isomorphic to V'V, students are always cautioned against iden-
tifying V' with V'V, since “there is no natural isomorphism.” In a nutshell, the subject of
bilinear forms is about what happens if we make an identification of V with V¥ and keep
track of it. Different identifications have different geometric properties.

1. DEFINITIONS AND EXAMPLES

Definition 1.1. Let F' be a field and V' be a vector space over F. A bilinear form on V is
a function B: V x V — F that is linear in each variable when the other one is fixed. That
is,

B(v+v',w) = B(v,w) + B(v',w), B(cv,w) = cB(v,w)
for all v,v',w € V and ¢ € F, and
B(v,w+w'") = B(v,w) + B(v,w'), B(v,cw) = cB(v,w),

for all v,w,w’ € V and ¢ € F.
We call B symmetric when

B(v,w) = B(w,v) for all v,w € V
1



2 KEITH CONRAD

and skew-symmetric when
B(v,w) = —B(w,v) for all v,w € V.
We call B alternating when
B(v,v) =0 for allv e V.

A bilinear space is a vector space equipped with a specific choice of bilinear form. We call
a bilinear space symmetric, skew-symmetric, or alternating when the chosen bilinear form
has that corresponding property.

A common synonym for skew-symmetric is anti-symmetric.
Example 1.2. The dot product v - w on R" is a symmetric bilinear form.

Example 1.3. For a fixed matrix A € M,,(R), the function f(v,w) =v-Aw on R" is a
bilinear form, but not necessarily symmetric like the dot product. All later examples are
essentially generalizations of this construction.

Example 1.4. For any field F', viewed as a 1-dimensional vector space over itself, multipli-
cation m: F'x F' — F is a symmetric bilinear form and not alternating. It is skew-symmetric
when F' has characteristic 2.

Example 1.5. A skew-symmetric and alternating bilinear form on R? is
/
Blleh @) = af oy =det (0 7).

For example, B((2,1),(3,4)) = 5 and B((2,1),(2,1)) = 0. Viewing R? as C by (z,y)
x + 1y, B(z,w) = Im(Zw) = — Im(zw) for complex numbers z and w.

Among the three types of bilinear forms we have defined (symmetric, skew-symmetric,
alternating), the first and third types are more basic than the second. In fact, we now show
that a skew-symmetric bilinear form is just another name for a symmetric or an alternating
bilinear form, depending on whether or not the characteristic of the field is 2.

Theorem 1.6. In all characteristics, an alternating bilinear form is skew-symmetric. In
characteristic not 2, a bilinear form is skew-symmetric if and only if it is alternating. In
characteristic 2, a bilinear form is skew-symmetric if and only if it is symmetric.

Proof. When B is alternating and v,w € V, expanding the right side of the equation
0= B(v+ w,v + w) shows
0= B(v,v) + B(v,w) + B(w,v) + B(w,w) = B(v,w) + B(w, v),
so B(v,w) = —B(w,v). Therefore alternating bilinear forms are skew-symmetric in all
characteristics (even in characteristic 2). Outside of characteristic 2, a skew-symmetric
bilinear form is alternating since
B(v,v) = =B(v,v) = 2B(v,v) = 0= B(v,v) = 0.

That skew-symmetric and symmetric bilinear forms coincide in characteristic 2 is immediate
since 1 = —1 in characteristic 2. O

Despite Theorem the label “skew-symmetric” is still needed. One reason is that
it is used in preference to “alternating” by many geometers who work over R, where the
two notions coincide. Another reason is that the concept of bilinear form makes sense on
modules, not just vector spaces, and there are skew-symmetric bilinear forms on modules
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that are neither symmetric nor alternating (Exercise [2.8)). However, we will only deal with
bilinear forms on vector spaces.

Theorem 1.7. In characteristic not 2, every bilinear form B is uniquely expressible as a
sum By + Ba, where By is symmetric and Bs is alternating (equivalently, skew-symmetric).
In characteristic 2, the alternating bilinear forms are a subset of the symmetric bilinear
forms.

Proof. The last part is immediate from Theorem Now we work in characteristic not
2. For a bilinear form B, suppose we can write B = Bj + Bs with symmetric B; and
alternating (so skew-symmetric) Bs. Then for vectors v and w,

(1.1) B(v,w) = By(v,w) + Ba(v,w)
and

B(w,v) = Bi(w,v)+ Ba(w,v)
(1.2) = Bi(v,w) — Ba(v,w).

Adding and subtracting and , we get formulas for B; and Bs in terms of B:
B(v,w) + B(w,v) B(v,w) — B(w,v)

2 ’ 2 ’
Turning this reasoning around, the bilinear forms B; and By defined by are symmetric

and alternating respectively, so we have established the existence and uniqueness of B; and
Bs. O

(1.3) Bi(v,w) =

Bs(v,w) =

Theorem 1.8. In characteristic not 2, a symmetric bilinear form B(v,w) is completely
determined by its values B(v,v) on the diagonal.

Proof. For any v and w,

%(B(v +w, 0+ w) — Blv,v) — B(w, w)) = %(B(v, w) + B(w,v)) = B(v, w).

Note we used symmetry of B in the last equation. O

The fact that, for symmetric B, we can recover the 2-variable function B(v,w) from the
1-variable function B(v,v) outside of characteristic 2 is called polarization. For instance, it
shows us that a symmetric bilinear form B is identically 0 if and only if B(v,v) = 0 for all
v (not just B(e;, e;) = 0 on a basis; see Example . Polarization will play an important
role when we treat quadratic forms later.

Let’s look at some more examples of bilinear forms.

Example 1.9. On R?, B((z,y),(2/,y)) = 2’ — yy' is symmetric. How is this formula
different from the one in Example

Example 1.10. On R?, B((z,y), (z/,y')) = 23/ +ya’ is symmetric. Since B((z,y), (z,y)) =
22y, B(e;, e;) = 0 where {e, ez} is the standard basis of R.

Example 1.11. Fix a vector u in R3. For v and w in R3, let By (v, w) = u- (v X w), where
% is the cross product. This is alternating.

Example 1.12. Let V be a finite-dimensional vector space over F. On the vector space
Endp(V,V), set B(L,L") = Tr(LL"). This is called the trace form on Endp(V,V). It is
bilinear since the trace is linear. It is symmetric since Tr(LL') = Tr(L'L).
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Example 1.13. Let V be a finite-dimensional vector space over F with dual space VV. On
the vector space V & V'V, set

B((v, ), (w,¢)) = ¢ (v) — p(w).

This is alternating. (Symbolically, B((v,¢), (w,¥)) = |¥% ¢|.) Can you interpret Example
[L.5]in this context?

Example 1.14. Let’s look at an infinite-dimensional example. On C]0, 1], the space of
real-valued continuous functions [0,1] — R, the function B(f,g) = fol f(z)g(z)dz is a
symmetric bilinear form. To get other examples of bilinear forms, choose any continuous
function k: [0,1]> — R and set

Bi(f,9) = / f(@)g(y)k(z,y) dz dy.

[0,1]2
Can you find a k that makes By = B? (The function k£ = 1 does not work.)

Example 1.15. On C”, let H((z1,...,2n), (W1,...,wy)) = > i, ziW;. Regarding C" as a
real vector space, H is bilinear. But viewing C" as a complex vector space, H is linear in
its first component but it is not linear in its second component: H (v, cw) equals ¢H (v, w)
instead of cH (v, w). Therefore H is not bilinear. Moreover, H(v,w) = H(w,v). Pairings
such as H on a complex vector space, which are linear in one component, conjugate-linear
in the other component, and get conjugated when the arguments are exchanged, are called
Hermitian. Our focus is on bilinear forms.

A bilinear form is a generalization of the dot product, so the condition B(v,w) = 0 is
considered to be a generalization of perpendicularity. With this in mind, write v | w when
B(v,w) = 0 and call v and w perpendicular or orthogonal. (We could write v Lp w to
stress the dependence of this notion of orthogonality on the choice of B, but this will not
be done.) Since B is bilinear, perpendicularity behaves linearly:

v Lw,vlw = vl (qqw + cows); v1 L w,vg L w= (c1v1 + cov2) L w

where ¢1,c9 € F. For a subspace W C V and a vector v € V we write v L W when v 1L w
for all w € W and write W L v similarly.

In a general bilinear space the L relation might not be symmetric: we can have v 1L w
and w [ v. That is, we could have B(v,w) =0 and B(w,v) # 0.

Example 1.16. On V = R2 let B((z,y),(z',y") = 22’ + zy’ — 2’y — yy’. We have
(170) 1 (1a _1) but (13 _1) 7J/— (130)

Knowing the bilinear forms where v | w < w L v (that is, the relation L is symmetric)
is a key foundational result. Here it is.

Theorem 1.17. The perpendicularity relation on a bilinear space (V, B) is symmetric if
and only if B is either symmetric or alternating.

The proof is a series of elementary but somewhat tedious calculations. Nothing will be
lost by skipping the proof on a first reading and coming back to it after the significance of
the two types of bilinear forms becomes clearer.

Proof. If B is symmetric or alternating then we have B(v,w) = +B(w,v), so B(v,w)
vanishes if and only if B(w,v) vanishes.
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To prove the converse direction, assume L is a symmetric relation. Pick any vectors
u,v,w € V. We first will find a linear combination av 4+ bw such that (av + bw) L u. This
is the same as

(1.4) aB(v,u) +bB(w,u) =0

since B is linear in its first component. We can achieve (1.4]) using ¢ = B(w,u) and
b= —B(v,u). Therefore set

x = B(w,u)v — B(v,u)w.
Then B(z,u) = 0, so B(u,x) = 0 by symmetry of the relation L. Computing B(u,zx) by
linearity of B in its second component and setting it equal to zero, we obtain
(1.5) B(w,u)B(u,v) = B(v,u)B(u,w).

This holds for all u,v,w € V. We will show a bilinear form satisfying (1.5) is symmetric or
alternating.

Use w = u in ([L.5)):

(1.6) B(u,u)B(u,v) = B(v,u)B(u, u).
Notice B(u,u) appears on both sides of ([1.6)). Thus, for all v and v in V,
(1.7) B(u,v) # B(v,u) = B(u,u) =0 (and similarly B(v,v) = 0).

Now assume that the relation L for B is symmetric and B is not a symmetric bilinear
form. We will prove B is alternating. By assumption, there are ug,vg € V' such that

(1.8) B(uo, vo) # B(vo, uo).

From this we will show B(w,w) = 0 for all w € V, relying ultimately on ((1.7). Note by
(1.7) and (1.8]) that

(19) B(UQ,UO) = 07 B(’Uo,’Uo) = 0.

Pick any w € V. If B(ug, w) # B(w, up) or B(vg, w) # B(w, vg) then (1.7) shows B(w,w) =
0. Therefore to prove B(w,w) = 0 we may assume

(1.10) B(ug, w) = B(w, up), B(vg,w)= B(w,vp).
In (1.5)), set u = up and v = vg. Then
B(w,uo)B(uo,vo) = B(vo, uo) B(uo, w).

By (1L.10),
B(U(), ’(,U)(B('U,O,'UO) - B(’U(], U’O)) =0.

This implies, by (1.8)) and ([1.10f), that

(1.11) B(ug,w) = B(w, up) = 0.
Similarly, setting u = vg and v = wug in ((1.5)) tells us by (1.8) and ([1.10]) that
(1.12) B(vp,w) = B(w,vp) = 0.

By (1.11)), B(ug,vo + w) = B(ug, vp) and B(vy + w,ug) = B(vg, up). These are distinct by
(11.8), so (1.7) with u = vp + w and v = ug implies

B(vo + w,vp + w) = 0.
Then by (1.9) and (1.12), B(w,w) = 0. O
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The proof of Theorem did not assume finite-dimensionality and it used additivity
rather than linearity.
When 1 is a symmetric relation on V', for any subspace W of V' we set

(1.13) Wh={veV:vlwforalwe W}y={veV:wLlLvforalwecW}.

and call this the orthogonal space W=. (This is often called the orthogonal complement
of W in the literature, although it may not really look like a complement: it can happen
that W + W+ # V.) For nonzero v € V, let v- = {v/ € V : v/ L v}. In the notation
of (1.13), v+ = (Fv)*. The notation W+ for a subspace W of a bilinear space V' makes
sense only when V' is symmetric or alternating. (A third class of vector spaces where a
perpendicularity relation is symmetric is the Hermitian spaces, as in Example but
they are not bilinear spaces so Theorem doesn’t include them.)

When perpendicularity for a general bilinear form is a symmetric relation, it can still
have nonintuitive features compared with the dot product on R™. The main such feature
is v L v with v # 0. In the symmetric bilinear space of Example [1.9| we have (1,1) L (1,1).
It takes time to become accustomed to the idea that the condition v | v meed not force
v = 0. Using the dot product on R”, for any subspace W we have R" = W & W+, but such
a direct sum decomposition is not generally valid for subspaces of other bilinear spaces.
Returning to Example the subspace W = R(1,1) has W+ = W, so W + W+ # R2.

Here are two constructions of new bilinear spaces from old ones.

e Subspace: If (V, B) is a bilinear space and W is a subspace of V, then B restricts
to a bilinear form on W, so we get a bilinear subspace denoted (W, B|y) or simply
(W, B). (Strictly speaking, we should write Bl «w since B is a function of two
variables, but the more concise Bly shouldn’t cause confusion.) It is obvious that
if B is either symmetric, alternating, or skew-symmetric on V' then that property is
inherited by any subspace.

e Direct Sum: If (V1, B;) and (Va, By) are bilinear spaces over the same field then
V1®Va becomes a bilinear space using the bilinear form (B1®Ba)((v1, v2), (v, vh)) :=
B (v1,v]) + Ba(va,v5). This formula is not mysterious; the idea is to treat Vi and
V5 separately, just as the direct sum treats V; and Vs separately. In By @& B we pair
up the first components, then the second components, and add.

If By and Bs are both symmetric, both alternating, or both skew-symmetric then
B1 & Bs inherits this property.

Definition 1.18. The bilinear space (Vi @ Vi, By @ Bs) constructed above is called the
orthogonal direct sum of V1 and V5 and is denoted Vi L V5.

Example 1.19. Thinking about R as a bilinear space under multiplication (Example ,
R 1 R is R? with the dot product and the n-fold orthogonal direct sumR*» =R 1 --- L R
is R” with the dot product.

We embed V; into the orthogonal direct sum Vi L Vs in a natural way: v; — (v1,0).
Similarly we embed V5 into V4 L V5 by ve — (0, v2).

If V1 and V5 are subspaces of a bilinear space V then we write V7 L V5 as a relation if
v1 L vy for all v1 € V4 and vo € V5. This use of L as a relation on subspaces should not be
confused with the use of L in the construction of the orthogonal direct sum of two bilinear
spaces.

Theorem 1.20. Let (Vi, By) and (Va, Ba) be bilinear spaces. Viewing Vi and Va as sub-
spaces of V1 @ Va in the natural way, B1 ® By restricts to B; on V; and we have both Vi 1 Vo
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and Vo L V1 relative to By @ Bs. These conditions determine By ® By as a bilinear form
on Vi @ Vs.

Proof. Since (B; @ B2)((v1,0), (v],0)) = Bi(v1,v}), (B1 @ Ba)|y, = B;i. In a similar way,
(B1 @ Ba)|v, = Bo.
For v;1 € V7 and vy € VQ,

(Bl D Bg)((vl, 0), (0, Ug)) = Bl(’Ul, 0) + BQ(O,’UQ) =0

and
(Bl @ BQ)(([)’U?)? (Ulv 0)) = B1(07U1) + B2(U2a 0) =0.
Therefore v1 L vo and ve L v; in (V] & Vo, By @ Ba).
Let By be any bilinear form on V; @& V; such that Byly, = B; and Vi L Vo and Vo L V)
relative to By. Then

BO((U17U2)7 (Ullv Ué)) = BO((Ula 0)> (Ulla 0)) + BO((th)a (071/2)) +
Bo((0,v2), (v1,0)) + Bo((0,v2), (0, v3))
BO((Ulv 0)7 (Ulla 0)) + BO((()? UQ)? (07 1/2))
= Bi(v1,v]) + Ba(va,v5),
so By = B1 @ Bs. O

If a bilinear space V can be expressed as a direct sum of two subspaces W and W’ such
that W L W/ and W’ 1. W then Theorem shows V' behaves just like the orthogonal
direct sum of W and W’. Most decompositions of a bilinear space into a direct sum of
subspaces are not orthogonal direct sums since the subspaces may not be mutually perpen-
dicular. This is already familiar from R"”, which admits many decompositions into a direct
sum of linear subspaces that are not mutually perpendicular.

We end this section with a very important link between bilinear forms and the dual space.
For a bilinear form B on V, we can think about B(v,w) as a function of w with v fixed or
as a function of v with w fixed. Taking the first point of view, we think about the function
B(v,—) : V — F that sends each w to B(v,w). Since B is linear in its second component
when the first is fixed, w — B(v,w) is a linear map from V to F', so B(v,—) € V'V for each
v. Set Lg: V — VYV by Lg: v— B(v,—), so Lg(v) = B(v,—). The values of L are in V",
so they are functions on V' (with the unknown substituted into the empty slot of B(v, —)).
Since B B(v + v',w) = B(v,w) + B(v',w) for all w, B(v +¢',—) = B(v,—) + B(v/, —)
in V'V, which means Lg(v +v') = Lg(v) + Lg(v'). Similarly, since B(cv,w) = c¢B(v,w),
Lp(cv) = cLp(v). Thus Lp is linear, so any bilinear form B on V' gives a linear map Lp
from V to its dual space VV. Because Lg(v)(w) = (B(v,—))(w) = B(v,w), we can recover
B from Lp by evaluating Lp at any element v € V and then evaluating Lg(v) € V'V at any
w €V to get B(v,w).

Conversely, if we have a linear map L: V — V" then to each v € V we have L(v) € V'V, so
we get a bilinear form B(v, w) := L(v)(w) such that B(v,—) = L(v). These correspondences
from bilinear forms on V to linear maps V — V'V and back are inverses of one another.

In a similar way, from a bilinear form B we get functions B(—,w) € V" (sending v to
B(v,w)). Let Rg: V — V¥ by Rg: w — B(—,w), so Rg(w) = B(—,w). The map Rp
is linear from V to V'V, and passing from B to Rp is a second one-to-one correspondence
between bilinear forms on V' and linear maps V' — VV (Exercise .

These two ways of viewing a bilinear form B as a linear map V' — V'V (using Lg or Rp)
are related through double duality:
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Theorem 1.21. When V is finite-dimensional and B is a bilinear form on V, the linear
maps L and Rp are dual to each other. Specifically, if we dualize Lg: V — VV to
LY: VYWY — VY and identify V¥V with V in the natural way then L, = Rp. Similarly,
RV = Lp.

Proof. For a linear map L: V — W, the dual LY: WY — VV is defined by

LY () (v) = ¢(L(v))
for o € WY and v € V. Taking W = VV, L = Lg, and writing the elements of WV = VvV
as evaluation maps at elements in V,

Ly(evy)(v) = evy(Lp(v)) = evy (B(v, —)) = B(v,v') = Rp(v')(v).

Thus LY, = Rp when we identify VVY with V in the usual way. The proof that R}, = Lp
is similar, or dualize the equation L}, = Rp. O

There are two ways of identifying bilinear forms on V with linear maps V' — V" because
a bilinear form is a function of two variables in V' and we can take preference for one variable
over the other to get a linear map out of V. In Section |8 tensor products will be used to
interpret a bilinear form on V as a linear map without biasing Lg over Rp.

Exercises.

1. Let B be a bilinear form on V. Prove B is skew-symmetric if and only if the diagonal
function V' — F given by v — B(v,v) is additive.

2. Show any alternating bilinear form on R? is some B, as in Example

3. In Example show By is symmetric if and only if k(z,y) = k(y, x) for all z and
y. What condition on k£ makes Bj, alternating?

4. Define a bilinear form on a module over a commutative ring and check any alter-
nating bilinear form is skew-symmetric. Show the converse is true if there is no
2-torsion in the ring (22 = 0 = 2 = 0 for z in the ring).

5. Let Bil(V') be the set of all bilinear forms on V. It is a vector space under addition
and scaling. For a bilinear form B on V, show the correspondence B — Rp is
a vector space isomorphism from Bil(V) to Homp(V,V"V) (V need not be finite-
dimensional).

6. Let B be a bilinear form on V. Set V1 = {v € V :v L V} and V& = {v €
V :V L v} Since B(v,w + w') = B(v,w) when w' € V& Lp induces a linear
map V — (V/V+#)V. Show this linear map has kernel V£, so we get a linear
embedding V/V+t < (V/V1LR)V. Use this and the analogous argument with Rp
in place of Lp to show dim V+2 = dim V1# when V is finite-dimensional.

2. BILINEAR FORMS AND MATRICES

From now on, all vector spaces are understood to be finite-dimensional.

A linear transformation L: V — W between two finite-dimensional vector spaces over
F can be written as a matrix once we pick (ordered) bases for V and W. When V = W
and we use the same basis for the inputs and outputs of L then changing the basis leads to
a new matrix representation that is conjugate to the old matrix. In particular, the trace,
determinant, and (more generally) characteristic polynomial of a linear operator L: V — V
are well-defined, independent of the choice of basis. In this section we will see how bilinear
forms and related constructions can be described using matrices.
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We start with a concrete example. In addition to the dot product on R", additional
bilinear forms on R™ are obtained by throwing a matrix into one side of the dot product:
for an n x n real matrix M, the formula B(v,w) = v- Mw is a bilinear form on R". It turns
out this kind of construction describes all bilinear forms on any finite-dimensional vector
space, once we fix a basis.

Let V have dimension n > 1 with basis {ej,...,e,}. Pick v and w in V' and express
them in this basis: v = Y ;" | z;¢; and w = 2?21 y;jej. For any bilinear form B on V/, its
bilinearity gives

n n
B(v,w) = B inei,Zyjej
i=1 j=1
n n
= Z.’L‘ZB ei,Zyjej
i=1 j=1
n n
= Y ) zwyBleie;)

i=1 j=1

Set M := (B(e;,€j)), which is an n x n matrix. By a calculation the reader can carry out,
(2.1) B(v,w) = [v] - M[u]

for all v and w in V', where - on the right is the usual dot product on F™ and

i Y1

[v] = =1

Ln Yn
are the coordinate vectors of v and w for our choice of basis {eq,...,e,}. The “coordinate”
isomorphism [-]: V' — F™ will be understood to refer to a fixed choice of basis throughout

a given discussion.
We call the matrix M = (B(e;, e;)) appearing in (2.1)) the matriz associated to B in the
basis {e1,...,en}.

Example 2.1. The matrix associated to the dot product on F" in the standard basis of
F" is the identity matrix.

Example 2.2. In Example

v-a-()(4)()

It is easy to read off the matrix from the formula on the left: there are no xz’ or vy’ terms,
so the diagonal entries of the matrix are 0. Since zy’ has coefficient 1, the (1,2) entry of
the matrix is 1. The term 2’y = yz’ corresponds to the (2,1) entry (because it involves the
second of x and y and the first of 2’ and 3/, in that order), which must be the coefficient
—1.

Theorem 2.3. Let V be a vector space over F' of dimension n > 1. For a fized choice of
basis {e1,...,en} of V, which gives an isomorphism v — [v] from V to F™ by coordinati-
zation, each bilinear form on V' has the expression (2.1)) for a unique n x n matric M over
F.
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Proof. We have shown every bilinear form looks like ([2.1)) once we choose a basis. It remains
to verify uniqueness. Suppose B(v,w) = [v] - N]w] for some matrix N. Then B(e;, e;) =
[ei] - Ne;], which is the (i, j) entry of N, so N = (B(ej, €;)). O

Note the zero vector space has 1 bilinear form but no matrix. We will not be pedantic
about including the zero vector space in our discussion.

Example 2.4. Let V = R". Pick nonnegative integers p and ¢ such that p + ¢ = n. For
v=(z1,...,2,) and V' = (2},...,2},) in R", set

(0 )pq = LT+ A TPT, — Ty Ty — o — Ty,

= v- (IOP gq)v’.
This symmetric bilinear form is like the dot product, except the coefficients involve p plus
signs and n — p = ¢ minus signs. The dot product on R" is the special case (p,q) = (n,0).
Example is the special case (p,q) = (1, 1).

The space R™ with the bilinear form (-,-),, is denoted RP4. We call R a pseudo-
Fuclidean space when p and ¢ are both positive. Example is RMY. The example R'3
or R*! is called Minkowski space and arises in relativity theory. A pseudo-Euclidean
space is the same vector space as R", but its geometric structure (e.g., the notion of
perpendicularity) is different. The label Fuclidean space is actually not just another name
for R™ as a vector space, but it is the name for R" equipped with a specific bilinear form:
the dot product.

Bilinear forms are not linear maps, but we saw at the end of Section [1| that each bilinear
form B on V can be interpreted as a linear map V — V'V, in fact in two ways, as Lg and
Rp. The matrix of B turns out to be the same as the matrix of one of these linear maps!
Which one?

Theorem 2.5. If B is a bilinear form on V', the matriz for B in the basis {e1,...,en} of
V' equals the matriz of the linear map Rg: V — V'V with respect to the given basis of V and
its dual basis in V.

Proof. Let [-]: V' — F™ be the coordinate isomorphism coming from the basis in the theorem
and let []': V¥ — F™ be the coordinate isomorphism using the dual basis. The matrix for
Rp has columns [Rp(e1)],...,[Rp(en)]’. To compute the entries of the jth column, we
simply have to figure out how to write Rp(e;) as a linear combination of the dual basis
{eY,...,e)} of VV and use the coefficients that occur.

There is one expression for Rp(e;) in the dual basis:

Rp(ej) = crey + -+ +cpe,

in V'V, with unknown ¢;’s. To find ¢; we just evaluate both sides at e;: the left side is
(RB(ej))(e;) = (B(—,€j))(ei) = B(es,ej) and the right side is ¢; - 1 = ¢;. Therefore the
ith entry of the column vector [Rp(e;)]’ is B(e;, e;), which means the matrix for Rp is the
matrix (B(e;, e;)); they agree column-by-column. O

In terms of a commutative diagram, Theorem says

T v
(2:2) Hl lw
Jal (Bleise;)) o
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commutes: [Rp(v)]" = (B(e;,ej))[v] for all v in V.

Remark 2.6. That the matrix associated to B is the matrix of Rp rather than Lpg is
related to our convention that we view bilinear forms concretely using [v] - A[w] instead of
Alv] - [w]. If we adopted the latter convention then the matrix associated to B would equal
the matrix for Lpg.

Theorem 2.7. Let (V, B) be a bilinear space and let B have associated matriz M in some
basis. Then

(1) B is symmetric if and only if M = M,

(2) B is skew-symmetric if and only if MT = —M,

(3) B is alternating if and only if MT = —M and the diagonal entries of M are zero.

Matrices satisfying the conditions in (1), (2), and (3) are called symmmetric, skew-
symmetric, and alternating matrices respectively.

Proof. The matrix M represents the linear map Rp: V — V'V using the given basis of V
and its dual basis. Since Lg and Rpg are dual maps in the sense of Theorem the matrix
representing Lp in these same bases is M . Since B is symmetric precisely when Rg = Lp,
the matrix condition for B to be symmetric is M = M. Similarly, skew-symmetry of B
means Rp = —Lp, which becomes M = —M " in matrix language. The matrix condition
on an alternating form is left as an exercise. O

The correspondence in between bilinear forms and square matrices (once a basis is
chosen) behaves well for some natural operations with bilinear forms. For instance, given
bilinear forms B and B on V', we can talk about their sum B + E, a scalar multiple ¢B,
and the function with reversed arguments B,:

(B + B)(v,w) = B(v,w) + B(v,w), (cB)(v,w)=cB(v,w),
B, (v,w) = B(w,v).
These are all bilinear forms on V. If we fix a basis of V, so V is identified with F™ and each
bilinear form on V is identified with an n x n matrix by , the sum and scalar multiple
of bilinear forms corresponds to the sum and scalar multiple of the corresponding matrices.
Conceptually, this means Rp is linear in B. Since Lp, = Rp and Rp, = Lp, the matrix
associated to reversing the arguments is the transposed matrix.

Once we pick a basis of V, linear transformations V' — V and bilinear forms on V both
get described by square matrices. Addition and scaling of either linear transformations or
bilinear forms pass to addition and scaling of the corresponding matrices, and composition
of linear transformations passes to multiplication of the corresponding matrices. There
is no natural operation for bilinear forms on V that corresponds to multiplication of the
corresponding matrices. This makes sense from the viewpoint of Exercise[I.5} bilinear forms
on V can be viewed as linear maps V' — V'V, and these can’t naturally be composed.

When a linear transformation L: V' — V has matrix M in some basis, and C' is the
change-of-basis matrix expressing a new basis in terms of the old basis, then the matrix
for L in the new basis is C™'MC. Let’s recall two proofs of this and then adapt them to
compute the way a change of basis changes the matrix for a bilinear form.

The change-of-basis matrix C', whose columns express the coordinates of the second basis
in terms of the first basis, satisfies

(2.3) [v]1 = C[v]2
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for all v € V, where []; is the coordinate isomorphism of V' with F™ using the ith basis.
Indeed, both sides are linear in v, so it suffices to check this identity when v runs through
the second basis, which recovers the definition of C' by its columns. Since [Lv]; = M|v]; for
allveV,

[Lv], = C7YLv]
M)y
el
so we've proved the matrix for L in the second basis is C M C.

For a second proof, the identity can be expressed as the commutative diagram

= C
C ’U]g,

vy

(24) HQi lul

and the fact that M is the matrix for L in the first basis means
VL .oy

(2.5) Hli lul

commutes. To find the matrix for L in the second basis amounts to finding the linear map
for the bottom row that makes
vty

['hi J{[']z

commute. Only one map fits since the vertical maps in this diagram are isomorphisms, so
? =[]ao Lo[];!. But what is “?” concretely?

We can obtain such a commutative diagram as the boundary of the commutative diagram
with (2.5 in the middle and ([2.4)) on the two ends

vy oy Ly vy
Hzi Hll Hli Hzl
@ pn M _pn O pm

where the composite across the top is L, so ? = C~'MC (since composition is written right
to left).

Theorem 2.8. Let C be a change-of-basis matriz on V. A bilinear form on V with matriz
M in the first basis has matriz C' MC' in the second basis.

Proof. Let B be the bilinear form in the theorem. For a short matrix-based proof of this
theorem, start with (2.3). It tells uﬂ

B(v,w) = [v]; - M[w]; = C[v]y - MClw]y = [v]z - CT MC[w]a,

Un F", Ax -y =x- ATy for any A € M,,(F). Apply this with A = C.



BILINEAR FORMS 13

so the matrix for B in the second basis is C'"T MC.
Now we give a proof using commutative diagrams. By (2.2]), the matrix M for B occurs
in the commutative diagram

v pv
(2.6) [-]1l lua
M pn

where [-]] is the coordinate isomorphism using the dual basis to the first basis of V. Finding
the matrix for B in the second basis amounts to finding the matrix for the bottom row of
a commutative diagram

Rp

1% 1784
(2.7) Hzl l[']é
Fr_t _pn

where [-]} is the coordinate isomorphism for the dual basis of the second basis of V.
Dualizing the maps and spaces in (2.4) gives the commutative diagramﬂ

CT

" F"
(2:8) wl lwg
Vv idy v vV
and now we use Exercise for any coordinate isomorphism [|: V' — F™ for a basis of

V, the coordinate isomorphism [-]: V¥ — F™ for the dual basis of V'V is the inverse of the
dual map [-]V: F™ — VV (where F™ is identified with its dual space using the dot product).
Therefore reversing the direction of the vertical maps in (2.8 by using their inverses lets us

rewrite (2.8)) as

Vv idy v Vv

(2.9) Hal
Fm Fm

so our desired diagram ([2.7]) can be found by sticking (2.4) and (2.9) on either side of ([2.6)
and looking at the boundary:

oy ey Wy
['}2i [']1l [']ﬁl [']éi
oG _pn_ M _pn_CT _pn

The composite across the top is Rp and the composite along the bottom is C'TMC, so
CTMC is our desired matrix. ]

2When C: F" — F" is dualized and we think about (F™)Y as F™ using the dot product, the dual map
to C'is C'.
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Definition 2.9. Two bilinear forms B; and By on the respective vector spaces Vi and V3
are called equivalent if there is a vector space isomorphism A: Vi — V5 such that

Bsy(Av, Aw) = Bi(v,w)
for all v and w in Vj.

Equivalence of bilinear forms is an equivalence relation. Concretely, if we write everything
in coordinates so V; and Vs are replaced by F"™ (same n; otherwise there couldn’t possibly
be an equivalence of bilinear forms on the spaces), then Definition says: two bilinear
forms on F™ are equivalent when there is a linear change of variables turning one into the
other. In particular, when B; and By are symmetric bilinear forms on F™, so they are
determined by their diagonal values Bj(v,v) and Ba(v,v) (Theorem [1.8), By and Bj are
equivalent when there is a linear change of variables turning Bs(v,v) into Bj(v,v).

Example 2.10. On R?, let

B(v,w) =v-(§ %)w, E(an) :U'(1(/)2 162)w

Both of these are symmetric. For v = w = (z,y), we have B(v,v) = 22 — y* and B(v,v) =

xy. Since 22 — y? = (z + y)(x — y), we can pass from B to B by the linear change of
variables ' = z 4+ y and ¥ = x —y. Then B((z,v),(z,y)) = B((«/,vy),(2',y')). Since
(;) = (1)), Blv,v) = B((1 -1)v, (1 _1)v). Therefore B(v,w) = B((1 1 )v, (1 -1)w),
so B and B are equivalent by the matrix (1 _1).

In terms of commutative diagrams, By and By are equivalent when there is a vector space
isomorphism A: V; — V5 such that the diagram

R
Vi — sy
(2.10) Al T v
R
Vo — 25V

commutes. (Verify!)

We saw in Theorem that matrix representations M; and Ms of a single bilinear form
in two different bases are related by the rule My = CT M, C for an invertible matrix C.
Let’s show this rule more generally links matrix representations of equivalent bilinear forms
on possibly different vector spaces.

Theorem 2.11. Let bilinear forms B1 and Bs on Vi and Vy have respective matriz represen-
tations My and My in two bases. Then Bi is equivalent to By if and only if My = CTMyC
for some invertible matrixz C.

Proof. The equivalence of By and By means, by , there is an isomorphism A: V; — V5
such that AYRp, A = Rp,. Using the bases on V; (i = 1,2) in which B; is represented by M;
and the dual bases on VY, this equation is equivalent to C'T M,C = M, where C represents
A. (Invertibility of C' is equivalent to A being an isomorphism.) O

Example 2.12. Returning to Example[2.10, (§ %) = CT( 1/02 1/02 YO for C = (1 1).
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Although all matrix representations of a linear transformation V' — V have the same de-
terminant (det(C~1MC) = det M), the matrix representations of a bilinear form on V have
the same determinant only up to a nonzero square factor: det(C'" MC) = (det C)? det M.
Since equivalent bilinear forms can be represented by the same matrix using suitable bases,
the determinants of any matrix representations for two equivalent bilinear forms must dif-
fer by a nonzero square factor. This provides a sufficient (although far from necessary)
condition to show two bilinear forms are inequivalent.

Example 2.13. Let d be a squarefree positive integer. On Q2, the bilinear form By (v, w) =
v - (6 g)w has a matrix with determinant d, so different (squarefree) d’s give inequivalent
bilinear forms on Q2. As bilinear forms on R?, however, these By’s are equivalent: (}9) =
CTI,C for C = ((1) 0 7). Another way of putting this is that, relative to coordinates in the
basis {(1,0),(0,1/v/d)} of R?, By looks like the dot product Bj.

Example 2.14. When ¢ is positive and even, (-, ), , and the dot product on R?*? both are
represented by matrices with determinant 1, but they are not equivalent: the dot product
takes only nonnegative values at diagonal pairs (v,v) while (-, -), , assumes some negative
values on the diagonal when ¢ > 0. We will see in Section [0] that all the bilinear forms
(-,*)p,q (With p + ¢ fixed) are inequivalent for different pairs (p, q).

Exercises.

1. Compute the matrix associated to the bilinear forms in Examples
and relative to the standard basis of column vectors.

2. Forv € R?, let L,: R® = R? by L,(w) = v x w. Set B(v,w) = Tr(L,Ly). Show B
is a symmetric bilinear form on R? and compute its matrix relative to the standard
basis of R3.

3. Forz,y € F, (;)((1) 8)(;) = 22 and (z) (1 (1))(;) = 22, Why doesn’t this contradict
Theorem 2.3

4. Complete the proof of Theorem

5. Show a matrix representation for the trace form on Ma(F') (Example has
determinant —1.

6. When V has dimension n, the vector space Bil(V') of all bilinear forms on V' also
has dimension n? (Exercise . What are the dimensions of the two subspaces of
symmetric and alternating bilinear forms?

7. Let V be n-dimensional over F. Given a basis of V, let [-]: V' — F™ be the corre-
sponding coordinate isomorphism and let [-]': VY — F™ be the coordinate isomor-
phism coming from the dual basis on V'V. When we identify F™ with its dual space
using the dot product (that is, view elements of (F™)" as the maps “dot with a fixed
vector”), show the dual map [-]V: F"™ — V"V is the inverse of [-]'.

8. Let m > 4 be even and B(v,w) = v - (Ti/f m1/2 Jw for v,w € (Z/(m))?. Viewing

(Z/(m))? as a Z/(m)-module, show B is a bilinear form that is skew-symmetric but
not symmetric or alternating. Where does the argument break down if m = 27

3. NONDEGENERATE BILINEAR FORMS

Bilinear forms are represented by matrices, but there isn’t a natural operation on bilinear
forms that corresponds to multiplication of those matrices. However, there is a condition
on a bilinear form that corresponds to invertibility of its matrix representations.
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Theorem 3.1. Let (V, B) be a bilinear space. The following conditions are equivalent:
(1) for some basis {e1,...,en} of V, the matriz (B(e;, e;)) is invertible,
(2) if B(v,v") =0 for allv' € V then v = 0, or equivalently if v # 0 then B(v,v') # 0
for some v’ € V,
(3) every element of VV has the form B(v,—) for somev € V,
(4) every element of V'V has the form B(v,—) for a unique v € V.

When this occurs, every matriz representation for B is invertible.

Proof. The matrix (B(e;, ej)) is a matrix representation of the linear map Rp: V — V" by
Theorem So condition (1) says Rp is an isomorphism.

The functions B(v,—) in V'V are the values of Lg: V — VY, so condition (2) says
Lp: V — VV is injective. Condition (3) says Lp is surjective and (4) says Lpg is an
isomorphism. Since Lp is a linear map between vector spaces of the same dimension,
injectivity, surjectivity, and isomorphy are equivalent properties. So (2), (3), and (4) are
equivalent. Since Lp and Rp are dual to each other (Theorem [I.21), (1) and (4) are
equivalent.

Different matrix representations M and M’ of a bilinear form are related by M’ = CTMC
for some invertible matrix C, so if one matrix representation is invertible then so are the
others. O

The key point of Theorem is that V' parametrizes its own dual space by the functions
B(v, —) exactly when a matrix for B is invertible. When this happens, each element of the
dual space is also described as B(—,v) for a some v, necessarily unique, by interchanging
the roles of Lg and Rp in the proof of Theorem

Definition 3.2. Let (V, B) be a nonzero bilinear space. We call V' or B nondegenerate if
the equivalent conditions in Theorem [3.1 hold. A bilinear space or bilinear form that is not
nondegenerate is called degenerate.

A bilinear form on V is essentially the same thing as a linear map V' — V'V (Exercise
, so a choice of a nondegenerate bilinear form on V is really the same thing as a choice
of an isomorphism V' — VV. Since V 2 VY when V = {0}, for completeness the zero vector
space with its only (zero) bilinear form is considered to be nondegenerate although there is
no matrix.

Example 3.3. The dot product on R" is nondegenerate: if v-w = 0 for all w € R",
then in particular v -v = 0, so v = 0. (Alternatively, the matrix representation for the dot
product in the standard basis is I,, which is invertible.) Thus each element of (R™)" has
the form @(w) = v - w for a unique v € R"™; the elements of (R™)" are just dotting with a
fixed vector.

Example 3.4. The symmetric bilinear form (-,-),, that defines R”¢ (Example [2.4)) is
nondegenerate: for nonzero v = (cy,...,¢,) in R”?, it may happen that (v,v),, = 0, but

certainly some coordinate ¢; is nonzero, so (v, €;)pq = £¢; # 0 for that i. Alternatively, the

matrix for (-,-),, in the standard basis is M = IO” _(I)q), which is invertible. Thus each

© € (RP1)Y looks like p(w) = (v, w)p 4 for a unique v € RP4.

Letting n = p + ¢, RPY equals R" as vector spaces, so their dual spaces are the same.
How can we reconcile the description of the dual space of R?? using (-, -), 4 above and the
dual space of R" using the dot product from Example Well, (v,w)pq = v - Mw, with
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M symmetric and M = M ~!. Therefore the dual space of R?? = R" using (-, ), , and the
dot product match up as follows:

<1), _>P7q =Mv- (_)7 O (_) = <MU7 _>p7Q‘

Example 3.5. Example is nondegenerate: pairing a nonzero vector with at least one
of (1,0) or (0,1) will give a nonzero result. Alternatively, this bilinear form is represented
by an invertible matrix.

Example 3.6. The alternating bilinear form on V & V" in Example is nondegenerate.
Assume (v, ) € (V@ VV)L, so ¢(v) = o(w) for all w € V and 1 € VV. Taking for ¢ the
zero dual vector, p(w) = 0 for all w, so ¢ = 0. Therefore ¥(v) =0 for all » € V'V, so v = 0.

Example 3.7. Let’s see a degenerate bilinear form. On R? set B(v,w) = v - (§§)w.
In coordinates, B((z,y), (2',y)) = za’. This is degenerate since the matrix () is not
invertible. We have (0,1) L w for all w. The matrix representing B is not invertible.

Remark 3.8. On a real vector space, a bilinear form B is called positive definite if B(v,v) >
0 for every v # 0. The dot product on R" is positive definite. A positive-definite bilinear
form B is nondegenerate since a vector v is zero if B(v,v) = 0. The idea behind non-
degeneracy, as a generalization of positive definiteness, is that v = 0 if B(v,w) = 0 for all
w, not just if B(v,v) = 0. Equivalently, to show v # 0 check B(v,w) # 0 for some w that
need not be v itself (perhaps B(v,v) =0 but B(v,w) # 0 for some w).

Positive-definite symmetric bilinear forms play an important role in analysis (real Hilbert
spaces) and geometry (Riemannian manifolds). For geometers, the impetus to explore the
consequences of weakening positive definitness to nondegeneracy came from physics, where
the local model spaces in relativity theory are pseudo-Euclidean (Example ; they carry
a symmetric bilinear form that is not positive definite but is nondegenerate. Real vector
spaces equipped with a nondegenerate alternating bilinear form are the local models for
phase spaces in Hamiltonian mechanics.

Example 3.9. Let g be a finite-dimensional Lie algebra over F' and for each z € g set
ad(xz) = [z,—] on g, i.e., ad(z)(y) = [z,y]. The symmetric bilinear form on g defined by
B(z,2') = Tr(ad(z)ad(z')) is called the Killing form of g. If F' has characteristic 0, g is
semisimple if and only if its Killing form is nondegenerate.

Example 3.10. Although R?! is nondegenerate, the plane spanned by v; = (1,0,1) and
vy = (0,1,0) inside R?! is degenerate (that is, the restriction of (-,-)21 to this plane is
degenerate) since v1 L vy and v; L vg. There are vectors in R2! that are not perpendicular
to v1, such as (1,0,0), but such vectors don’t lie in the plane of v; and vs.

Example [3.10] is good to remember: a nondegenerate bilinear form on a vector space
might restrict to a degenerate bilinear form on a subspace! Such behavior is impossible if
F =R and B is positive definite (Remark [3.8): when B(v,v) > 0 for all nonzero v € V,
this property remains true on any nonzero subspace W C V, so the restriction By is also
positive definite and thus is also nondegenerate.

Theorem 3.11. Let V be a bilinear space that is either symmetric or alternating and let
W be a subspace of V.
(1) The following are equivalent:

o W is nondegenerate,
o WNW+ = {0},
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e V=WaoWwt,
(2) For nondegenerate V, dim W 4 dim W+ = dimV and (W+)+ =W.

In particular, if V' is nondegenerate then a subspace W is nondegenerate if and only if
W+ is nondegenerate.

Part (1) characterizes the subspaces of a symmetric or alternating bilinear space that are
nondegenerate: they are exactly the subspaces that are complementary to their orthogonal
space in the sense of linear algebra. The validity of this theorem for W = {0} is a reason
for declaring the zero space to be nondegenerate.

Proof. Let B be the given bilinear form on V.

(1) Suppose B is nondegenerate on W. This is equivalent to saying no nonzero element
of W lies in W, or equivalently W N W+ = {0}.

Trivially if V = W @ W+ then W N W+ = {0}. Now assume W N W+ = {0}. We will
show V = W 4+ W, the directness of the sum is immediate since the subspaces intersect
in {0}.

Since W N W+ is the kernel of the linear map W — WV given by w + B(w, —)|w, this
map is an isomorphism: every element of WV has the form B(w,—)|w for some w € W.
To show each v € V is a sum of elements of w € W and w’ € W+, think about B(v, —)|w.
It has the form B(w,—)|w for a w € W. Then B(v,w') = B(w,w’) for all w' € W, so
B(v —w,w') =0 for all w'. Thus v —w € W+, so v € W + W+ and we're done.

(2) Consider how elements of v pair with elements in . This amounts to looking at
the map v — B(v, —)|w, which is the composite of Lg: V — VV with the restriction map
VY — WV. The first is an isomorphism (since V' is nondegenerate) and the second is onto
(why?), so the composite is onto. The kernel of the composite is W+, so V/W+ = WV,
Taking the dimension of both sides, dimV — dim W+ = dim W = dim W'.

Easily W C (W)+; since their dimensions are equal, the spaces coincide. Since (W) =
W for nondegenerate V', the condition on W being nondegenerate is symmetric in the roles
of W and W+, so W is nondegenerate if and only if W is. O

Example 3.12. We continue with Example Let W be the plane in R%>! spanned by
(1,0,1) and (0,1,0). Since (-, )21 is nondegenerate on R*!, dim W + dim W+ = 3, so Wt
is one-dimensional. A direct calculation shows W+ = R(1,0,1). Since W+ c W, R>! is

not the (direct) sum of W and W+, which is consistent with W being a degenerate subspace
of R*!.

Example 3.13. We look at the symmetric bilinear space (R?, B) in Example which
is degenerate. Let W = R(1,0). This subspace is nondegenerate, so R?> = W @ W,
Indeed, W+ = R(0,1). However, since the whole space is degenerate we need not have
(W)t =W, and in fact (W+)+ = R2. Thus W is nondegenerate but W+ is degenerate.

Remark 3.14. Do not confuse the conditions V = W@ W+ and dim W+ = dim V —dim W.
The first implies the second, but the converse is false: W and W+ can overlap nontrivially
while their dimensions are still complementary. See Example By Theorem when
V is symmetric or alternating we have dim W+ = dimV — dim W if V is nondegenerate
and W is an arbitrary subspace or if V is arbitrary and W is a nondegenerate subspace.

Theorem 3.15. Let (V, B) be nondegenerate.
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(1) Every hyperplanﬁ in V' has the form {w:v L w} for some v # 0 and {w : w L v'}
for some v’ # 0.

(2) If B(v,w) = B(v,w') for allv €V then w =w'.

(3) If A and A’ are linear maps V.— V and B(v, Aw) = B(v, A'w) for all v and w in
V then A= A"

(4) Every bilinear form on V looks like B(v, Aw) for some linear map A: V — V.

Proof. (1) Let H C V be a hyperplane. The quotient space V/H has dimension 1, so
it is (noncanonically) isomorphic to F. Pick an isomorphism V/H = F. The composite
V — V/H = F is a nonzero linear map to F', with kernel H, so H = ker ¢ for some nonzero
@ € VV. (This has nothing to do with bilinear forms: hyperplanes in V always are kernels
of nonzero elements of the dual space of V; the converse is true as well.) Since (V, B) is
nondegenerate, ¢ = B(v, —) for some nonzero v and ¢ = B(—,v’) for some nonzero v’, so
H={w:B(w,w) =0} ={w: B(w,v") =0}.

(2) The hypothesis of (2) says Rp(w) = Rp(w’), so w = w' since Rp is an isomorphism.

(3) By (2), Aw = A'w for all w, so A =A'.

(4) When A: V — V is linear, let p4: V XV — F by pa(v,w) = B(v, Aw). Then @4 is
a bilinear form on V. The correspondence A — ¢4 is a map from Endr(V, V) to the space
Bil(V) of all bilinear forms on V' (Exercise, and it is linear. (That is, pa1 47 = wa+par
and p.q4 = cpa.) Part (2) says A — ¢4 is injective. Since Endp(V, V) and Bil(V') have the
same dimension, this correspondence is an isomorphism. ]

Concerning the second property in Theorem if B(v,w) = B(v,w') for just one v we
can’t conclude w = w’, even in R"™ with the dot product.

Although all bilinear forms have the form B(v, Aw), we can certainly write down bilinear
forms in other ways, such as B(Av,w). Theorem says this bilinear form can be written
as B(v, A*w) for some linear map A*: V — V.

Definition 3.16. When (V, B) is nondegenerate and A: V' — V is linear, the unique linear
map A*: V — V satisfying

(3.1) B(Av,w) = B(v, A*w)
for all v and w in V is called the adjoint of A relative to B.

Example 3.17. On F", let B(v,w) = v-w. For A € M,(F), Av-w = v-ATw for all v and
w in F™, so the adjoint of A relative to the dot product is the transpose of A. This close
relation between the dot product and transpose is one of the reasons that the transpose is
important, especially when F' = R.
Example 3.18. On R?, let B(v,w) =v - (§ % )w. Let A= (2Y), viewed as a linear map
R? — R?. We want to work out the map A*: R?> — R?. For v = (;) and w = (Z:) in R?,
B(Av,w) = 3(azx +by)x’ — 2(cx + dy)y’
= 3aza’ + 3ba'y — 2cxy’ — 2dyy’.

Writing A* = (% %),

B(v, A*w) = 3x(a*z’ +b*y) — 2y(c*s’ + d*y')

= 3a*za’ — 2c"2'y + 3b*xy — 2dyy'.

3A hyperplane is a subspace with dimension n — 1, where n = dim V; they are the natural complements
to linear subspaces.
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Coefficients must match in the two formulas for B(Av,w) and B(v, A*w), since bilinear
forms have the same matrix, so a* = a, bx = —(2/3)c, ¢* = —(3/2)b, and d* = d: (¢ 4)* =

(—(3?2)b 7(223)6). Notice (¢ %)* has the same trace and determinant as (¢Y).

Let’s see how to compute the matrix of the adjoint of a linear map for abstract vector
spaces when bases are chosen. The formula will show that the adjoint on Endp(V, V) and
transpose on M, (F') are closely related.

Theorem 3.19. Let A: V — V be linear. Fiz a basis of V. In terms of this basis, let
[A], [A*], and M be the matrices for A, A*, and B. Then

[A*] = M~ Al T M.
Proof. We will give two proofs.

For a matrix-algebra proof, the choice of basis on V' gives an isomorphism [-]: V' — F™.
Let’s write both sides of (3.1]) in matrix form relative to the chosen basis. The left side is

[Av] - M[w] = [A][v] - M[w] = [v] - [A]T Mw]
and the right side is
[v] - M[A*w] = [v] - M[A™][w].
Since this holds for all v and w,
[A]"M = M[A"],

which is equivalent to the desired formula since M is invertible.

For a different proof, we use the fact that M is the matrix for Rp (Theorem . Since
RpA* = AVRp (Exercise , A* = R;AVRB as linear maps from V to V. Passing to
matrix representations, [A*] = M~1[A]T M. O

We will put the construction of the adjoint to work to answer an interesting question:
when (V, B) is a nondegenerate bilinear space, we want to describe the linear maps A: V' —
V' that preserve orthogonality for B:

(3.2) vlw=— Av 1L Aw.

(We are not requiring <= in , but only that A carries orthogonal vectors to orthogonal
vectors.) For instance, if B(Av, Aw) = B(v,w) for all v and w (that is, if A “preserves” B)
then holds. But can take place under more general circumstances: if there is a
scalar ¢ € F such that B(Av, Aw) = ¢B(v,w) for all v and w then still holds. It turns
out that this sufficient condition for is also necessary when B is nondegenerate.

Theorem 3.20. Let (V, B) be nondegenerate. For a linear transformation A: V. — V, the
following properties are equivalent:

(1) v Lw= Av L Aw for allv and w in V,
(2) there is a constant ¢ € F such that B(Av, Aw) = ¢B(v,w) for all v and w in V.
(3) there is a constant ¢ € F such that A*A = cidy .

The heart of the proof of Theorem [3.20] is the following lemma from linear algebra that
characterizes scaling transformations geometrically (and has nothing to do with bilinear
forms).

Lemma 3.21. If V is finite-dimensional over F and a linear transformation L:V — V
carries every linear subspace into itself then L is a scaling transformation: Lv = cv for
some ¢ € F and all v € V. The same conclusion holds if L carries every hyperplane into
itself.
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Another way of describing the first part of the lemma is that the only linear map that
has all (nonzero) vectors as eigenvectors is a scaling transformation. The application to
Theorem [3.20] will use the hyperplane case of the lemma.

Proof. For each nonzero v € V, L carries the line Fv into itself, so Lv = c,v for some
¢y € F. We want to show all the constants ¢, (v # 0) are the same. Then calling this
common value ¢ gives us Lv = cv for all v # 0 and this is trivially also true at v = 0, so
we’d be done with the linear subspace case of the theorem.

Pick any nonzero v and v’ in V. If v and v’ are linearly dependent then v = av’ for some
a € F*. Applying L to both sides,

cyv = L(v) = L(av) = aL(v) = acyv' = cyv,

S0 ¢, = ¢y. If v and v’ are linearly independent, then we consider the constants associated
to v, v', and v +v'. Since L(v +v') = Lv + L/,

/ /
Cotr (V+ V) = cuu + et

By linear independence of v and v/, ¢, = ¢, and ¢, = ¢y, SO ¢, = ¢,y again.

Now we turn to the hyperplane case: assume L(H) C H for every hyperplane H C V.
We are going to convert this condition about L on hyperplanes in V into a condition about
the dual map LY: VYV — VV on linear subspaces of V'V, to which the first case can be
applied.

Pick a linear subspace of V'V, say Fy for some nonzero ¢ € VV. Then H := ker is
a hyperplane in V', so by hypothesis L(H) C H. That is, if ¢(v) = 0 then ¢(L(v)) = 0.
(Verify!) Since ¢ o L = LY (), we obtain that if ¢(v) = 0 then (LY (¢))(v) = 0, so ker p C
ker LY (¢). Since H = ker ¢ has dimension n — 1 (let n = dim V'), either ker LV (p) = H or
ker LV(¢) = V. If ker LY(p) = H then LY(yp) and ¢ have the same kernel, so they both
induce isomorphisms V/H — F. An isomorphism between two one-dimensional vector
spaces is multiplication by a nonzero constant, so there is some constant c, € F'* such
that LY(p) = ¢y as functions on V/H and thus also as functions pulled back to V itself.
That shows LY(¢) € Fp. On the other hand, if ker LY(p) = V then LY(yp) is the zero
functional and then we certainly have LY (p) € F¢. Either way, LV carries every nonzero
element of V'V to a scalar multiple of itself (perhaps the zero multiple), so LY carries all
linear subspaces of V'V back to themselves.

Apply the first part of the lemma to the vector space V'V and the linear map LV: there
is some ¢ € F such that LY(p) = cp for all ¢ € VV. Applying both sides to any v € V, we
get (L(v)) = cp(v) = (cv) for all ¢ € VV. Two vectors at which all elements of the dual
space are equal must themselves be equal, so L(v) = cv. We have shown this for all v € V|
so L = cidy. ]

Now we prove Theorem [3.20)

Proof. Trivially (2) implies (1). To show (1) implies (2), (1) tells us that if B(v, w) = 0 then
B(Av, Aw) = 0, so B(v, A*Aw) = 0. When v # 0, {w : v L w} is a hyperplane in V' and
A* A carries this hyperplane back to itself. Every hyperplane in V' has the form {w : v L w}
for some nonzero v (Theorem [3.15(1)), so A*A carries every hyperplane of V into itself.
Therefore A*A = cidy for some ¢ € F' by Lemma [3.21

To show (2) and (3) are equivalent, the condition B(Av, Aw) = ¢B(v,w) for all v and
w is the same as B(v, A*Aw) = B(v, cw), which is equivalent to A*A = cidy by Theorem
3.15(3). 0
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Example 3.22. Let B(v,w) = v - (3 _%)w on R% Theorem says that a matrix (¢5%)
preserves B-orthogonality exactly when it affects B-values by a universal scaling factor. We
will find such a matrix, which will amount to solving a system of equations.

We found in Example [3.18| that (Z Z)* — (7(3?2)1) *(2{{3)0)’ ©

a b\ (a b\ a?—(2/3)c?  ab—(2/3)cd
( c d ) < c d > N < —(3/2)ab+cd —(3/2)b* + d? >
The product is a scalar diagonal matrix when ab = (2/3)ed and a® — (2/3)c? = d? — (3/2)b°.
Take b = 2 and ¢ = 3 (to avoid denominators), so our conditions reduce to a = d. Therefore
A= (%2), with A*A = (a® — 6)Io. Let a = 4, just to fix ideas, so A = (43) satisfies
B(Av, Aw) = 10B (v, w).

Although A* satisfies many properties of the transpose (Exercise [3.19)), there is an impor-
tant distinction: while (AT)T = A, sometimes A** # A. Let’s see why. Applying Theorem

[B-19] twice,

(A% = MM T[A|(M )M,
so A** = A for all A only when MM T is a nonzero scalar matrix. (Abstractly, this means
RE;IL B is a nonzero scaling transformation.) Right away we see that in the most important

cases of symmetric or alternating bilinear forms, where M = +M, we do have A** = A,
but in other cases it need not happen. (An example is in Exercise )

The conceptual reason that A** might not equal A is that the definition of the adjoint
had a built-in bias: it is defined to satisfy B(Av,w) = B(v, A*w) for all v and w rather than
B(v, Aw) = B(A*v,w) for all v and w. The second equation would define another adjoint
for A, just as L and Rp are alternate isomorphisms of V with VV. See Exercise

Table [I] collects several constructions we have met.

Coordinate-free Matrix Version
Bilinear form B B(v,w) = [v] - M[w]
Change of basis M~ CTMC
B is symmetric M'=M
B is skew-symmetric MT=-M
B is alternating MT" = —M, diagonals = 0
B is nondegenerate M is invertible
A* M= AT M

TABLE 1. Abstract and Concrete Viewpoints

Exercises.

1. In R?2, let W be the plane spanned by (1,0,0,0) and (0,0,1,0). Compute W+. Is
W a degenerate subspace?

2. Let (V, B) be a bilinear space with B not identically zero. If B is symmetric show
V has a one-dimensional nondegenerate subspace. If B is alternating show V has a
two-dimensional nondegenerate subspace.

3. Let (V, B) be symmetric or alternating. Show B induces a nondegenerate bilinear
form on V/V+. Writing V = V+ @ W for any subspace W that is complementary
to V+, show W is nondegenerate.



10.

11.

12.

13.

14.

15.

16.
17.

18.
19.
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A 2-dimensional symmetric or alternating bilinear space is called a hyperbolic plane
if it has a basis {v, w} such that v L v, w L w, and B(v,w) =1 (so B(w,v) = £1).
A pair of vectors with these three properties is called a hyperbolic pair. If V is a
nondegenerate symmetric or alternating bilinear space and vg L vg for some nonzero
vg in V, show every nondegenerate plane in V' containing vy is a hyperbolic plane
with vy as one member of a hyperbolic pair except perhaps if F' has characteristic
2 and B is symmetric but not alternating.

. When F has characteristic 2 and B(v,w) = v - (1 })w for v,w € F?, show (0,1) L

(0,1) but there is no hyperbolic pair in F2. Therefore the exceptional case in the
previous exercise does occur.

. Check that the reasoning in Example [3.4] shows the dot product on every F" is

nondegenerate. Why doesn’t the argument in Example [3.3] show this?
Does the first result in Theorem characterize nondegeneracy? That is, if each
hyperplane in V has the form {w : v L w} for some v # 0, is V nondegenerate?

. Show B in Exercise is nondegenerate if and only if 4|m. (What should nonde-

generate mean?)

. Fix a nondegenerate bilinear form B on V. For a linear map A: V — V, show the

bilinear form on V' given by (v, w) — B(v, Aw) is nondegenerate if and only if A is
invertible.

If V1 and V5 are bilinear spaces, show their orthogonal direct sum Vi L V5 is non-
degenerate if and only if V; and V5 are nondegenerate.

Suppose V' is symmetric or alternating, and nondegenerate. For any subspaces W
and W5, show

(W1 + W)t =Winwss,  (WinWe)t = Wi + Wit

Show a subspace W is nondegenerate if and only if V.= W + W+,

Let V' be symmetric or alternating, and W be a subspace of V' such that dim W +

dim W+ = dim V. If U is a subspace of V such that U+ W =V and U C W+,

show U = W+,

For a subspace W C V, where dimV is finite, set W' = {p € VV : p(w) =

0 for all w € W}. Show dim W + dim W’ = dim V.

Let (V, B) be nondegenerate, but not necessarily symmetric or alternating. For any

subspace W of V,set Wt ={v € V:v L W}and Wtr = {v € V: W L v}. Show

WL and W& both have dimension dim V' — dim W and Wtetr = Wiele — W,

A bilinear map B: V x W — F is called perfect if the induced linear maps V — WV

given by v — B(v,—), and W — V" given by w + B(—,w), are isomorphisms. For

example, the natural evaluation pairing V x V¥ — F where (v, p) — ¢(v) is perfect,

and a bilinear form B: V x V — F is perfect exactly when it is nondegenerate.
For a subspace U C V., set Ut = {w € W : B(U,w) = {0}}. f B: V. xW — F is

perfect, show the map U x (W/U*) — F defined by (u,w) = B(u,w) is well-defined

and perfect.

Use Theorem to recompute the adjoint in Example [3.18]

On RY, show (¢ %)* = (_7 %) using Theorem Relative to the bilinear form

on R? from Example show (¢ b)* = (_472).

Let B(v,w) =v-(}2)w on R% In (R?, B), show (1) # (91).

With A ~» A* defined as in , verify the following.

(1) (A1 + A9)* = AT + A3 and (cA)* = cA*,
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2) idy, = idy,

3) (A1A2)" = A5 A7,

4) (A)~t = (A~H*if A € GL(V),

5) det A* = det A, TrA* = Tr A, and A and A* have the same characteristic

polynomial.

20. Let n =dim V' > 2 and fix an integer d from 1 ton—1. If L: V' — V is a linear map
carrying every d-dimensional subspace to itself show L is a scaling transformation.
(Hint: Show by induction on the subspace dimension that L sends every hyperplane
of V to itself, so Theorem applies.)

21. When (V, B) is nondegenerate and A: V — V is linear, define an adjoint AT: V — V/
by B(v,A(-)) = B(Afv,—) in VV: B(v, Aw) = B(Atv,w) for all v and w in V.
When B is represented by the matrix M in some basis, what is the matrix for Af
in this basis?

22. Let (V, B) be nondegenerate. The bilinear form B gives us two ways of identifying
V with VV: Lp(v) = B(v,—) and Rg(v) = B(—,v).

For a linear map A: V — V, the dual map AY: VV — VV does not depend on
B, while A* does. Show A* fits into the following commutative diagram, where the
columns are isomorphisms (depending on B).

v ALy

o |

VV i>vv
What is the corresponding commutative diagram connecting AY and AT in the
previous exercise?

23. Redo the material on adjoints in this section so it applies to linear maps between
different nondegenerate bilinear spaces. If A: Vi — V5 is linear then the adjoint
should be a map A*: Vo — V;. In particular, rework the previous exercise (and its
application to Theorem [3.19)) in this setting.

4. ORTHOGONAL BASES

Part of the geometric structure of R™ is captured by the phrase “orthogonal basis.” This
is a basis of mutually perpendicular vectors, and the lines through these vectors provide an
orthogonal set of axes for R™. Let’s generalize this idea.

Fiz for this section a symmetric bilinear space (V, B).

Definition 4.1. A basis {e1,...,e,} of V is orthogonal when e; L e; = 0 for i # j.

Our convention in the one-dimensional case, where there aren’t basis pairs {e;, e;} with
i # j to compare, is that any basis is orthogonal. The zero bilinear space has no orthogonal
basis (its basis is empty).

Example 4.2. On R?, let B(v,w) = v- (3 9)w. The basis {(1,0), (0,1)} is orthogonal with
respect to B.

Example 4.3. On R?, let B(v,w) = v - ({})w. The basis {(1,0),(0,1)} is not orthogo-
nal: B((1,0),(0,1)) = 1. In fact, there is no orthogonal basis containing (1,0) since the
only vectors orthogonal to (1,0) are scalar multiples of (1,0). (We will understand this
phenomenon better in Remark [£.9]) An orthogonal basis for B is {(1,1), (1,—1)}.
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Example 4.4. When B is identically zero, any basis of V is an orthogonal basis.

Geometrically, an orthogonal basis of V gives a decomposition of V into an orthogonal
direct sum of lines: V. =W; L Wy L --- L W,,, where W; = Fe;.

While Euclidean space has the more refined notion of an orthonormal basis, we will find
essentially no use for this idea. The reason is that it usually doesn’t exist! An orthonormal
basis should be an orthogonal basis {ej,...,e,} in which B(e;, e;) = 1 for all i. But there is
no orthonormal basis in Exampleusing Q? in place of R? since the equation 222 +3y% = 1
has no rational solutions (Exercise 4.7)).

The matrix representing a bilinear form in an orthogonal basis is diagonal, and thus is
a symmetric matrix. This is why we only defined orthogonal bases for symmetric bilinear
spaces. Our basic task in this section is to prove any symmetric bilinear space (degenerate
or nondegenerate) admits an orthogonal basis provided the scalar field F' does not have
characteristic 2. In characteristic 2 we will see there are problems.

Lemma 4.5. If B is not identically zero and the characteristic of F' is not 2 then B(v,v) # 0
for some v e V.

Proof. See Theorem for one proof. For another proof, let’s show the contrapositive. If
B(v,v) = 0 for all v then B is alternating, or equivalently (since we are not in characteristic
2) skew-symmetric. The only bilinear form that is both symmetric and skew-symmetric
outside of characteristic 2 is identically zero. O

Lemma 4.6. Let v € V satisfy B(v,v) # 0. Then V = Fv L vt. If V is nondegenerate
then the subspace v+ is nondegenerate.

Notice this is valid in characteristic 2.

Proof. Since B is nondegenerate on the subspace F'v, this lemma is a consequence of The-
orem but we give a self-contained proof anyway.

Since B(v,v) # 0, every element of F' is a scalar multiple of B(v,v). For v/ € V, let
B(v',v) = eB(v,v) for ¢ € F. Then B(v' — cv,v) = 0, so v/ — cv € v*. Therefore the
equation

v =cv+ (V=)

shows V = Fv+uvt. Since v € v (because B(v,v) # 0), we have Funovt = {0}. Therefore
V = Fv @ vt. This direct sum is an orthogonal direct sum since v L w for every w € v=,.
To show B is nondegenerate on v when it is nondegenerate on V', suppose some v’ € v+
satisfies B(v',w) = 0 for all w € v*. Since B(v',v) = 0, B(v',cv + w) = 0 for any ¢ € F
and w € vt. Since Fv + vt =V, we have v/ = 0 by nondegeneracy of B on V. Thus B is
nondegenerate on v, O

Theorem 4.7. There is an orthogonal basis for V- when F does not have characteristic 2.

Proof. We argue by induction on n = dim V. The result is automatic when n = 1, so take
n > 2 and assume the theorem for spaces of smaller dimension.

If B is identically 0, then any basis of V' is an orthogonal basis. If B is not identically 0,
then B(v,v) # 0 for some v (Lemma. Using any such v, Lemmasays V =Fv 1ot
Since vt is a symmetric bilinear space with dimension n — 1, by induction there is an
orthogonal basis of v, say {e1,...,e,_1}. The set {e1,...,e,_1,v} is a basis of V. Since
e; L v for all 7, this basis is orthogonal. O
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Taking into account how the matrix for a bilinear form changes when the basis changes,
Theorem [4.7] is equivalent to the following matrix-theoretic result: given any symmetric
matrix M over a field of characteristic not 2, there exists an invertible matrix C' such that
CTMC (not C~*MC) is a diagonal matrix.

Corollary 4.8. Let {e1,...,en} be an orthogonal basis for V.. Then V is nondegenerate if
and only if e; )} e; for each i.

Proof. The matrix for B associated to the orthogonal basis is diagonal, where the diagonal
entries are the numbers B(e;, e;). Non-degeneracy of B is equivalent to invertibility of this
diagonal matrix, which is equivalent to B(e;, e;) # 0 for all 4. ]

Remark 4.9. In Euclidean space, every nonzero vector is part of an orthogonal basis. The
proof of Theorem [£.7] generalizes this: in a symmetric bilinear space outside of characteristic
2, any vector v with v [ v is part of an orthogonal basis. (If v L v then Corollary says
v won’t be part of an orthogonal basis if V' is nondegenerate, e.g., (1,0,1) is not part of
an orthogonal basis of R%! and (1,0) is not part of an orthogonal basis in Example [4.3])
Whether in Euclidean space or the more general setting of a symmetric bilinear space, the
inductive construction of an orthogonal basis is the same: pick a suitable starting vector
v, pass to the orthogonal space v', which has dimension one less, and then induct on
the dimension of the space. In the proof of Lemma the projection from V to v’ via
v~ v —cv =0 — (B(V,v)/B(v,v))v is exactly the idea in the classical Gram-Schmidt
orthogonalization process.

Example 4.10. We look at Example over a general field F: on F? let B(v,w) =
v+ (9§)w. When F does not have characteristic 2, the basis {(1,1), (1, —1)} is orthogonal.
When F has characteristic 2, (1,1) = (1,—1) so this construction of an orthogonal basis
breaks down. In fact, in characteristic 2 there is no orthogonal basis of (F?, B). We give
two proofs.

First, suppose there is an orthogonal basis {vg, wo}. Since 2 =0 in F', B((z,y), (z,y)) =
2xy = 0, so vy L vg. Since vy is orthogonal to both vy and wy, vg L F?. This contradicts
nondegeneracy of B.

Our second proof is matrix-theoretic. In order for B to have an orthogonal basis, there
must be an invertible matrix C = (24) such that C"(9})C is a diagonal matrix. Since
CT(YHC = (3%, “4ive), the diagonal terms always vanish in characteristic 2. Therefore
this matrix can’t be a diagonal matrix in characteristic 2: it would then be the zero matrix,
but its determinant is —(det C')? # 0.

Despite the behavior of Example there is something worthwhile to say about the
existence of an orthogonal basis for (nondegenerate) symmetric bilinear forms in character-
istic 2. But we need to know something more. The situation will be explained in Exercise

64l

Exercises.

1. On Q3, let B be the bilinear form represented by the symmetric matrix

1 21
2 1 2
1 20

in the standard basis. Find an orthogonal basis for B.
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2. View Ma(F') as a bilinear space relative to the trace form B(L,L’) = Tr(LL') as

in Example Show (§9) L (94) and explain why () can’t be part of an

orthogonal basis. Find an orthogonal basis when F' does not have characteristic 2.

Is there an orthogonal basis when F' has characteristic 27

Repeat the previous exercise with B(L, L') = Tr(LL'") on May(F).

4. Here is a “proof” that when V is symmetric any v # 0 is part of an orthogonal
basis. Let n = dim V. The orthogonal space v has dimension n or n — 1. Let H
be an (n — 1)-dimensional subspace of v*. By induction H has an orthogonal basis
{e1,...,en—1}. Since e; L v for all i, v is linearly independent from this basis so
{e1,...,en_1,v} is an orthogonal basis of V. Where is the error?

5. As a supplement to Remark show when B is symmetric that a nonzero vector
v with B(v,v) = 0 is part of an orthogonal basis if and only if v € V1.

6. Let V be symmetric. Show any orthogonal basis for a nondegenerate subspace of V'
can be extended to an orthogonal basis of V. (Hint: Use Theorem [3.11])

7. Show the equation 222 4 3y? = 1 has no rational solutions. (Hint: If it did, clear
the denominator to write 2a® 4+ 3b? = ¢? for integers a, b, and ¢, where none of them
are 0. Work mod 3 to show a, b, and c are all multiples of 3. Then divide a, b, and
¢ by 3 and repeat.)

8. Let (V, B) be nondegenerate and symmetric, so V = VY by v + B(v,—). Under
this isomorphism, show that a basis of V' is its own dual basis (a “self-dual” basis) if

b

and only if it is an orthonormal basis of (V, B), i.e., an orthogonal basis {e1,...,e,}
where B(e;,e;) = 1 for all i. Does My(R) with the trace form have a “self-dual”
basis?

5. SYMPLECTIC BASES

We now turn from symmetric bilinear spaces to alternating bilinear spaces. Before we
find a good analogue of orthogonal bases, we prove a dimension constraint on nondegenerate
alternating spaces.

Theorem 5.1. If (V, B) is a nondegenerate alternating bilinear space, then dim'V' is even.

Proof. First we give a proof valid outside of characteristic 2. When the characteristic is not
2, the alternating property is equivalent to skew-symmetry. Letting M be a matrix repre-
sentation for the bilinear form, skew-symmetry is equivalent to M = —M " by Theorem
Taking determinants, det M = (—1)3™V det M. Since the bilinear form is nondegenerate,
M is invertible, so we can cancel det M: 1 = (—1)4™V_ Since the characteristic is not 2,
dim V is even.

Now we prove dim V is even by a method that is valid in all characteristics. We induct
on the dimension. If dimV = 1 with basis {v}, then B is identically 0 since B(cv,c'v) =
¢’ B(v,v) = 0. This contradicts nondegeneracy, so dimV > 2. If dim V' = 2 we are done,
so assume dim V' > 2.

Pick v # 0 in V. The function B(v,—): V — F is onto by nondegeneracy, so there is
w € V such that B(v,w) = 1. Let U = Fv + Fw, so dimU = 2. The matrix for B|y
with respect to the basis {v,w} is (_4 §), which is invertible, so the restriction of B to
U is nondegenerate. By Theorem V = U @ Ut and the restriction of B to U™t is
nondegenerate. By induction dim U is even, so dim V is even. ([l
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Example 5.2. Let B, be the alternating bilinear form on R? in Example with u # 0.
Since the space has odd dimension B, must be degenerate, and indeed (R?)* = Ru relative
to B,.

The proof of Theorem provides us, given any nonzero v € V', a second vector w € V
such that

e B(v,w) =1,
e V=U_1U", where U = Fv + Fuw,
e the restrictions of B to U and U~ are nondegenerate.

Rather than getting a splitting of the space into a line and its orthogonal space, as in
Lemma we get a splitting of the space into a plane and its orthogonal space.

Definition 5.3. Let (V, B) be nondegenerate and alternating with dimension 2m > 2. A
symplectic basis of V is a basis e1, f1,...,em, fm such that B(e;, fi) = 1 and the planes
U; = Fe; + F' f; are mutually perpendicular.

There is a built-in asymmetry between the e;’s and f;’s when the characteristic is not 2
since B(e;, fi) =1 and B(fi,e;) = —1.

Using induction on the dimension, starting with the decomposition V = U L U' above,
our work so far in this section proves the following.

Theorem 5.4. Any nondegenerate alternating bilinear space has a symplectic basis.

There are two standard ways to order a symplectic basis: the ordering e, fi,...,€m, fn
and the ordering e1,...,em, fi,---, fm- We could call the first ordering numerical and the
second ordering alphabetical, but that is nonstandard terminology.

In the plane U;, the matrix of B|y, with respect to the (ordered) basis {e;, fi} is (9 ¢), so
the matrix of B on V with respect to the (ordered) basis {e1, f1,...,€m, fm} has m blocks

(9 §) along the main diagonal and 0 elsewhere:

0O 1 0 O 0 0
-1 0 0 0 0 0
0O 0 0 1 0 0
(5.1) [B] = 0O 0 -1 0 0 0
o o o0 o0 --- 0 1
o o o o0 --- =10

The word symplectic is Greek for “complex.” An alternating bilinear space with a sym-
plectic basis is “almost complex,” for instance it is even-dimensional and in a suitable basis
the bilinear form is a matrix of blocks (_4 §), which is the matrix for multiplication by i
on the complex numbers in the basis {7, 1}.

If we order the symplectic basis alphabetically as {e1, ..., em, fi1,..., fm}, then the matrix
for B looks like ( 7%1 1(5” ). The formula for B in these coordinates, writing a typical element

of F?™ as a pair of m-tuples (x,y), is

B((x,y),(x¥,y") = @) —yai 4+ 4 2, — ym,
! /
(5.2) - | x/l b | Fm :E;n
Y1 Y Ym  Ym




BILINEAR FORMS 29

This is a sum of m copies of the basic alternating form in Example Notice ((5.1) and
(5.2)) are determined by m = (1/2) dim V" alone (except for the issue of the basis ordering).
The following is a precise statement along these lines.

Corollary 5.5. Any two nondegenerate alternating bilinear spaces with the same dimension
are equivalent.

Proof. The dimension is even. Write it as 2m. Using a suitable ordering of a symplectic
basis, the matrix for a nondegenerate alternating bilinear form is (_?m 151 ). Since all non-
degenerate alternating bilinear forms in dimension 2m can be brought to a common matrix
representation (in suitably chosen bases), these forms are equivalent by Theorem m
Alternatively, we can argue by induction. We already know any two nondegenerate
alternating bilinear spaces in dimension 2 are equivalent (sending a symplectic basis {e, f} to
a symplectic basis {€/, f’} sets up the equivalence). Letting V and V' have dimension at least
4, split off nondegenerate planes U and U’ from both: V =U L U+ and V' = U’ 1L U,
From the 2-dimensional case, U and U’ are equivalent. By induction on the dimension, U+

and U'" are equivalent. Therefore V and V' are equivalent. O

Thus, although there can be many inequivalent nondegenerate symmetric bilinear forms
in a given dimension depending on the field (Example , over any field there is essentially
just one nondegenerate alternating bilinear form in each even dimension and it looks like
in suitable coordinates. The bilinear form on F?™ represented by the matrix (5.1))
relative to the standard basis is called the standard alternating bilinear form on F?™, and
the standard basis of F?™ is a symplectic basis for it.

Suppose now that (V, B) is an alternating bilinear space that is degenerate: V- # {0}.
What kind of basis can we use on V' that is adapted to B? Pick any vector space complement
toVtinV,andcallit W: V=Wa V=, (This decomposition is not canonical, since there
are many choices of W, although dim W = dim V' — dim V' is independent of the choice of
W.) Since W NV+ = {0}, B is nondegenerate on W. Therefore the restriction B|y has a
symplectic basis. Augmenting a symplectic basis of W with any basis of V- gives a basis
of V' with respect to which B is represented by a block diagonal matrix

O I. O
(5.3) -1, O O |,
O O O

where 2r = dim W = dim(V/V+). This matrix is completely determined by dim V' and
dim V-, so all alternating bilinear forms on vector spaces with a fixed dimension and a fixed
“level” of degeneracy (that is, a fixed value for dim V1) are equivalent. The nondegenerate
case is dim V+ = 0.

We end this section with an interesting application of Corollary to the construction
of an “algebraic” square root of the determinant of alternating matrices. (Recall a matrix
M is called alternating when M ' = —M and the diagonal entries of M equal 0.)

Lemma 5.6. The determinant of any invertible alternating matriz over a field F is a
nonzero perfect square in F.

Proof. Let M be an invertible alternating n x n matrix. On F", the bilinear form B(v,w) =
v - Mw is nondegenerate and alternating. Therefore n is even, say n = 2m, and B has the

matrix representation (7271 Ig) in a suitable basis. Letting C be the change of basis from
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the standard basis of F™ to this other basis, CT MC = (_IOm I(’)" ). Taking determinants,
(det C)2det M = 1, so det M is a nonzero square in F. O

Example 5.7. When n = 2,
0 X )
det< 2z 0 ) =z

Example 5.8. When n =4,

0 T Yy =z

-z 0 a b | 9
det Y o—a 0 e |7 (xe —yb+ az)”.

—z —=b —c 0

Let’s look at the generic example of an alternating matrix in characteristic 0. For a
positive even integer n = 2m, let x;; for 1 <1i < j < n be independent indeterminates over
Q. The matrix

0 T12 13 T4 0 Tin

—212 0 23 Tog 0 Tan

—T13 —T23 0 T34 T3p

(5.4) M(ww) = —T14 —T24 —T34 0 cr T4n
—Tin —I2n —T3n —T4n 0

is the “generic” alternating matrix over Q. View it as a matrix over the field F' = Q(z;;)
obtained by adjoining all the z;;’s to Q. (The total number of variables here is n(n —1)/2.)
The determinant lies in Z[z;;]. It is not the zero polynomial, since for instance when we
set 12 = T34 = --- = Tp—1 n = 1 and the other x;;’s to 0 we get the block diagonal matrix
with blocks (_G §), whose determinant is 1. Thus M (z;;) € GLp(Q(x45)), so det M (z;5) is
a nonzero perfect square in Q(x;;) by Lemma

Since the determinant of M (x;;) actually lies in Z[z;;], which is a unique factorization
domain and has fraction field Q(z;;), det M (x;;) is a square in Z[z;;]:

(5.5) det(M (z45)) = (Pf(zi5))?

for some integral polynomial Pf(x;;) in the z;;’s. This polynomial is called the Pfaffian of
M (). It is determined by only up to an overall sign. Except for the determination of
this sign, which we will deal with in a moment, shows by specializing the variables x;;
into any field, or any commutative ring for that matter, that there is a universal algebraic
formula for a square root of the determinant of an alternating matrix. Since det M (x;;) is a
homogeneous polynomial of degree n, Pf(x;;) is a homogeneous polynomial of degree n/2.
(We perhaps should write Pf,, to indicate the dependence on n, but this is not done for the
determinant notation det and we follow that tradition for Pf too.)

To fix the sign in the Pfaffian polynomial Pf(z;;), we can specify the value of this poly-
nomial at one nonzero specialization of its variables. The matrix in with each z; ;41
equal to 1 for odd 7 and the other z;;’s equal to 0 has determinant 1, whose square roots
are +1. Choosing the square root as 1 pins down the sign on the Pfaffian. That is, define
Pf(z;;) to be the polynomial over Z satisfying and the condition that Pf([B]) = 1
where [B] is the block matrix in (5.1). (Equivalently, we choose the sign on Pf(z;;) so that
the coefficient of x12234 - - - am—1 2m in Pf(x;;) is 1.) This makes the Pfaffian for n = 2 and
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n = 4 the polynomials that are being squared on the right side in Examples and [5.8]
e.g., Pf(x) = = (not —x).

When A = (aj;) is an n x n alternating matrix, for even n, we write Pf A for the
specialization of Pf(x;;) using x;; = a;;. Since a Pfaffian is a square root of a determinant,
you might think it should be multiplicative “up to sign.” However, the product of two
alternating matrices is not alternating even up to sign (try the 2 x 2 case!), so we can’t talk
about the Pfaffian of a product of alternating matrices. Using Jordan algebras (a certain
type of nonassociative algebra), the Pfaffian can be interpreted as a kind of determinant.
See [5], Sect. T7].

Theorem 5.9. Let n be even. For n x n matrices M and C, where M is alternating,
Pf(CTMC) = (det C) Pf M.

Proof. This is obvious up to sign, by squaring both sides and using properties of the deter-
minant. The point is to pin down the sign correctly. It suffices to verify the equation as
a universal polynomial identity over Z where M = M (x;;) is a generic n x n alternating
matrix in n(n — 1)/2 variables and C' = (y;;) is a generic n X n matrix in n? extra vari-
ables. Specialize C' to be the n x n identity matrix. Then Pf(C" MC) becomes Pf M and
(det C') Pf M becomes Pf M, so the two sides of the identity are equal as polynomials. [

Exercises.

1. In Example find a basis of R? in which B, has a matrix representation ({5.3)
when u # 0.
2. On F?™ with the standard alternating bilinear form represented by (_[Om 1(5” ), show

a matrix (4 B) € My, (F) acting on F?™ has adjoint matrix (PCTT if:)

3. Let V be m-dimensional over F' and let B be the alternating bilinear form on V& V'V
from Example m It is nondegenerate by Example When {ej,...,en} is a
basis of V and {ey,..., e/} is the dual basis of V'V, show {e1,ey,...,em, e} is a
symplectic basis of V & V" and the matrix for B in these coordinates is .

4. Let (V, B) be nondegenerate and symmetric over a field of characteristic 2. Re-
call the alternating bilinear forms are a subset of the symmetric bilinear forms in
characteristic 2. Prove (V, B) has an orthogonal basis if and only if B is not al-
ternating. (Hint: Without loss of generality, dimV > 2. The only if direction is
trivial by Corollary 4.8, For the if direction, pick vy such that a := B(vg,v9) # 0.
Then vy is nondegenerate by Lemma If B is nonalternating on vy then we're
done by induction. If B is alternating on UOl then vd- has a symplectic basis, say
including a pair {e, f} with B(e,f) = 1, B(e,e) = 0, and B(f,f) = 0. Show
B(vg+e+ f,ug+e+ f) # 0 and B is nonalternating on (vg + e + f)*.)

5. Check Example [5.8

6. Let M be an n X n alternating matrix, where n is even.

(1) Show Pf(M ") = (—1)"2Pf M.
(2) If M is not invertible, show Pf M = 0. If M is invertible and C'is an invertible
matrix such that CT MC is the matrix in , show Pf M =1/detC.

6. QUADRATIC FORMS

Concretely, a quadratic form is a homogeneous polynomial of degree 2, such as 2412+ 22
or 2 4 5xy — y?. We call the first one a diagonal quadratic form since it involves no mixed
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terms. The second quadratic form is not diagonal, but we can make it so by completing the
square:
2
5 29
2?4+ bay —y? = (x + 2y> - Zy2 =22 — 20y,

where 2/ = z + 3y and ¥ = 3y.

The simplest example of an n-variable quadratic form is 2 + --- 4+ z2. This sum of
squares, which plays an important role in the geometry of R", is closely related to the dot
product. First, we can write

2 2
i+ +x, =v-7,

where v = (x1,...,x,). Conversely, the dot product of two vectors v and w in R™ can be
expressed in terms of sums of squares:

1
(6.1) veow =5 (Q +w) - Qv) - Qw)),

where Q(z1,...,2,) = 2% + - - - + 22 (check!).
When n = p + ¢, another quadratic form is

2 2 2 2
Qp,q(xl,...,xn) =ai 4T~ — T,
For v € R™ we have @ 4(v) = (v,v)p4, and we can express (-,-)pq in terms of Q4 by a
formula similar to (6.1)):

(v, W)pq = %(an(” +w) = Qp,q(v) — Qp,g(w)).

The relation (6.1)) between a sum of squares (a particular quadratic form) and the dot
product (a particular bilinear form), as well as between Qp, and (:,-)pq, motivates the
following coordinate-free definition of a quadratic form.

Definition 6.1. A quadratic form on a vector space V over a field F' with characteristic
not 2 is a function @Q: V' — F such that

(1) Q(cv) = c2Q(v) forv eV and c € F,
(2) the function B(v,w) := 3(Q(v 4+ w) — Q(v) — Q(w)) is bilinear.

We call B the bilinear form associated to ). Note B is symmetric. The factor % is
included in condition (2) because of . This is the reason we avoid fields where 2 = 0,
although admittedly the bilinearity of B has nothing to do with a choice of nonzero scaling
factor out front. Quadratic forms in characteristic 2 are discussed in Section We will
very frequently use (2) as

(6.2) Qv+ w) = Q)+ Q(w) +2B(v,w).

In particular, note B(v,w) = 0 is equivalent to Q(v + w) = Q(v) + Q(w).

For the rest of this section, F' does not have characteristic 2.

Definition doesn’t require that V be finite-dimensional, but the examples and theo-
rems we discuss concern the finite-dimensional case. We call dim V' the dimension of the
quadratic form. Whenever we refer to a quadratic form “on F™” we are thinking of F" as
an [F'-vector space.

To connect the concrete and coordinate-free descriptions of quadratic forms, we show
that quadratic forms on a vector space are nothing other than homogeneous quadratic
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polynomials once a basis is chosen. Starting with @Q: V — F as in Definition [6.1] induction
on the number of terms in (6.2)) gives

(6.3) Qi+ +v,) =Qu1) + - +Qv,) +2) _ B(ui,vj)
1<J
for any r > 2 and vectors v; € V. Therefore, if {e1,...,e,} is a basis of V,

Q(rier + -+ anen) = Y Q(zie) +2>_ Blwiei, zje;)
=1

1<J
n
(6.4) = Z a;r; + Z AjjTiTj,
i=1 i<j
where a; = Q(e;) and a;; = 2B(e;,e;). This exhibits @ as a homogeneous quadratic

polynomial in coordinates.

Conversely, let’s show any function V' — F that is a homogeneous quadratic polynomial
in the coordinates of some basis is a quadratic form on V. Let Q(x1e1 + -+ + zpe,) be a
polynomial as in . Easily Q(cv) = ¢?Q(v) for ¢ € F. Letting v = x1e1 + - - - + zne, and
v =2aler + - + ey, define

Bw) = (Qu+v) - Q) - Q)

2
~ 1
(6.5) = Z a;T; T + 5 Z aij (mlaz; + zjx;)
i=1 1<i<j<n
= [v]- M[v'],
where
al a12/2 aln/Q
a12/2 a9 ag /2
(6.6) = : . "
an/2 ag,/2 --- an

Therefore B is a bilinear form on V', so () is a quadratic form on V.

Example 6.2. On Endp(V,V) let Q(L) = Tr(L?). We will show this is a quadratic form.
When V = F2, Q((%Y)) = 2% + 2yz +t2, which is obviously a quadratic form in 4 variables.
To show @ is a quadratic form in general, for any ¢ € F we have Q(cL) = Tr((cL)?)) =
Tr(c?L?) = *Q(L) and 3(Q(L + L) — Q(L) — Q(L")) = Tr(LL'), which is a bilinear form
on Endp(V,V) (Example [1.12).

We can express a quadratic form in terms of its associated bilinear form by setting w = v:

(67) B(o,v) = 5(Q(20) ~ 20(0)) = 5 (1Q(v) ~ 2Q(v)) = Q)
(6.8) Q(v) = B(v,v).

Conversely, every symmetric bilinear form B on V defines a quadratic form by the formula
, and the bilinear form associated to this quadratic form is B (this is “polarization”;
see Theorem [1.8)). For example, @ is identically zero if and only if B is identically zero.
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Outside of characteristic 2 there is a (linear) bijection between between quadratic forms
on V and symmetric bilinear forms on V. Once we choose a basis for V' we get a further
(linear) bijection with n x n symmetric matrices, where n = dim V.

In matrix notation, writing B(v,w) = [v] - M [w] for a symmetric matrix M relative to a
choice of basis, becomes Q(v) = [v] - M[v]. We call M the matriz associated to @ in
this basis. It is the same as the matrix associated to B in this basis. Concretely, when we

write @ as a polynomial (6.4)), its matrix is .

Example 6.3. When @ is the sum of n squares quadratic form on F™, its matrix in the
standard basis of F™ is I, and Q(v) =v-v =v- [,v.

Example 6.4. The polynomial Q(x,y) = ax?® + bxy + cy?, as a quadratic form on F?,

is represented by the matrix ( b(/lQ bé %) in the standard basis: Q(z,y) = (‘y”) - ( b(/12 bﬁ 2)(2)

Even though Q(z,y) = (Z) (& g)(i) too, the matrix (&%) is not symmetric (for b # 0) and
therefore is not considered a matrix for Q).

When M is the matrix for @) in one basis, changing the basis changes the matrix for @ to
CTMC for some C € GL,(F). Since det(CT MC) = det(C)? det(M), the number det(M)
as a function of () is only well-defined up to multiplication by a nonzero square in F.

Definition 6.5. The discriminant of the quadratic form @ is det M considered as a number
up to nonzero square factors in F', where M is any matrix for Q.

We write disc @ for the discriminant of ), and although it is really only defined up to a
nonzero square factor it is common to refer to any particular number in the square class of
disc @ as the discriminant of Q).

Example 6.6. The discriminant of the quadratic form in Example equals ac —b?/4. In
particular, 2 — y? has discriminant —1.

Theorem 6.7. Let QQ be a quadratic form on an n-dimensional vector space over a field of
characteristic not 2. In a suitable basis, Q) is diagonalizedﬁ

(6.9) Q (i xiez’) = zn:aim?,
i=1 i=1

where a; = Q(e;). The discriminant of Q is ajag - - - ay.

Proof. Let {ei1,...,e,} be an orthogonal basis of the symmetric bilinear form associated to
Q@ (Theorem . In this basis, the cross terms in (6.4) vanish and @ is diagonalized. The
matrix for ) in this basis is diagonal, so the discriminant of () is the product of the
a;’s. O

When (V, Q) is a quadratic space, we refer to the discriminant of @ as the discriminant
of V too, if @ is understood, and write it as disc V. For example, disc RP? = (—1)¢ where
2

' i P g 2 4 ... 2 _x2
the intended quadratic form on RP? is 7 + -+ + x, — 2,4 Tpig

Theorem 6.8. Let (V,Q) be a quadratic space. For orthogonal subspaces W and U such
that V. =W L U, discV = disc W discU, where W and U are treated as quadratic spaces
using the restrictions of Q to W and U.

4The0remis special to degree 2. For example, f(z,%y) = 2y is homogeneous of degree 3 and an explicit
calculation shows no A € GLa(F) satisfies f(A(?)) = az® + by®. Here F is any field, even of characteristic

Y
2 or 3.
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The equation with discriminants in this theorem is meant to be equality as numbers
determined up to scaling by a nonzero square in F'.

Proof. The quadratic form @ restricted to W and U can be diagonalized: there are orthog-
onal bases {wy,...,w,} of W and {uy,...,us} of U relative to which Q|w and Q| are
diagonal quadratic forms:

Q(ziwy + -+ + zpw,) = a1zt + - 4 apx?, Qyrur + -+ ysus) = byt + - - + bey?,

where a; = Q(w;) and b; = Q(u;). Since V.= W L U, {wi,...,wr,u1,...,us} is an
orthogonal basis of V', so

Q(zrwy + -+ + Tpwy + y1ur + -+ Ysus) = @125 + -+ apxZ + biyd + -+ syl
Thus discV =aq---a.by---bs = disc W discU. ]

The construction of an orthogonal basis of a quadratic space can be carried out sys-
tematically from the bilinear form of the quadratic form. Start by picking any vector eg
where Q(e1) # 0. Then look in the subspace e; to find ez with Q(ez) # 0. The vectors e;
and ey are orthogonal and linearly independent. Then look in e{- N e%- to find an e3 with
Q(e3) # 0, and so on. The process eventually ends with a subspace where @ is identically
0. If this is the subspace {0} then the vectors we have already picked are a basis in which @
is diagonal. If this process reaches a nonzero subspace on which @ is identically 0 then the
vectors already picked plus any basis for the subspace we reached are a basis of the whole
space in which @ is diagonal.

Example 6.9. Consider Q(z,y, z) = zy + xz + yz. We want to write
Q — aaj/Q +by/2 +CZ,2

where 2’,4/, 2’ are linear in z,y, z and a, b, and ¢ are constants. Blind algebraic calculation
is unlikely to diagonalize @ (try!), but thinking geometrically leads to a solution, as follows.
The bilinear form on F? for Q is

) 0 1/2 1/2
Blo,w) = 5 (Qu+w) — Q) — Q) =v- [ 12 0 1/2 |w.
1/2 1/2 0

Pick any vector at which @ doesn’t vanish, say e; := (1,0, 1). Then, using the above bilinear
form B, the space orthogonal to e is

1 1
er = {(z,y,2) §x+y+§z:0}.

One vector in here at which @ doesn’t vanish is e; = (1,—1/2,0). Since B(es, (x,y,2)) =
—x/4+y/2+ z/4, a vector v = (x,y, z) satisfies v L e; and v L es when z/2+y+2/2=10
and —z/4 + y/2 + z/4 = 0, so (after some algebra) (z,y,z) = (0,y, —2y). Taking y =1
here, let e3 := (0,1, —2). Then {ey, e, e3} is an orthogonal basis of F3 with respect to B
and in this basis

1
Q(z'e1 +y'ea + 2'e3) = Qe1)z™ + Q(e2)y + Qlez)2? = 2/? — —y?

- -9 12
2y 2,

so we diagonalized Q.

Corollary 6.10. Let QQ be a quadratic form on V. An a € F* can occur as the coefficient
of Q in some diagonalization if and only if a € Q(V).
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Proof. The coefficients in a diagonalization of () are the ()-values of an orthogonal basis, so
any nonzero coefficient that occurs in a diagonalization is a ()-value.

Conversely, assume a # 0 in F and a = Q(v) for some v. Then a = B(v,v), so by the
proof of Theorem there is an orthogonal basis of V' having first vector v. The first
coefficient in the diagonalization of () relative to this orthogonal basis is a by . O

Example 6.11. The quadratic form 222+ 3y? on Q? can’t be written in the form z/? + by?
by a linear change of variables on Q?: otherwise the coefficient 1 is a value of 222 + 3y on
Q?, which is not true (Exercise .

Definition 6.12. For F-vector spaces V7 and V,, quadratic forms (); on V; are called
equivalent if there is a linear isomorphism A: V; — V5 such that Q2(Av) = Q1(v) for all
v e V.

Example 6.13. The quadratic forms 22 — y? and zy on F? are equivalent since 22 — y? =
(z+y)(x—y) is a product (call it 'y’ if you wish), and the passage from (z,y) to (z+y,z—y)
is linear and invertible outside characteristic 2. This is just Example 2.10]in disguise.

Theorem 6.14. Quadratic forms are equivalent if and only if their associated bilinear forms
are equivalent in the sense of Definition [2.9]

Proof. Let @1 and Q2 have associated bilinear forms By and Bs. If Q2(Av) = Q1(v) for all
v € V then By(Av, Av) = Bi(v,v). Therefore By(Av, Aw) = By (v, w) for all v and w in V'
(Theorem , so B; and Bs are equivalent. The converse direction is trivial. U

Definition 6.15. A quadratic form is called nondegenerate if a (symmetric) matrix repre-
sentation for it is invertible, i.e., its discriminant is nonzero. If the discirminant is 0, we
call the quadratic form degenerate.

Example 6.16. The quadratic form az? + bxy + cy? on F? has discriminant ac — b?/4 =
—(1/4)(b* — 4ac), so this quadratic form is nondegenerate if and only if b* — 4ac # 0.

Example 6.17. On R?, the quadratic form Q(z,y) = 22 — y? is nondegenerate. On R3,
the quadratic form Q(z,y, z) = 22 — y? is degenerate.

Table |2| collects different descriptions of the same ideas for symmetric bilinear forms and
for quadratic forms.

Condition Symm. Bil. Form Quadratic Form
Matrix Rep. B(v,w) = [v] - M[w] Q(v) = [v] - M[v]
v Llw B(v,w) =0 Qv+ w) =Q(v) + Q(w)
Orthog. basis B(ei,ej) =0 (i # j) Q> xie;) is diagonal
Equivalence | Bo(Av, Aw) = By (v, w) Q2(Av) = Q1(v)
Nondegeneracy det M #0 det M # 0

TABLE 2. Comparisons

The next result puts some of this terminology to work.

Theorem 6.18. Let Q be a quadratic form on a two-dimensional space. The following
conditions on @ are equivalent:

(1) Q looks like * — y? in a suitable basis,
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(2) disc Q@ = —1 modulo nonzero squares,
(3) Q is nondegenerate and takes on the value O nontrivially.

Taking on the value 0 nontrivially means Q(v) = 0 for some v that is nonzero.

Proof. The first property easily implies the second and third properties (since z? — y?
vanishes at (x,y) = (1,1)). We now show that the second property implies there is a basis
in which Q is 22 — y? and that the third property implies the second property.

Assume disc ) = —1. Choosing an orthogonal basis {e1,ea} we have Q(z1e1 + z2e2) =
az? + br3. Since ab = —1 mod (F*)?2, in a suitable basis Q looks like

1 2 1
a$2—y2:a<x2—y2):a(x—|—y> (x—y>:(ax+y) <m—y>
a a a a a

Set 2/ = ax+y and y' = x —y/a, so in these coordinates (that is, in the basis €] := aej + e
and e}, := e1 — (1/a)ea) @ looks like 2'y/, which can be written as a difference of squares by
a further linear change of variables (Example [2.10)).

Assume now that @ is nondegenerate and takes the value 0 nontrivially. Pick an orthog-
onal basis {ej, ez} for Q, so Q(z1e1 + w2e2) = ax? + br3 where a and b are nonzero by
nondegeneracy of Q. For some g and yo that are not both nonzero we have ax3 + byg = 0,
so necessarily ¢ and yo are both nonzero. Writing b = —ax3/y2, we have

2
x

Q(z1e1 + xe2) = ax? —a <yg> 3.
0

Thus disc(Q) = a(—a)(x3/y3) = —(azo/yo)?, so disc(Q) = —1 up to a square factor. O

We turn now to the classification of nondegenerate quadratic forms up to equivalence over
certain fields: the real numbers, the complex numbers, and finite fields of odd characteristic.

Theorem 6.19. Every nondegenerate quadratic form on an n-dimensional complex vector
space is equivalent to x3 + --- + 2 on C". Ewvery nondegenerate quadratic form on an
n-dimensional real vector space is equivalent to x3 + - - -+ :UIQJ — $127+1 ——x2 on R" for a
unique p between 0 and n.

Proof. In an orthogonal basis, an n-dimensional nondegenerate quadratic form is a sum of n
nonzero monomials a;z2. Since ac’Q(v) = aQ(cv), a nonzero square factor ¢? in a diagonal
coefficient of () can be removed by replacing the corresponding basis vector v with cv in
the basis. Over C every nonzero number is a square, so the coefficients can be scaled to 1.
Thus any nondegenerate quadratic form over C looks like >, $12 in a suitable basis. Over
R the positive coefficients can be scaled to 1 and the negative coefficients can be scaled to
—1.

We now show the quadratic forms 23 + --- + xf, — 1:12,4_1 —o—22and Y3+ -+ yg/ —
yg, 1 y2 on R" are equivalent only when p = p/. Equivalence means there is a single
quadratic form @) on R™ that looks like each polynomial in a suitable basis. Let @) look like
the first polynomial in the basis {e1,...,e,} and let it look like the second polynomial in
the basis {f1,..., fn}.

Let W be the span of ej,...,e, and let W’ be the span of fyi1,...,fn. Forw € W,
Q(w) > 0 with equality if and only if w = 0. For w’ € W', Q(w’) < 0 with equality if and
only if w’ = 0. Therefore WNW' = {0}, so dim(W +W') = dim W +dim W’ = p+ (n—p').
Since W + W' C R™, dim(W + W’) <n, so p+n—p <n. Thus p < p'. By switching the
roles of the two bases we get the reverse inequality, so p = p'. ([l
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Corollary 6.20. Whenp+q =p' + ¢, (-,-)pq and (-,-)p o are equivalent if and only if
p=7p and qg=(.

Proof. By Theorem (*s)p,q and (-, ),y o are equivalent if and only if the corresponding
quadratic forms are equivalent, which means p = p’ (so also ¢ = ¢) by Theorem O

A nondegenerate quadratic form on R™ is determined up to equivalence by the pair (p, q)
coming from a diagonalization, where p is the number of plus signs and ¢ = n — p is the
number of minus signs. This ordered pair (p,q) is called the signature of the quadratic
formﬂ Once we know the dimension n, either p or g determines the other since p+ ¢ =n
(we have in mind only the nondegenerate case).

Definition 6.21. A quadratic form @ on a real vector space is called positive definite if
Q(v) > 0 for all v # 0 and negative definite if Q(v) < 0 for all v # OH

All positive-definite real quadratic forms with a common dimension n are equivalent to
a sum of n squares and thus are equivalent to each other. Similarly, all negative-definite
quadratic forms with a common dimension are equivalent to each other. Unlike the property
of being a sum of squares, positive definiteness doesn’t depend on the choice of coordinates.

Example 6.22. We will put to use the normalization of a positive-definite quadratic form
as a sum of squares to compute the multivariable analogue of a Gaussian integral.

In one dimension, [5 e=®*/2 4z = /27, or equivalently = e~ dz = 1. We now consider
fRn e~ ™) duv where Q: R™ — R is a positive-definite quadratic form. Write Q) =v-Mv
in standard coordinates on R'™. Since @ is positive definite, it is a sum of n squares in some
basis, so for some A € GL,(R) we have Q(Av) = v-v. Thus ATMA = I,,. By a linear
change of variables in the integral,

/ e ™) qy = / e ™M) 4(Av) = | det A| e ™ dw.
n n R”

The last integral breaks up into the product of n 1-dimensional integrals fR e~ @i’ dz;,
which are each 1, so

/ e W) dy = | det A

Since AT M A = I,, taking determinants gives (det A)?det M = 1, so |det A| = 1/+/det M.
Therefore [g, e~ ™) dy = 1/y/det M. where Q(v) = v - M.
Now we will classify nondegenerate quadratic forms over a finite field of odd characteristic.

The essential property is that a quadratic form with high enough dimension always takes
on the value 0 nontrivially:

Theorem 6.23. Let F be a finite field with odd characteristic and Q) be a nondegenerate
quadratic form over F. If Q has dimension at least 3 then there is a solution to Q(v) = 0
with v # 0.

Proof. First we handle the case of dimension 3. In an orthogonal basis, write

Q(xzer +yes + ze3) = az? + by? + ¢z2,

Some authors refer to p alone as the signature.
6A nondegenerate real quadratic form that is neither positive definite nor negative definite is called
indefinite, such as x® — y°.
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where a, b, and ¢ are all nonzero. We will find a solution to Q(v) = 0 with z = 1: the
equation az? + by? + ¢ = 0 has a solution in F.

Let ¢ = #F. The number of squares in F is (¢ + 1)/2. (There are (¢ — 1)/2 nonzero
squares since the squaring map F* — F* is 2-to-1; thus its image has size (¢ — 1)/2; add
1 to this count to include 02.) The two sets {ax? : x € F} and {—by? —c: y € F} are in
bijection with the set of squares, so each has size (¢ + 1)/2. Since F has ¢ terms, the two
sets must overlap. At an overlap we have az? = —by? — ¢, so ax® + by?> + ¢ = 0.

If @ has dimension greater than 3, write it in an orthogonal basis as

2 2 2
Q(r1e1 + 2202 + -+ - + Tpen) = @177 + @275 + -+ + ATy,

where the a;’s are all nonzero. Set xz; = 0 for 4 > 3 and x5 = 1. Then we are looking at
a1 + aax3 + ag, which assumes the value 0 by the previous argument. O

The bound dimV > 3 in Theorem [6.23] is sharp: the 2-dimensional quadratic form
22 — cy?, where ¢ is a nonsquare in FX, doesn’t take the value 0 except when z =y = 0.
The reason that taking on the value 0 nontrivially (that is, at a nonzero vector) matters

is the following result over any field not of characteristic 2.

Theorem 6.24. If Q): V — F' is a nondegenerate quadratic form that takes on the value O
nontrivially then it takes on all values: Q(V) = F.

Proof. Let B be the bilinear form for @ and let Q(v) = 0 with v # 0. Since Q(cv) =
c2Q(v) = 0 and @ is not identically zero (otherwise it couldn’t be nondegenerate), dim V' >
2. By nondegeneracy of @ (equivalently, of B), there is a w € V such that B(v,w) # 0.
Then for any c € F,

Q(cv +w) = Q(cev) + Q(w) + 2B(cv,w) = Q(w) + 2B(v, w)c.

Since 2B(v,w) # 0, this is a linear function of ¢ and therefore takes on all values in F' as ¢
varies. u

Theorem can be false for degenerate Q, e.g., Q(z,y) = 22 on R?, where Q(0,1) = 0.
Definition 6.25. A quadratic form Q: V — F' is universal if Q(V) = F.
Example 6.26. On R?, 22 + 3 + 22 is not universal but 2?2 + y? — 22 is.

Corollary 6.27. FEvery nondegenerate quadratic form of dimension > 2 over a finite field
F of characteristic not 2 is universal.

Proof. When the dimension is at least 3, Theorems and tell us the quadratic form
is universal. In two dimensions, after diagonalizing we want to know a polynomial of the
form axz? + by?, for a and b in F*, takes on all values in F. This was explained in the
proof of Theorem where we showed az? + by? + ¢ = 0 has a solution z,y € F for any
ceF*. O

Theorem 6.28. Fiz a nonsquare d € F*. For n > 1, any nondegenerate quadratic form
on an n-dimensional vector space over F is equivalent to exactly one of

2., .2 2 2 2 2 2 2
xi+ay+--+ax, g+, orx]+ay+ -+ a1 +dxy,

on F™. In particular, the dimension and discriminant determine a nondegenerate quadratic
form over F up to equivalence.
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Proof. The two forms provided are inequivalent, since the first has discriminant 1 and the
second has discriminant d, which are unequal in F* /(F*)2.

To see any n-dimensional nondegenerate quadratic form over F is equivalent to one of
these, we argue by induction on n. Any nondegenerate one-dimensional quadratic form in
coordinates is Q(z) = ax?, where (insofar as the equivalence class of ) is concerned) a only
matters up to a nonzero square factor. This gives us the two choices 2% and da?.

When n > 2, Corollary [6.27] tells us that @ takes on the value 1. By Corollary there
is an orthogonal basis {eq,...,e,} such that Q(e;) = 1:

Q(z1e1 + maea + -+ + Tnen) = a7 + agx3 + -+ + any,
where a; € F*. The quadratic form Q(z2es + -+ + zpe,) = Q)| ot is nondegenerate of
dimension n — 1, so by induction we can write it after a linear change of variables (not

involving x1) as y3 + -+ y2_; + ay?, where a = 1 or a = d. Add z? to this and we're
done. O

To give a sense of other techniques, we will redo the classification of nondegenerate
quadratic forms over F by a second method, which gives a more “geometric” description of
the quadratic forms. First we introduce some terminology.

Definition 6.29. A quadratic space is a vector space along with a choice of quadratic form
on it. We call it nondegenerate when the underlying quadratic form is nondegenerate.

This is the analogue for quadratic forms of the notion of a bilinear space for bilinear
forms. Outside of characteristic 2 (which is the case throughout this section), quadratic
spaces are essentially the same thing as symmetric bilinear spaces. In Section [7] we will see
that this is no longer true in characteristic 2!

Definition 6.30. Two quadratic spaces (V1, Q1) and (Va, Q2) are called isomorphic if there
is a linear isomorphism A: V; — V5 such that Q2(Av) = Q1(v) for all v € V.

Definition 6.31. Let (V1,Q1) and (V2,Q2) be quadratic spaces over a common field F.
Their orthogonal direct sum Vi L V5 is the vector space Vi @ Vo with the quadratic form
Q(vi,v2) = Q1(v1) + Q2(v2). We write V1" for the n-fold orthogonal direct sum of a
quadratic space V with itself.

Example 6.32. If we view F' as a l-dimensional quadratic space with quadratic form
Q(r) = 2, the quadratic space F1" is the vector space F™ equipped with the standard
sum of n squares quadratic form.

Definition 6.33. Let Q: V — F be a quadratic form. A null vector for Q (or for V) is
any nonzero v € V such that Q(v) = 0.

In terms of the associated bilinear form B, a null vector is a nonzero solution to B(v,v) =
0. Null vectors are self-orthogonal nonzero vectors. (Other names for null vectors are
isotropic vectors and singular vectors, the former being very widely used.) The spaces RP?
for positive p and ¢ have plenty of null vectors. Theorem says all nondegenerate qua-
dratic forms in dimension at least 3 over a finite field (with characteristic not 2) have a null
vector, while Theorem says any nondegenerate quadratic form outside of characteristic
2 with a null vector is universal.

Here is the key concept for our second approach to the classification over finite fields.

Definition 6.34. A hyperbolic plane is a two-dimensional quadratic space where the qua-
dratic form looks like 22 — 32 in some basis.
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We could just as well have used xy as the model quadratic form since 22 — 32 and zy

are equivalent (we are not in characteristic 2). A hyperbolic plane is denoted H, or H(F')
if the field F' is to be specified.

Example 6.35. The quadratic space R*!, where the quadratic form is 22 + y? — 22 =

22 — 2% 442, is isomorphic to H L R since 2 — 22 gives us a hyperbolic plane and y? is the
standard quadratic form on R = R"Y. More generally, in RP if we collect an equal number
of 22 and —x? together then what remains is a sum of squares (if p > ¢) or a negative sum

of squares (if ¢ > p). So R»? = HY™ 1 W where m = min(p,q) and W is a quadratic
space of dimension |p — ¢| that is positive definite if p > ¢, negative definite if ¢ > p, or {0}
if p=gq.

Theorem [6.18] tells us that a hyperbolic plane is the same thing as a 2-dimensional nonde-
generate quadratic space with a null vector. The importance of the hyperbolic plane is in the

next result, which says that hyperbolic planes always explain null vectors in nondegenerate
quadratic spaces.

Theorem 6.36. Let (V,Q) be a nondegenerate quadratic space. If Q has a null vector then
V=ZHL1W and W is nondegenerate.

Proof. Let Q(v) = 0 with v # 0. We will find a second null vector for @) that is not
orthogonal to v.

Since (V, Q) is nondegenerate and v is nonzero, v~ # V. Pick any u at all outside of v,
so B(u,v) # 0. We will find a null vector of the form u + cv for some ¢ € F. Then, since
B(u+ cv,v) = B(u,v) + ¢B(v,v) = B(u,v), u+ cv is not orthogonal to v.

For all c € F,

Q(u+ cv) = Q(u) + Q(cv) + 2B(u, cv) = Q(u) + 2¢B(u,v).

Let ¢ = —Q(u)/2B(u,v), so Q(u + cv) = 0. Now rename u + cv as u, so u is a null vector
for @ and B(u,v) # 0. Since v L v and u £ v, v and v are linearly independent.

In Fu+ Fv, Q(zxu+ yv) = 2zyB(u, v), which equals zy after scaling u so that B(u,v) =
1/2. (Since B(u,v) # 0, B(au,v) = aB(u,v) becomes 1/2 for some a € F.) Now Fu+ Fv
as a quadratic space is a hyperbolic plane, since zy and z? — y? are equivalent. Since a
hyperbolic plane is nondegenerate, V = (Fu+ Fv) L W where W = (Fu+ Fv)* (Theorem
3.11). 0

Theorem says that after a linear change of variables (that is, using a suitable basis),
a nondegenerate quadratic form with a null vector has the expression

Q(z1,29,...,0,) =27 — 22+ Q'(x3,...,2,).

The merit of Theorem [6.36]is that it conveys this algebraic fact in a more geometric way.
Let’s take another look at quadratic forms over a finite field F (with odd characteristic).
If (V,Q) is a nondegenerate quadratic space over F with n := dim V' > 3, there is a null
vector in V (Theorem [6.23), so V= H L W and dimW =n — 2. If dim W > 3, there is a
null vector in W and we can split off another hyperbolic plane: V =2 H+2 1 W’. This can be
repeated until we reach a subspace of dimension < 2,s0 V= HL" | U form = [(n—1)/2]
and U is nondegenerate with dim U = 1 or 2. The analysis of U will duplicate our previous
work in low dimensions. If dim U = 1 then the underlying quadratic form on it is 22 or cx?
where ¢ is a (fixed) nonsquare in F*. If dimU = 2 then Q|y is universal (Corollary

so we can write it as 22 — ay? for some a # 0. Here a only matters modulo squares, so we
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can replace it with either 1 (if a is a square) or ¢ (if a is not a square). The first case gives
us a hyperbolic plane and the second doesn’t (no null vector). There are two choices for U
in both dimensions 1 and 2, which can be distinguished by their discriminants.

Since disc V = disc(H)" disc(U) = (=1)[(»=D/2l disc U, we have once again shown that
there are 2 nondegenerate quadratic forms of each dimension over F, and they can be
distinguished from each other by their discriminant (modulo nonzero squares, as always).
Moreover, this second approach gives another way to express the two choices of quadratic
forms in each dimension. Choosing coordinates in a hyperbolic plane so the quadratic form
is zy rather than 22 —y?, a nondegenerate n-dimensional quadratic form over F is equivalent
to

Tp—1%n, O
(6.10) T1Ty + T34+ T 3Tn-2+ S o T
n—1 " CTn,
if n is even and
2
x2, or
(6.11) T1%2 + T3Ta + -+ + Tp—aTp—3 + Tp—2Tn—1 + { "
cxs,

if n is odd.

While this second classification of quadratic forms over F appears more complicated than
Theorem [6.28] it more closely resembles the classification of nondegenerate quadratic forms
over finite fields with characteristic 2 (Theorem below).

We conclude this section with some odds and ends: a number of conditions equivalent
to nondegeneracy for a quadratic form and a theorem of Jordan and von Neumann on the
axioms for quadratic forms.

Theorem 6.37. Let Q be a quadratic form on V. The following conditions are equivalent:
(1) @ is nondegenerate, i.e., disc Q # 0,
(2) there is no basis of V in which Q can be written as a polynomial in fewer than n
variables, where n = dimV,

(3) using any basis of V' to express Q as a polynomial function, the only common solution
in'V to (0Q/0z;)(v) =0 for alli is v = 0.

Proof. To show (1) and (2) are equivalent, assume (2): @) can’t be written as a polynomial
in fewer than n variables. Then relative to an orthogonal basis {ej,...,e,} the diagonal
coefficients Q(e;) are all nonzero, so (1) holds.

Now assume @ can be written in fewer than n variables. That is, we can decompose V' as
a direct sum V; @ Vs of two nonzero subspaces such that Q(v) = Q(v1) for all v € V| where
vy is the projection of v onto its Vi-component. We will show V- # {0}, so Q is degenerate.
Note Q(V2) = {0}. Pick a nonzero w € V. For any v € Vi, Q(v + w) = Q(v). Therefore
Q(w) +2B(v,w) = 0. Since Q(w) = 0, we have w L v (because 2 # 0). Therefore w L V;.
For a second vector w’ € Vo, Q(w+w') = 0 and Q(w) = Q(w') =0, so 2B(w,w’) = 0. This
tells us w L V5. Thus w L V, so V*+ # {0}. (In particular, we found a nonzero element of
V+ at which @ vanishes.)

We now show (1) and (3) are equivalent. Choose a basis and write () as the polynomial
in . Then
gi = Z ik + 20T + Z AR T,

i<k k<j
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so all the partial derivatives vanish at a point (cy,...,¢,) if and only if
201 a1z -+ aip 1 0
ai19 2(12 e aon C2 0

(6.12) S . S| =
ain Qon - 2ap Cn 0

The matrix here is twice the matrix for @ in . The partial derivatives of @) all vanish
simultaneously only at 0 in F™ precisely when the matrix in is invertible, which is
equivalent to the matrix in being invertible (since 2 # 0 in F'), which is the definition
of  being nondegenerate. O

Remark 6.38. If we replace the quadratic form @ with a homogeneous polynomial of
degree greater than 2, the second and third properties of Theorem are no longer the
same [13, pp. 364, 376, 377].

Since @ is a homogeneous polynomial (once a basis is chosen), its zero set is naturally
a projective hypersurface. In terms of this hypersurface, the algebraic condition of nonde-
generacy for quadratic forms outside of characteristic 2 acquires a geometric interpretation
in dimension at least 3:

Corollary 6.39. Let V be an n-dimensional vector space over a field F' not of characteristic
2 and let Q@ be a nonzero quadratic form on V. Pick a basis to view @ as a homogeneous
polynomial function of n variables. If n > 3 then Q is nondegenerate on V if and only if
the projective hypersurface @ = 0 in P"1(F) is irreducible and smooth. If n = 2 then the
solution set to Q = 0 in PL(F) contains 2 points if Q is nondegenerate and 1 point if Q is
degenerate.

Proof. Suppose n > 3. If Q as a polynomial is reducible over F then @ = LjLy where the
L;’s are linear forms (homogeneous of degree 1) over F'. We will show from this factorization
that @ is degenerate on V, so any nondegenerate quadratic form on V is irreducible as a
polynomial over F' when n > 3.

The zero sets of L1 and Lo in F" have a common nonzero point: this is obvious if L, and
Lo are scalar multiples of each other, and if they are not scalar multiples then their zero
sets are hyperplanes in F" whose intersection has codimension n — 2 > 0. In either case,
let P be a common zero of L and Ly in F'* — {0}. Then

0 _ ) 22| ) 2 o
8@- P &vl P axl P

for all i. Applying Theorem to the polynomial Q as a quadratic form on F ', we see

that disc@ = 0. Therefore @ is degenerate on V too. (Concretely, if there is a nonzero

vector in F' at which all the partials of Q vanish then there is such a point in F™ because

a matrix with entries in F' that is not invertible over a larger field is also not invertible over

F itself.)

If @ is nondegenerate on V it is an irreducible polynomial over F, so the hypersurface
Q = 0 in P""!(F) is defined by a single irreducible polynomial over F. This hypersurface
is smooth since the partials 9Q/dz) do not all vanish at a common nonzero point in .
Conversely, if this hypersurface is irreducible and smooth then the partials 9Q/0x), do not
all vanish at a common nonzero point in F, so @ is nondegenerate over F and and thus
over F' (i.e.,on V).
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When n = 2, write () as ax? + by? in an orthogonal basis. This vanishes at two points
on P(F) when a # 0 and b # 0, which is equivalent to @ being nondegenerate on V. [

We have not yet mentioned an identity for quadratic forms called the parallelogram law:

(6.13) Qv+ w) + Qv —w) = 2(Q(v) + Q(w)).

To obtain this, replace w with —w in the equation Q(v + w) = Q(v) + Q(w) + 2B(v,w) to
get Qv —w) = Q(v) + Q(w) — 2B(v,w), and then add. The B-terms cancel. (When @Q is
22 4+ y? in the plane, (6.13)) says the sum of the squares of the diagonals of a parallelogram
is twice the sum of the squares of adjacent sides.) If instead we subtract, then we get

(6.14) Qv+ w) — Qv —w) =4B(v,w).
Since ((6.14]) describes B in terms of Q-values (in a different way than in (6.2))), could we
use (6.13) and (6.14)) as an alternate set of conditions for defining a quadratic form? This

was examined by von Neumann and J ordanﬂ They did not show @ is a quadratic form and
B is its bilinear form, but they came close:

Theorem 6.40. Let a function Q:V — F satisfy (6.13). Define B by (6.14). Then B is
symmetric, biadditive, and B(v,v) = Q(v).

Proof. We start by extracting a few properties from special cases of and (6.14)).
Setting w = v = 0 in implies 2Q(0) = 4Q(0), so Q(0) = 0. Setting w = v in
implies Q(2v) = 4Q(v). Setting w = —v in implies Q(2v) = 2(Q(v) + Q(—v)), so
4Q(v) = 2Q(v) +2Q(—v). Therefore Q(—v) = Q(v). Now set w = 0 in (6.14): 0 = 4B(v,0),
so B(v,0) =0. Set w = v in (6.14): Q(2v) = 4B(v,v), so B(v,v) = Q(v). Therefore

Bww) = Qv+ w)—Qu—w))

4
= QW+ w) + QW+ w) ~ 2QW) + Q) by (6.13
= QW+ w) — Q) — Qw)),

which is symmetric in v and w (and is the kind of formula we expected to hold anyway).
It remains to show B is biadditive. Since B is symmetric, we will just show additivity in
the second component. From ((6.14)),

4(B(v,w1) + B(v,wz)) = Qv+w)—Q(v—wi)+ Qv+ ws)

—Q(v —ws)
= Qu+w)+Qv+ws)—Qv—w)
—Q(v —ws)
= Qv+ wy ) + Qun — wa) -
1

5(Q(2v — w1 — w2) + Q(wy —w1)) by (6.13

1
= 3 Q(2v + wy + w2) — Q(2v — wyp — we))
= 2B(2v,w; + w3) by (6.14])).

"This is the physicist P. Jordan who introduced Jordan algebras, rather than the mathematician C.
Jordan, as in Jordan canonical form.
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Dividing by 4,
1
(6.15) B(v,w1) + B(v,wsz) = §B(2v,w1 + ws),

which is nearly what we want. Setting we = 0 in (6.15) and multiplying by 2, 2B(v,w;) =
B(2v,w;). Since w; is arbitrary, we get 2B(v, w1 + we) = B(2v,w; + wa). Therefore the
right side of (6.15)) is B(v,w; + we), so B is additive in its second component. O

Bi-additivity implies Z-bilinearity. Therefore B in Theorem is Q-bilinear if F' has
characteristic 0 and Fp-bilinear if F' has characteristic p, which means @ is a quadratic
form when F' = Q or Fp,. If F' = R then @ in Theorem is a quadratic form over R
if V is finite-dimensional and we add the extra assumption that @ is continuous (so B is
continuous and therefore is R-bilinear).

Exercises.

1. Diagonalize 2% +y? — 2?4+ 3zy —x2+6yz over Q. What is its signature as a quadratic
form over R?

2. When F has characteristic not 2, diagonalize Q(L) = Tr(L?) on Ma(F) using the
orthogonal basis in Exercise

3. When F has characteristic not 2, show det: Ma(F') — F' is a quadratic form. Find
its associated bilinear form and a diagonalization.

4. Show the quadratic forms 22 + 52 and 322+ 3y? over Q are inequivalent even though
they have the same discriminant (modulo squares).

5. Let K/F be a quadratic field extension not in characteristic 2. Viewing K as an
F-vector space, show the norm map Ng,p: K — F is a nondegenerate quadratic
form over F' without null vectors.

6. Let K = Q(f), where 6 is the root of an irreducible cubic f(X) = X® +aX + b
in Q[X]. Let Q: K — Q by Q(«a) = TrK/Q(aZ). Viewing K as a Q-vector space,
show @ is a quadratic form over Q which is determined up to equivalence by the
number 4a® + 27b%. (Hint: Diagonalize Q.)

7. Let B be any bilinear form on V', not necessarily symmetric. Show the function
Q(v) = B(v,v) is a quadratic form on V. What is its associated symmetric bilinear
form, in terms of B? How does this look in the language of matrices?

8. Let @ be a quadratic form on a real vector space V. If there are v and w in V' such
that Q(v) > 0 and Q(w) < 0, show v and w are linearly independent and there is a
null vector for @) in the plane spanned by v and w. Must this plane have a basis of
null vectors?

9. In RPY, let {e1,...,e,} be an orthogonal basis. Scale each e; so (e;,€;)pq = £1.
Show the number of e;’s with (e;, €;), ¢ = 1 is p and the number with (e;, €;)pq = —1
is gq.

10. Let V' be a nondegenerate real quadratic space of signature (p,q). Show p is geo-
metrically characterized as the maximal dimension of a positive-definite subspace of
V and ¢ is the maximal dimension of a negative-definite subspace of V. If W is a
p-dimensional positive-definite subspace of V', show W= is the unique ¢-dimensional
negative-definite subspace U such that U L W.

11. Show that a nondegenerate quadratic form over an ordered field has a well-defined
signature relative to that ordering: after diagonalization, the number p of positive
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coefficients and ¢ of negative coefficients in the ordering is independent of the di-
agonalization. Therefore we can talk about the signature (p,q) of a nondegenerate
quadratic form over an ordered field. (Hint: First show that in the 2-dimensional
case the diagonal coefficients have opposite sign precisely when the quadratic form
takes both positive and negative values in the ordering.)

12. In the text we classified nondegenerate quadratic spaces over C, R, and finite fields
with odd characteristic. What about the degenerate case? Show a quadratic form
on V induces a quadratic form on V/V+ that is nondegenerate and then show a
quadratic space (V, Q) is determined up to isomorphism by the dimension of vt
and the isomorphism class of the nondegenerate quadratic space V/ VL.

13. Let V be a real quadratic space that is possibly degenerate, and set d = dim V.
Let V/VL, which is nondegenerate by the previous exercise, have signature (p, q).
Thus dimV =p+q + d.

(1) Show the maximal dimension of a positive-definite subspace of V' is p and the
maximal dimension of a negative-definite subspace of V' is gq.

(2) If W is any p-dimensional positive-definite subspace of V show dim W+ = g+d
and W+ contains a ¢-dimensional negative-definite subspace.

(3) OnV = R3let Q(z,y, 2) = 22—y?. Checkp=q=d=1. Let W = R(1,0,0), a
p-dimensional positive-definite subspace of V. Find two different ¢g-dimensional
negative-definite subspaces of W+,

7. QUADRATIC FORMS IN CHARACTERISTIC 2

Fields of characteristic 2 have remained the pariahs of the theory.
W. Scharlau [12] p. 231]

The concrete definition of a quadratic form in characteristic 2 is just like that in other
characteristics: a function on a vector space that looks like a quadratic homogeneous poly-
nomial in some (equivalently, any) basis. To give a coordinate-free definition, we copy
Definition but leave out the %

Definition 7.1. A quadratic form on a vector space V over a field F' with characteristic 2
is a function @Q: V — F such that

(1) Q(cv) = c2Q(v) forv €V and c € F,
(2) the function B(v,w) := Q(v + w) — Q(v) — Q(w) is bilinear.

We will often use condition (2) as
(7.1) Qv+ w) = Q(v) + Qw) + B(v, w).

The function B is called the bilinear form associated to (). Formally, this B is double
the B from characteristic not 2. As in the case of characteristic not 2, we call dim V' the
dimension of the quadratic form and whenever we refer to a quadratic form “on F™” we
view F" as an F-vector space.

From now on, V is finite-dimensional.

To see that Definition turns a quadratic form into a quadratic homogeneous poly-
nomial in a basis, we argue in a similar manner to the case of characteristic not 2, except

certain factors of 2 will be missing.
Let Q: V — F satisfy Definition Inducting on the number of terms in ([7.1]),

(72) Qo+ +u) = Q1) + -+ Q(ur) + > B(vi,v;)

1<j
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for any r > 2 and vectors v; € V. (It’s also true when r = 1 by taking the empty sum to
be 0.) Letting {e1,...,e,} be a basis of V, we obtain from (7.2))

n
(7.3) Q(zre1 + -+ zpey) = Z a,,;ac? + Z ;T 5,
i=1 i<j

where a; = Q(e;) and a;; = B(e;, ej). Conversely, let Q: V' — F be a function defined by
(7.3) in a basis. For v = z1e1 + - - - + xpe, we can write Q(v) = [v] - N[v], where N is the

upper-triangular (not symmetric!) matrix

a1 a2 - Glp

0 as PPN aon
(7.4) N =

0 0 - ay

Clearly Q(cv) = c?Q(v). Letting v’ = xfe; + -+ + a/,ep, define
B(v,v') = Qv+1)—Q(v) — Q)
= [v+2] Nv+]—[v] N -] N[]
(7.5) = []-(N+ NP

This is a symmetric bilinear form on V', so @) is a quadratic form on V. The matrix for B
is

0 a2 - ay
(7.6) N4NT — a2 0 -+ a9,
A1n  Q2n - 0

Formally, this is the matrix obtained by multiplying by 2.

We could have used Definition to define quadratic forms in all characteristics. This
is the approach taken in [2], [3], [§], and [9]. For instance, outside of characteristic 2
the connection between quadratic forms and symmetric bilinear forms becomes B(v,v) =
2Q(v) instead of B(v,v) = Q(v). While some redundancy from a separate treatment of
characteristic 2 would be avoided by using Definition to define quadratic forms in all
characteristics, the bilinear form associated to Y ;" ; :UZQ would be twice the dot product.

We return to characteristic 2. The matrix for B in doesn’t involve the diagonal co-
efficients a; from . We have B = 0 if and only if all cross terms a;; vanish (equivalently,
B =0 if and only if @ has a diagonalization in some basis). When the characteristic is not
2 the cross terms of any quadratic form are 0 in a suitable basis, but we need cross terms
for @) in characteristic 2 if its associated symmetric bilinear form is not identically zero.

Example 7.2. Let F have characteristic 2 and let Q(z,y) = az? +bxy + cy? be a quadratic
form on F2. For v = (z,y) and v' = (2/,3') in F?,

=) (5 2)0)
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and

B(v,v") = Q(v+7)—Q(v)—Q(v)
= b(zy +2'y)

y b 0 y/ '

By definition, any quadratic form in characteristic 2 has an associated symmetric bilinear
form, but the correspondence from quadratic forms to symmetric bilinear forms in charac-
teristic 2 is neither injective nor surjective: different quadratic forms like 22 +zy and zy can
have the same symmetric bilinear form, and some symmetric bilinear forms like xz’ +yy’ do
not arise as the bilinear form of any quadratic form. In matrix language, every quadratic
form outside of characteristic 2 can be written as Q(v) = [v] - M[v] for some symmetric
matrix M, but this is not true in characteristic 2. A quadratic form in characteristic 2
with cross terms in a basis is not represented by a symmetric matrix in any basis. The
associated bilinear form, however, is always represented by a symmetric matrix. (See
and (7.6).) We have to be careful not to confuse a matrix like for a quadratic form in
characteristic 2 with a matrix like for its bilinear form.

A key observation is that the symmetric bilinear form associated to a quadratic form in
characteristic 2 is alternating:

B(v,v) = Q(20) — 2Q(v) = Q(0) — 0 = 0.

(The matrix in is indeed alternating.) In characteristic not 2, we were able to recover
Q@ from B since B(v,v) = Q(v), but in characteristic 2 we have B(v,v) = 0. Recall that
any alternating bilinear form is symmetric in characteristic 2. We should think about the
correspondence from () to B in characteristic 2 as a map from quadratic forms to alternating
(not just symmetric) bilinear forms. Then it is surjective, but still never injective (Exercises
and . That is, there is nothing like polarization in characteristic 2, so knowledge of
B alone does not let us recover Q. Some concepts that can be discussed equally well in the
language of quadratic forms or symmetric bilinear forms outside of characteristic 2 may no
longer have formulations in both of these languages in characteristic 2.

One concept expressible in both languages is orthogonality of vectors. In characteristic
not 2, Q(v+w) = Q(v) + Q(w) if and only if B(v, w) = 0. This is also true in characteristic
2 (check!), so the condition v L w, meaning B(v,w) = 0, can be described in terms of Q.

What is the characteristic 2 analogue of a diagonalization? Assume the bilinear form
B associated to an n-dimensional quadratic form @ in characteristic 2 is nondegenerate.
Then B is alternating and nondegenerate, so n = 2m is even and there is a symplectic basis
for B, say {e1, f1,.--,€m, fm}. When vi,... v, are any vectors in V that are mutually
perpendicular (i.e., B(v;,v;) = 0 for i # j), becomes

Qo1+ +v) =Qv1) +-- -+ Q(vr).

Therefore the expression of () in the symplectic basis for B is

Q(mrer +yrfi+ -+ Tmem + Ymfm) = > Qwiei +yifi)
=1
(7.7) = > (aiw] + ziyi + biy}),
=1
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where a; = Q(e;) and b; = Q(f;). Conversely, if a quadratic form @ looks like in some
basis then its bilinear form B has the matrix representation in a suitable ordering of
that basis (the coefficients a;, b; don’t show up in B), so B is nondegenerate.

The expression is a characteristic 2 analogue of the diagonalization except
all quadratic forms outside characteristic 2 can be diagonalized while only those in char-
acteristic 2 whose bilinear form is nondegenerate admit a representation in the form .
Instead of writing @ as a sum of monomials az?, we have written it as a sum of two-variable
quadratic forms ax? + zy + by?. A matrix for @ in this symplectic basis is block diagonal
with blocks ( blz) To extend to the degenerate case, assume V4 # {0}. Write
V =W @V for some subspace complement W. Then By is nondegenerate, so choosing
a symplectic basis of W and tacking on any basis of V1 to create a basis of V gives @ the
expression

m s
(7.8) Z(aﬂ? + Ty + biy]) + Z Cr 2
i=1 k=1

where dim W = 2m and dim V+ = r. The coefficients ¢;, are the coefficients from any choice
of basis for V1. For instance, if Q) vanishes at a nonzero vector in V1 then we can arrange
for some ¢ to be 0, so @ is a polynomial in fewer than n variables, where n = dim V.

We have referred already to the nondegeneracy of the bilinear form associated to a qua-
dratic form, but we have not yet defined what it means for a quadratic form to be nonde-
generate. The following theorem will be needed for that.

Theorem 7.3. Let Q: V — F be a quadratic form in characteristic 2, with associated
bilinear form B. The following conditions are equivalent:
(1) the only v € V that satisfies Q(v) =0 and B(v,w) =0 for allw € V isv =0,
(2) the function Q: V' — F is injective,
(3) there is no basis of V in which Q can be written as a polynomial in fewer than n
variables, where n = dimV,
(4) in any basis of V', the only common solution in V to Q(v) =0 and (0Q/0x;)(v) =0
for all i is v =0.

This is an analogue of Theorem m Since Y p_, 25 (0Q/0x) = 2Q, outside of charac-
teristic 2 the partials can all vanish only at a point where () vanishes. But in characteristic
2 we have to explicitly include the condition Q(v) =0 in (4).

Proof. Condition (1) is the same as saying the only element of '+ at which  vanishes is
0. For v and v in V+, Q(v +v') = Q(v) + Q(v'), so the kernel of Q: V+ — F is 0 if and
only if Q|1 is injective. Thus (1) and (2) are equivalent.

To show these conditions are equivalent to (3), a re-reading of the proof of Theorem [6.37]
shows that even in characteristic 2 if @ is a polynomial in fewer than n variables in some
basis of V' then V1 contains a nonzero vector at which @ vanishes. (One has to ignore
a few factors of 2 in that proof.) Conversely, if there is a nonzero vector in V+ at which
@ vanishes then the discussion surrounding shows @ is a polynomial in fewer than n
variables relative to some basis of V.

We now show (4) is equivalent to (2). Write @ as in (7.3). Then

oQ
8—% = ;alkxz + Z AT,

k<j
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so the vanishing of all the partials of @ at a point (cy,...,¢,) € F™ is equivalent to
0 a2 - anp c1 0
a9 0 cee aon, C2 0
aip, a2, -+ 0 Cn 0

The matrix here, call it M, is a matrix for B: B(v,w) = [v]- M[w] (see (7.6])). If the partials
all vanish at a nonzero point in F™, say v, then M[v] = 0. Since M' = M, M[v] = 0 is
equivalent to B(v,w) = 0 for all w € V, which is equivalent to v € V. That is,

d
VL:{UEVZ ai(v):Oforallz}.
Therefore a common solution in V' to Q(v) = 0 and (9Q/0z;)(v) = 0 for all i is the same
as an element of ker(Q|y 1), so (4) is equivalent to (2). O

Definition 7.4. A quadratic form in characteristic 2 is called nondegenerate when the
equivalent conditions in Theorem hold. Otherwise it is called degenerate.

Example 7.5. A nonzero 1-dimensional quadratic form is nondegenerate. In two dimen-
sions, the quadratic form ax?+bzy+cy? on F? is nondegenerate if b # 0 (i.e., V+ = {0}) or
if b=0 (so V+ = V) and ac is not a square in F. Otherwise it is degenerate. For instance,
xy on F? is nondegenerate while 22 + cy? is nondegenerate if and only if ¢ is a nonsquare
in F'*.

Example 7.6. Let Q(z,vy,2) = 2? +zy +y* + 22 be a quadratic form on F3. Its associated
bilinear form is B((z,y, 2), (¢/,vy,2")) = xy’ + 2'y, so B is a degenerate bilinear form.
However, we will see @) is a nondegenerate quadratic form according to Definition

In matrix notation,

T 1 1 0 T
Q(z,y,2)=| v 010 Yy
z 0 0 1 z

and the associated bilinear form has matrix
010
10 0|,
0 0O
whose kernel is V+ = F(0,0,1). Since Q(0,0,7) = 2, ker(Q|y+) = {0}.

Remark 7.7. If B is nondegenerate (that is, V+ = {0}) then Q is nondegenerate. Some
authors define @) to be nondegenerate in characteristic 2 only when B is nondegenerate. This
rules out odd-dimensional examples. However, there are odd-dimensional nondegenerate
quadratic forms according to Definition as we just saw.

In characteristic not 2, nondegeneracy of a quadratic form (defined as invertibility of
a representative symmetric matrix, with equivalent conditions given in Theorem [6.37)) is
unaffected by viewing it as a quadratic form over a larger base field. This is not usually
true in characteristic 2.
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Example 7.8. Let F have characteristic 2 and define Q on V = F? by Q(z,y) = 22 + cy?
where ¢ is a nonsquare in F. Then V' =V and Q is injective on V*, so Q is nondegenerate

=2 . . s
on F?. But Q becomes degenerate on F~ since c is a square in F.

Example 7.9. Letting ¢ again be a nonsquare in F', the quadratic form zy + 2% 4+ cw? on

. . =4 .
F*% is nondegenerate, but it is degenerate on F since the term 22+ cw? becomes a complete
square so the quadratic form can be written as a polynomial in fewer than 4 variables.

Definition 7.10. Let F' have characteristic 2 and Q: V — F be a quadratic form. A null
vector for @ is a nonzero v € V such that Q(v) = 0. We call Q universal if Q(V) = F.
Quadratic forms Qq: Vi — F and Q2: Vo — I are called equivalent if there is a linear
isomorphism A: Vi — V3 such that Q2(Av) = Q1(v) for all v € V].

Remark 7.11. These terms have the same meaning as they did outside of characteristic 2,
with one caveat: quadratic form equivalence and null vectors for a quadratic form outside
of characteristic 2 can always be defined in terms of the associated bilinear form, but this
is false in characteristic 2. For instance, in characteristic 2 B(v,v) = 0 for all v (B is
alternating) while the condition Q(v) = 0 is restrictive.

To get used to the characteristic 2 terminology in Definitions [7.4] and note that
Q: V — F is nondegenerate precisely when V- contains no null vectors for Q. (This is also
true outside of characteristic 2!) Equivalent quadratic forms either both have a null vector
or neither has a null vector. Any degenerate quadratic form has a null vector (just like in
characteristic not 2).

As further practice with the terminology we prove the following two theorems. The first
one is a characteristic 2 analogue of Theorem [6.24]

Theorem 7.12. If Q is nondegenerate and has a null vector then it is universal.

Proof. The proof will be very close to that of Theorem but note the few slight changes.

Let v be a null vector. Since Q(cv) = c2Q(v) = 0 and Q is not identically zero (otherwise
it couldn’t be nondegenerate), dim V' > 2. By nondegeneracy of @) there are no null vectors
in V+, so v ¢ V. Therefore there is a w € V such that B(v,w) # 0. Then for any ¢ € F,

Q(cv +w) = Q(cv) + Q(w) + B(cv,w) = Q(w) + B(v,w)ec.

Since B(v,w) # 0, this is a linear function of ¢ and therefore takes on all values in F' as ¢
varies. O

Theorem 7.13. Let Q: V — F be a nondegenerate quadratic form. If Q has a null vector
e, then it has a second null vector f such that B(e, f) = 1 and B is nondegenerate on the
plane Fe+ Ff.

Proof. Since @ is nondegenerate and e is a null vector, e ¢ V+. Therefore B(e,w) # 0 for
some w € W, so e and w are linearly independent. We can scale w so B(e,w) = 1. Let
¢ = Q(w). Then e and f := ce + w are linearly independent null vectors and B(e, f) = 1,
so B is nondegenerate on the plane Fe 1 F'f. O

Theorem [7.13| resembles the initial part of the construction of a symplectic basis for
B, but it is a stronger condition to say v is a null vector of @ (that is, Q(v) = 0) than
to say B(v,v) = 0. Besides, Theorem makes sense in odd dimensions, where B is
automatically degenerate and V' has no symplectic basis.
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We now turn to the classification of nondegenerate quadratic forms over a finite field F
with characteristic 2. We will use repeatedly that every element in F is a square.
We begin with a series of lemmas.

Lemma 7.14. Any quadratic form over F with dimension at least 3 has a null vector.

Proof. This is the characteristic 2 analogue of Theorem The odd characteristic proof
used an orthogonal basis, which is not available in characteristic 2.

Let @ be the quadratic form and B be its associated bilinear form. Pick v £ 0 in V. We
may suppose Q(v) # 0. Since dimv™ > n — 1 > 2, we can pick w € v with w ¢ Fv. Then
Q(w) = aQ(v) for some a € F. Write a = b%, so Q(w) = Q(bv) and w # bv. Since w L v,
Q(w+ ) =Q(w)+ Q(bv) =0 and w + bv # 0. O

The bound dim V' > 3 is sharp: there is a two-dimensional nondegenerate quadratic form
over F without null vectors (Exercise [7.3)).

Remark 7.15. There is a uniform proof of Theorem and Lemma for all finite
fields using the Chevalley—Warning theorem [7, pp. 143-145].

Lemma 7.16. Any quadratic form over F that is not identically zero is universal.

Proof. Let Q: V — F be a quadratic form and Q(vg) # 0. For ¢ € F, Q(cvg) = c2Q(vp).
Squaring on F is a bijection, so {c?Q(vg) : ¢ € F} = F. Therefore @ is universal. O

The analogous result for finite fields in odd characteristic (Corollary |6.27)) required non-
degeneracy and dimension at least 2.

Lemma 7.17. If Q: V — F is nondegenerate then dim V+ < 1. More precisely, V+ = {0}
if dim V is even and dimV+ =1 if dimV is odd.

Proof. Let B be the bilinear form attached to @), so B is alternating. The induced alternat-
ing bilinear form on V/V+ is nondegenerate, so dim(V/V ") is even. Therefore the second
part of the theorem (knowing dim V+ from the parity of dim V') will follow once we know
dimV+ < 1.

Suppose V- # {0} and v is a nonzero vector in V1, so Q(vy) # 0. We want to show
V+ = Fug. For any v’ € V+, Q(v') = aQ(vo) for some a € F. Write a = b? for some b € F.
Then Q(v') = Q(buy), so Q(v' — bug) = 0 (Q is additive on V+). By nondegeneracy of @,
v —bvg =0, so v’ = bug. Therefore V+ = Fuy. O

Remark 7.18. For quadratic forms : V' — F over a finite field with characteristic 2,
Remark [7.7 and Lemma tell us that nondegeneracy of @ is the same as nondegeneracy
of its bilinear form when dim V' is even.

In the classification of quadratic forms over finite fields with odd characteristic, the dis-
criminant plays a key role. In characteristic 2 the discriminant is useless because every
element of F is a square. Instead of working with squares and nonsquares in the multi-
plicative group of the finite field, we will work with values and nonvalues of the function
@: F — F given by p(a) = a® + a. The function g is additive and has kernel {0,1}, so ¢
takes on half the values in F. Moreover, F/p(F) has size 2, so the sum of two non-p values
in F is a p-value. (Note the analogy to squaring nonzero numbers in odd characteristic,
where the kernel is {1}, half the nonzero elements are squares, and the product of two
nonsquares is a square.)
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Theorem 7.19. Fiz c € F — p(F). Let Q be a nondegenerate quadratic form on V where
dimV is 1, 2, or 3. Then @ is equivalent to one of the following:

(1) z? in dimension 1,

(2) zy or 2% + 2y + cy? in dimension 2, and these are inequivalent,

(3) xy + 22 in dimension 3.

Proof. Any nondegenerate one-dimensional quadratic form looks like az? in a basis, and a
is a square in F, so the quadratic form is equivalent to z2.

We now turn to the two-dimensional case. The quadratic forms zy and 22 + zy + cy? on
F? are inequivalent, since the first one has a null vector (such as (1,0)) and the second one
does not: if it had a null vector (zg, yo) then yo # 0 and then ¢ = (z0/y0)? + zo/yo € p(F).

It remains, in the two-dimensional case, to show () has one of the two indicated forms in
some basis. Since () is universal by Lemma pick v such that Q(v) = 1. By Lemma
V+ = {0}, so B is nondegenerate. Therefore there is a w such that B(v,w) = 1. Then
{v,w} is a basis of V' and

Q(zv + yw) = Q(av) + Qyw) + B(xv,yw) = &* + zy + Q(w)y>.
If Q(w) = a® + a for some a, then
2+ ay + Qw)y® = 2 + ay + (a® + a)y® = (z + ay)(z + (a + 1)y) = 2’y
where 2’ = 2+ ay and ¢/ = x + (a + 1)y. Therefore Q is equivalent to zy. If Q(w) # a®> +a
for any a then Q(w) = c in F/p(F), so Q(w) + ¢ = a® + a for some a € F. Thus
2oy + Q) =2+ ay+ (a®> +a+ )y’ = (x+ay)? + (x4 ay)y + ey,

which is the same as 22 + zy + cy? after a linear change of variables.

Now we treat the three-dimensional case. By Lemma there is a null vector, say e.
By Theorem there is a null vector f such that B(e, f) = 1 and B is nondegenerate
on the plane Fe + Ff. In particular, this plane meets V1 in {0}. Lemma says V-
is one-dimensional, so any nonzero element of V- along with e and f gives a basis of V.
Let g be a nonzero vector in V+, so Q(g) # 0 by nondegeneracy, Since Q(ag) = a*>Q(g), by
rescaling g we can suppose Q(g) = 1. Since g L (Fe + Ff),

Qze+yf +z9) = Q(re + yf) + Q(z9) = zyBle, f) + 2°Q(g) = xy + 27,
which is what we want since {e, f, g} is a basis. O

Theorem 7.20. Fizc € F — p(F). Forn > 2, any n-dimensional nondegenerate quadratic
form over F is equivalent to exactly one of

Lp—1Ln, OT
T1%2 + 23T + -+ Tp—3Tp-2+ ¢ o 9
Ty _1+ Tp_1%n + CTy,
if n is even and
2
T1x2 + X324 + - + Tp—2Tn-1 + T,

if n is odd.

This is comparable to (6.10) and (6.11)), except there is just one choice when n is odd.
The theorem is not asserting that the two choices in the even case are inequivalent, although
that does turn out to be true. We will return to this issue after proving the theorem.
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Proof. We induct on n. By Theorem [7.19] we can suppose n > 4.

Let @ be a nondegenerate quadratic form on V, where n = dim V. By Lemma [7.14] there
is a null vector for @, say v. By Theorem [7.13] there is an independent null vector w such
that B(v,w) = 1 and B is nondegenerate on the plane U = Fv + Fw. Since @) has a null
vector in U, Q|y looks like zy in a suitable basis by Theorem

Assume n is even. Then V+ = {0}: B is nondegenerate on V. Thus V = U @ U+ and
B|y1 is nondegenerate (Theorem [3.11)). Therefore Q|;;1 is nondegenerate (Remark [7.18).
We are now done by induction.

Assume n is odd, so n > 5. Then dim V1 = 1 by Lemma Since @ is not identically
zero on V1 by nondegeneracy, Q| . is 2% in a suitable basis. Let W be a subspace of V
complementary to V+: V =W @ V=+, dim W is even and Bl is nondegenerate. Therefore
(Remark Q|w is nondegenerate. By the even-dimensional case (for dimension n — 1)
Q|w is equivalent to one of

Tn—2Lp—1, OT
T1T2 + X304 + -+ Tp—4Tpn-3 + 4 o 9
Ty 9+ Tp9Xp—1+CT;_q.

Since Q@ = Q|w + Q|+ and Q| . looks like x2 in a suitable basis, the expression of @ in
the combined basis for W and V* looks like one of
Tp—2Tn—1 + x?’m or

7.10 T1Zo + X324+ + Tp—4Tp_3 +
( ) e :1:72172 + Xp_oTp_1+ 0333171 + a:%

The two “end choices” here are xy + 22 and z2 4+ 2y + cy? + 22. By generalizing Example
22 + zy + cy® + 2% is a nondegenerate quadratic form on F3. It is equivalent to zy + 22
by Theorem so the two possible expressions for @ in ([7.10]) are equivalent. O

We now explain why the two representative quadratic forms when n is even are inequiv-
alent.

The smallest case, n = 2, involves zy and 22 + xy + cy? where ¢ € p(F). These can be
distinguished by counting null vectors in F2: xy has some and 2% 4+ zy + cy® has none. The
same idea works for even n > 2: the two n-dimensional quadratic forms in Theorem [7.20]
don’t have the same number of null vectors, so they are inequivalent. We will prove this by
counting.

Definition 7.21. Let @Q: V — F be a quadratic form over F. Set 2(Q) = #{v € V :
Q(v) =0}

The number z(Q) is 1 more than the number of null vectors of Q.

Example 7.22. If V = F? and Q: V — F is nondegenerate then Q is equivalent to
either zy or x? + zy + cy?, where ¢ € p(F). A calculation shows z(zy) = 2¢ — 1 and
2(2? + 2y + cy?) = 1, where ¢ = #F.

Any nonzero quadratic form Q over F is universal (Lemma [7.16)), so the sets Q~1(a) are
all nonempty as a varies in F. Moreover, () takes on each nonzero value in F equally often:
if @ € F* and we write a = b?, then the sets Q@ '(a) and Q~!(1) are in bijection using
v <+ (1/b)v. However these sets need not be in bijection with Q~1(0), as we can see already
in the case of Q(z,y) = zy: #Q 1(a) = ¢—1 for a # 0 and #Q~1(0) = 2¢ — 1, where
q = #F. The number 2(Q) = #Q1(0) is therefore distinctive.
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Lemma 7.23. Let Q: V — F be a quadratic form over F and set ¢ = #F'.
the quadratic form zy on F2,

2(Q L h) =qz(Q) + (¢ — )#V,
where Q L h is the quadratic form on 'V & F? given by (Q L h)(v,u)

Proof. The vanishing of (Q L h)(v,u) is equivalent to Q(v) =
separately according to h(u) = 0 and h(u) # 0:

2(Q L h) #{(v,u) : Q(v)
Z #Q 7 (h(w))

Z#Q

Writing h for

= Q(v) + h(u).
h(u). We count this event

h(u)}

+ ) #Q7Y(

h(u)= h(u)#0
= )+ > #QT
h(w)#£0
= (20— 1)z(Q) + (¢" — 2(h)#Q~ (1)
= (2¢—-1)2(Q) + (¢ — 1)*#Q~'(1).

We have #Q (1) =
often. Substitute this into the formula for z(Q) L h) and simplify.

Theorem 7.24. For n = 2m with m > 1,

(#V — 2(Q))/(¢g — 1) since Q: V — F takes nonzero values equally
O

2m—1 4 m—1

2(1172 + X324+ + Tp_3Tp—2 + Tn_1Tn) = ¢ q" -

and
m—1 qm + qm—l.
So the two quadratic forms for even n in Theorem [7.20] are inequivalent.

Proof. Induct on m, using Example and Lemma [7.23]

2 2 2
Z(r1292 + 2324 + - + Tp_3Tp—2 + 25 | + Tp_1Tp +cT;) = ¢

0

Table [3] compares quadratic forms in different characteristics. In the table QF means
quadratic form, SBF and ABF refer to symmetric/alternating bilinear forms, and F is a
finite field.

Characteristic not 2

Characteristic 2

Bijection QF to SBF

Q) = [v] - M[v], M symm.
B(v,w) = [v] - M[w]
B(v,v) = Q(v)

B(v,w) =0 < Qv+ w) =Qv) + Q(w)
@ nondeg. 2-d w/ null vec. = Q ~ zy
Two nondeg. in each dim. over F

Surjection QF to ABF

Q(v) = [v] - N[v], N upper-tri.
B(v,w) = [v] - (N + N T)[w]
B(v,v) =0
Same
Same

Same in even dim.,
one in each odd dim.

TABLE 3. Quadratic Form Comparisons

An alternate approach to the inequivalence of the two quadratic forms over F in each
even dimension can be based on a characteristic 2 substitute for the discriminant: the Arf
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invariant. This can be defined fairly (but not completely!) generally, not just over finite
fields. Let F' have characteristic 2 and let ) be a quadratic form over F' whose bilinear
form B is nondegenerate. (This is only a special case of nondegenerate @), but when F
is finite it is exactly the case of nondegenerate even-dimensional quadratic forms, which
is the application we have in mind anyway.) When @ is expressed as in , the Arf
invariant of @ is defined to be the class of the sum > " | a;b; in the additive group F/p(F).
Equivalently, if n = 2m and {ey, fi1,...,em, fm} is a symplectic basis of V' then the Arf
invariant of @) is

(7.11) > Q(e)Q(fi) mod p(F).
i=1

The quadratic form 22 4+ zy + cy? has Arf invariant c.

The Arf invariant is an invariant: changing the symplectic basis changes by an
element of p(F"). See [4] or [11), pp. 340-341] for a proof. In particular, equivalent quadratic
forms having nondegenerate bilinear forms have the same Arf invariant.

The classification of nondegenerate quadratic forms over finite fields with characteristic
2 extends to perfect fields. Lemmas [7.14] [7.16], and [7.17] work for perfect fields. Over any
perfect field F' of characteristic 2, there is one equivalence class of nondegenerate quadratic
forms in each odd dimension and #(F/p(F')) equivalence classes in each even dimension
(distinguished by the Arf invariant).

We end our discussion of quadratic forms in characteristic 2 with the terminology of
quadratic spaces.

Definition 7.25. A quadratic space in characteristic 2 is a vector space over a field of
characteristic 2 equipped with a choice of quadratic form on it.

If (V,Q) is a quadratic space in characteristic 2 then it provides us with an alternating
bilinear space (V,B), where B(v,w) = Q(v + w) — Q(v) — Q(w). This correspondence
from quadratic spaces to alternating bilinear spaces in characteristic 2 is surjective but not
injective. That is, a quadratic space has more structure than an alternating bilinear space
in characteristic 2.

Definition 7.26. A hyperbolic plane in characteristic 2 is a two-dimensional quadratic space
in characteristic 2 where the quadratic form looks like xy in some basis.

Example 7.27. Let V = F2, Qi(z,y) = 2% + 2y, and Qa2(z,y) = 2® + 2y + cy? where
c € F— p(F). Both @1 and ()2 have the same (nondegenerate) bilinear form B(v,w) =
v-(§§)w, but (V, Q1) is a hyperbolic plane while (V, Q2) is not. Thus a hyperbolic plane in
the sense of quadratic spaces in characteristic 2 is stronger than in the sense of alternating
bilinear spaces in characteristic 2 (Exercise .

Theorem 7.28. Let (V,Q) be a two-dimensional quadratic space. The following conditions
are equivalent:
(1) (V,Q) is a hyperbolic plane,

(2) Q is nondegenerate and has a null vector.

Proof. This proof will be different from that of the analogous Theorem |6.18
Clearly the first condition implies the second. Now we show the converse. Let v be a
null vector for ) and let B be the bilinear form associated to ). By Theorem there is
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a null vector w such that B(v,w) = 1. Using the basis {v, w},

Qav + yw) = Q(av) + Qyw) + Blav, yuw) = zyB(v,w) = ay.
O

Definition 7.29. Let F have characteristic 2 and (V1, Q1) and (V3, Q2) be quadratic spaces
over F'. Their orthogonal direct sum Vi 1 V5 is the vector space Vi & Vo with the quadratic
form Q(v1,v2) = Q1(v1) + Q2(v2). The quadratic spaces (V;, Q;) are called isomorphic if
there is a linear isomorphism A: V; — V5 such that Q2(Av) = Q1(v) for all v € V7.

We used orthogonal direct sums already in Lemma All hyperbolic planes over F'
are isomorphic. We denote a hyperbolic plane over F' as H or H(F).

Theorem [7.20]says every nondegenerate quadratic space over a finite field of characteristic
2 is isomorphic to HY™ L W where dimW < 2. This matches the situation in odd
characteristic, except when dim W = 1 there are two choices for W in odd characteristic
but only one choice in characteristic 2.

For further discussion of quadratic forms in characteristic 2, see the last chapters of [6].
Other references are [§], [9], [10], and [11].

Exercises.

1. When F has characteristic 2, decide if the following quadratic forms are nondegen-

erate:

(1) Q(z,y,2) = az? + xy + by* + c2? on F3 with ¢ # 0,

(2) Q(z,y, 2,t) = 2y +yz + 2t on F*,

(3) det: Ma(F) — F,

(4) Q(L) = Tr(L?) on Endp(V, V) for finite-dimensional V.

2. If ¢ € p(F), show by an explicit linear change of variables that 22 + 2y + cy? is
equivalent to xy.

3. Redo Exercise when F has characteristic 2, but show the quadratic form Ng/p
is nondegenerate if and only if K/F is separable. When F' = F is finite show N /F
looks like 2 + cxy + y? in some basis, where T2 + ¢T" + 1 is irreducible over F. Is
this true for finite fields of odd characteristic?

4. Let V be n-dimensional over a field F' of characteristic 2. Let B be an alternating
bilinear form on V and {ey,...,e,} be a basis of V. For any a1, ...,a, in F, show
there is a unique quadratic form @ on V such that Q(e;) = a; for all i and the
bilinear form associated to @ is B.

5. When F has characteristic 2 and @ is a quadratic form on F"™, let N be a matrix
representing @) in the standard basis: Q(v) = v - Nv for v € F™. Show a matrix
represents () in the standard basis if and only if it has the form N 4+ A where A is
an alternating matrix.

6. Let F have characteristic 2. Show explicitly that if ax?+zy+by? and a'z? 4 zy+b'y?
are equivalent then ab = a/b' mod p(F). Do not assume F is perfect. Is the converse
true for all F'?

7. Let n be a positive even integer and F be a finite field with characteristic 2. For
a nondegenerate n-dimensional quadratic form @ over F, its Arf invariant ([7.11]
is one of the two classes in F/p(F). Set ny(Q) = #{v € V : Q(v) € p(F)} and
n_(Q) = #{v e V: Qv) ¢ p(F)}. Use Theorem to show these numbers
equal ¢"(¢" £ 1)/2, with ny(Q) > n_(Q) when @ has Arf invariant p(F) and
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n_(Q) > ny4(Q) when @ has Arf invariant # p(F). Therefore the Arf invariant of
@ is the class of F/p(F) where @ takes the majority of its values. (Topologists call
this “Browder’s democracy” [I, Prop. I11.1.18].)

8. Here is a “proof” that dimp(V+) < 1 for a nondegenerate @ over any field F of
characteristic 2. By the definition of nondegeneracy, Q: V+ — F is injective, so
dimp(V+1) equals the F-dimension of its image. An injective map in linear algebra
does not increase dimensions, so dimg(V+) < dimp F = 1. Where is the error?

8. BILINEAR FORMS AND TENSOR PRODUCTS

At the end of Section[I] we saw that a bilinear form B on a vector space V can be thought
of in two ways as a linear map V' — V"V, namely Lg and Rpg. For finite-dimensional V'
we saw in Section [2| that the matrix of B in a basis of V is also the matrix of Rg, while
the matrix for Lp is the transpose of that for Rp since Lg and Rp are dual to each other
(Theorem . Having the matrix for B match that of Rp rather than Lp is entirely an
accident of the convention that we write general bilinear forms on F™ in terms of the dot
product on F™ as v - Aw rather than as Av - w for varying matrices A € M,,(F'). A purist
might ask if there is a way to think about a bilinear form as a linear map without taking
preference for Rp over Lp or wvice versa. There is, using tensor products.

The tensor product construction turns bilinear maps into linear maps. If we have a
bilinear form B : V xV — F, we obtain for free a linear map Tp: V®rV — F characterized
by its value on simple tensors: Tp(v ® w) = B(v,w). Whereas Lp and Rp both map V to
VV, Tg maps V ®p V to F. From any linear map 7: V ®r V — F we get a bilinear form
Br:V xV — F by Br(v,w) = T(v® w). The correspondences B ~» T and T ~» Br
are bijections between the bilinear forms on V' and the linear maps V @ p V' — F'. Linear
maps to F' means dual space, so the space Bil(V') of all bilinear forms on V' is naturally
identifiable with (V ®x V)V, which is naturally isomorphic to V¥ @z VY = (VV)®? using
(@) (v®w) = p()Y(w). Thus the bilinear forms on V “are” the elements of (V)2

One new thing we can do with bilinear forms in the tensor product language is multiply
them in a natural way. This is worked out in Exercise Recall that if we think about
bilinear forms on V as linear maps V — V'V it makes no sense to compose such maps, so
multiplication of bilinear forms was a meaningless concept before.

Another advantage to tensor products is its use in extending a bilinear form to a larger
scalar field. First we describe this construction without tensor products. When we write
a bilinear form as a matrix, so it becomes a bilinear form on F", we can view it as a
bilinear form over a larger field K O F' by having the same matrix act as a bilinear form on
K™. (Why do this? Well, one might want to study a real bilinear form over the complex
numbers.) If we use a different basis the bilinear form becomes a different matrix, and
thus a different bilinear form on K. This second bilinear form on K™ is equivalent to the
bilinear form on K™ from the first matrix, so this operation passing from bilinear forms
over F' to bilinear forms over K is well-defined if the result is considered as a bilinear form
on K™ up to equivalence. Clearly it would be nicer if we had a coordinate-free way to pass
from a bilinear form over F' to a bilinear form over K and not something defined only up
to equivalence. Using tensor products as a device to extend scalars, we can achieve this. If
B:V xV — F is bilinear and K/F is a field extension, then we obtain a bilinear form BX
on K ®p V whose values on pairs of simple tensors are

BX(a® v, ®w) = aBfB(v,w).
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That this formula yields a well-defined bilinear form BX on K ®p V comes from the way
one constructs maps out of tensor products, and is left to the readerﬁ Using an F-basis
for V as a K-basis for K ®p V, the matrix associated to BX is the same as the matrix
associated to B, so we recover the previous matrix-based construction.

In a similar way, a quadratic form Q: V — F can be extended to a quadratic form
Q¥ : K ®p V — K, whose value on a simple tensor is

Q" (a ®v) = a®Q(v).

The bilinear form associated to Q¥ is the extension to K of the bilinear form associated
to Q. In concrete language, all we are doing here is writing a homogeneous quadratic
polynomial with coefficients in F' as a polynomial with its coefficients viewed in K. The
tensor language makes the construction coordinate-free.

Returning to the issue of Lp versus Rp, we can consider the choice that is always available
between them by thinking about a general bilinear map V x W — U where V, W, and U
are any F-vector spaces. Such a bilinear map corresponds to a linear map V @ W — U,
and there are natural isomorphisms

Homp(V @p W,U) = Homp(V, Homp(W,U)),

Homp(V @p W,U) = Homp (W, Homp(V,U)).

The first isomorphism turns f € Homp(V@pW,U) into v — [w — f(v®@w)] and the second
isomorphism turns f into w — [v — f(v®w)]. In the special case W =V and U = F these
becomes the two different isomorphisms of (V @ V)Y with Hompg(V, V") by B — Lp and
B +— Rp. In the most general setting, though, we see Lp and Rp are analogues of linear
maps between different spaces.

The two special classes of bilinear forms, symmetric and alternating, can be described in
the language of symmetric and exterior squares. Viewing a bilinear form as a linear map
V®prV — F, it is symmetric when it kills all tensors of the form v ® w — w ® v and it
is alternating when it kills all tensors of the form v ® v. Therefore a symmetric bilinear
form B is the same thing as a linear map Sym?(V) — F sending v - w to B(v,w), where
- is the symmetric product in Sym?(V') (not the dot product, which only makes sense on
vectors in F™ anyway). An alternating bilinear form B is the same thing as a linear map
A%(V) — F sending v A w to B(v,w). Again, linear maps to F form the dual space, so
symmetric bilinear forms on V are the elements of Sym?(V)¥ and alternating bilinear forms
on V are the elements of A?(V)Y. We can identify Sym?(V)Y with Sym?(V") and A%(V)Y
with A2(V'V).

While Sym?(V') and A?(V) are properly defined as quotient spaces of V2, outside of
characteristic 2 we can identify these with subspaces of V®2, using v ® w +w ® v in place of
v-w € Sym?(V) and v ® w — w ® v in place of v A w € A?(V). Using these identifications,

the formula v ® w = (v @ W+ w ® v) + (v ® w — w ® v) on simple tensors shows
V®2 = Sym?(V) @ A%(V). Replacing V with V'V, we get
(8.1) (VY)®2 = Sym*(VY) @ A*(VY),

8There is not just one construction of the tensor product, and different constructions will produce only
equivalent bilinear forms over K, so we haven’t really removed the “up to equivalence” aspect of the con-
struction by comparison to the matrix viewpoint. But the tensor construction is more elegant, and is
coordinate-free.
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outside of characteristic 2, which is the coordinate-free expression of a general bilinear form
as a unique sum of a symmetric and skew-symmetric bilinear form (Theorem .

Remark 8.1. There is a “flip” automorphism on (VV)®? = VV @ V" determined by ¢ ®
1 +— 1 ® ¢, which has order 2. When the characteristic of F'is not 2, VYV ®r V" decomposes
into the +1-eigenspaces for the flip automorphism, and this eigenspace decomposition is

B1).

Exercises.

1.

If (V1, By) and (Va, By) are bilinear spaces, show V; ®p V5 is a bilinear space using
(B1 ® B2)(v1 @ v, v] @ vh) := Bj(v1,v])Ba(ve,v}). (The proof that By ® By is well-
defined can be simplified using Exercise ) This can be considered a multiplication
for bilinear forms. If By and Bs are both symmetric, show By ® By is symmetric.
If B; and Bs are both alternating, or both skew-symmetric, does By ® By inherit
the same property?

. Viewing bilinear forms on V as elements of (VV)®2 we can use By and By in the

first exercise to form the simple tensor By ® By in (V}Y)®? @ (V,/)®2, a vector space
that is naturally isomorphic to (VY ®@p V,)®2. If we further identify V¥ @p V5’
with (V4 ®p V2)Y, show that the simple tensor By ® By in (V}Y)®? @p (Vy/)®? gets
identified with the function By ® By on (Vi ®p V52)®? in the previous exercise.

. For bilinear spaces Vi and V5, describe the discriminant of V; ® ¢ V5 in terms of the

discriminants of V] and V5. Conclude that V) ® g V5 is nondegenerate if and only if
V1 and V4 are nondegenerate.

For quadratic spaces (V1,Q1) and (Va,Q2), show Vi ®p V5 becomes a quadratic
space using (Q1 ® Q2)(v1 ®v2) = Q1(v1)Q2(v2). If By and By are the bilinear forms
associated to Q1 and )2 respectively, show the bilinear form associated to Q1 ® Q2
is B1 ® By from the first exercise. Allow fields of characteristic 2.

. Let (V1,Q1) and (V2, Q2) be nondegenerate quadratic spaces over a common field not

of characteristic 2. Express the quadratic forms relative to orthogonal bases as Q1 =
S a;z? and Qo = > bjy]z. Show the quadratic form Q1 ® Q2 has a diagonalization

b z2
D45 aibjzij-

. Let B and B’ be positive-definite symmetric bilinear forms on V and V', with

orthogonal bases {e;} in V and {e}} in V’. Show the set of elementary tensors
{e; @€’} is an orthogonal basis for the symmetric bilinear form B® B’ on V ®gr V",
and that B ® B’ is positive-definite.
(Continuation of Exercise Let < be an ordering on a field . When @Q is
a nondegenerate quadratic form over F' with signature (p,q) relative to <, define
sign_(Q) = p — q € Z. For nondegenerate quadratic forms @ and Q" over F, show
sign(Q 1 Q) = sign(Q) + sign (@) and sign _(Q ® Q') = sign.(Q) sign_(Q) ]
In particular, if /' = R and @ and @’ are positive-definite then Q ® Q’ is positive-
definite.
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