SIMULTANEOUSLY ALIGNED BASES

KEITH CONRAD

Let R be a PID, n be a positive integer, and M be a finite free R-module of rank n. By the structure theorem for modules over a PID, for any submodule M^{\prime} of M also having rank n (to be called a full submodule of M) we can find a basis e_{1}, \ldots, e_{n} of M and nonzero a_{1}, \ldots, a_{n} in R such that $a_{1} e_{1}, \ldots, a_{n} e_{n}$ is a basis of M^{\prime}. We call such a pair of bases of M and M^{\prime} aligned.

Pick two full submodules of M, say M^{\prime} and $M^{\prime \prime}$. If there is a basis e_{1}, \ldots, e_{n} of M and two sets of nonzero $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ and $a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}$ in R such that

$$
M=\bigoplus_{i=1}^{n} R e_{i}, \quad M^{\prime}=\bigoplus_{i=1}^{n} R a_{i}^{\prime} e_{i}, \quad M^{\prime \prime}=\bigoplus_{i=1}^{n} R a_{i}^{\prime \prime} e_{i}
$$

then we'll say M^{\prime} and $M^{\prime \prime}$ admit simultaneously aligned bases. Do such bases always exist? Of course if R is a field then they do because the only full submodule of M is M, so the situation is trivial.

The following example shows simultaneously aligned bases need not exist in R^{2} if R is not a field.

Example 1. Let R be a PID that is not a field, so R contains prime elements. Let π be prime in R. Inside R^{2} set

$$
\begin{equation*}
M^{\prime}=R\binom{1}{0}+R\binom{0}{\pi^{2}}=\left\{\binom{x}{y}: y \equiv 0 \bmod \pi^{2}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{\prime \prime}=R\binom{\pi}{0}+R\binom{1}{\pi}=\left\{\binom{x}{y}: y \equiv 0 \bmod \pi, \pi x \equiv y \bmod \pi^{2}\right\} \tag{2}
\end{equation*}
$$

First we determine an aligned basis for M^{\prime} and for $M^{\prime \prime}$ as submodules of R^{2}. The first one is easy: $M^{\prime}=R\binom{1}{0}+R \pi^{2}\binom{0}{1}$, so we can use $\left\{\binom{1}{0},\binom{0}{1}\right\}$ as a basis of R^{2} and $\left\{\binom{1}{0}, \pi^{2}\binom{0}{1}\right\}$ as a basis of M^{\prime}. For $M^{\prime \prime}$, we rewrite it as

$$
M^{\prime \prime}=R\binom{0}{\pi^{2}}+R\binom{1}{\pi}=R \pi^{2}\binom{0}{1}+R\binom{1}{\pi},
$$

so we can use $\left\{\binom{0}{1},\binom{1}{\pi}\right\}$ as a basis of R^{2} and $\left\{\pi^{2}\binom{0}{1},\binom{1}{\pi}\right\}$ as a basis of $M^{\prime \prime}$. Using these aligned bases we see that R^{2} / M^{\prime} and $R^{2} / M^{\prime \prime}$ are both isomorphic to $R /\left(\pi^{2}\right)$.

Suppose there is some basis $\left\{e_{1}, e_{2}\right\}$ of R^{2} and nonzero $a_{1}, a_{2}, b_{1}, b_{2}$ in R such that $\left\{a_{1} e_{1}, a_{2} e_{2}\right\}$ is a basis of M^{\prime} and $\left\{b_{1} e_{1}, b_{2} e_{2}\right\}$ is a basis of $M^{\prime \prime}$. We are going to get a contradiction. Since $R^{2} / M^{\prime} \cong R /\left(a_{1}\right) \times R /\left(a_{2}\right)$ and $R^{2} / M^{\prime \prime} \cong R /\left(b_{1}\right) \times R /\left(b_{2}\right)$, from the known structure of R^{2} / M^{\prime} and $R^{2} / M^{\prime \prime}$ we have

$$
\begin{equation*}
\left(a_{1} a_{2}\right)=\left(\pi^{2}\right), \quad\left(b_{1} b_{2}\right)=\left(\pi^{2}\right) \tag{3}
\end{equation*}
$$

Write $e_{1}=\binom{x_{1}}{y_{1}}$ and $e_{2}=\binom{x_{2}}{y_{2}}$, so being a basis of R^{2} is equivalent to

$$
\begin{equation*}
x_{1} y_{2}-x_{2} y_{1} \in R^{\times} . \tag{4}
\end{equation*}
$$

Granting (3), to have $\left\{a_{1} e_{1}, a_{2} e_{2}\right\}$ be a basis of M^{\prime} and $\left\{b_{1} e_{1}, b_{2} e_{2}\right\}$ be a basis of $M^{\prime \prime}$ is equivalent to having $a_{1} e_{1}$ and $a_{2} e_{2}$ lying in M^{\prime} and $b_{1} e_{1}$ and $b_{2} e_{2}$ lying in $M^{\prime \prime}$.

Having $a_{1} e_{1}=\binom{a_{1} x_{1}}{a_{1} y_{1}}$ and $a_{2} e_{2}=\binom{a_{2} x_{2}}{a_{2} y_{2}}$ in M^{\prime} is equivalent to $a_{1} y_{1}, a_{2} y_{2} \equiv 0 \bmod \pi^{2}$. By (4), y_{1} and y_{2} can't both be divisible by π, so one of a_{1} or a_{2} is divisible by π^{2}. Therefore by (3), $\left\{\left(a_{1}\right),\left(a_{2}\right)\right\}=\left\{(1),\left(\pi^{2}\right)\right\}$. So far the roles of e_{1} and e_{2} have been symmetric, so without loss of generality we can take

$$
\left(a_{1}\right)=(1), \quad\left(a_{2}\right)=\left(\pi^{2}\right)
$$

Therefore $y_{1} \equiv 0 \bmod \pi^{2}$, so $y_{2} \not \equiv 0 \bmod \pi$ (because y_{1} and y_{2} are relatively prime).
Having $b_{1} e_{1}=\binom{b_{1} x_{1}}{b_{1} y_{1}}$ and $b_{2} e_{2}=\binom{b_{2} x_{2}}{b_{2} y_{2}}$ in $M^{\prime \prime}$ implies $b_{1} y_{1}, b_{2} y_{2} \equiv 0 \bmod \pi$, so $b_{2} \equiv$ $0 \bmod \pi$. It also implies, by (2), that $\pi b_{1} x_{1} \equiv b_{1} y_{1} \bmod \pi^{2}$ and $\pi b_{2} x_{2} \equiv b_{2} y_{2} \bmod \pi^{2}$. Since y_{1} is a multiple of π^{2} and b_{2} is a multiple of π, these congruences $\bmod \pi^{2}$ become $\pi b_{1} x_{1} \equiv 0 \bmod \pi^{2}$ and $0 \equiv b_{2} y_{2} \bmod \pi^{2}$. Since y_{2} is not a multiple of $\pi, b_{2} \equiv 0 \bmod \pi^{2}$, so from (3) we have $\left(b_{1}\right)=(1)$ and $\left(b_{2}\right)=\left(\pi^{2}\right)$. Therefore $\pi b_{1} x_{1} \equiv 0 \bmod \pi^{2} \Rightarrow x_{1} \equiv 0 \bmod \pi$. But x_{1} and y_{1} can't both be multiples of π since they are relatively prime, so we have a contradiction.

We now seek a criterion on pairs of full submodules that determines when they have simultaneously aligned bases. When M is a finite free R-module and M^{\prime} is a full submodule with aligned bases $\left\{e_{1}, \ldots, e_{n}\right\}$ for M and $\left\{a_{1} e_{1}, \ldots, a_{n} e_{n}\right\}$ for M^{\prime}, the linear operator $A: M \rightarrow M$ where $A\left(e_{i}\right)=a_{i} e_{i}$ has image M^{\prime} and $\operatorname{det} A=a_{1} \cdots a_{n} \neq 0$. Conversely, if $A: M \rightarrow M$ is a linear operator with nonzero determinant, then $A(M)$ is a full submodule of M with $(\operatorname{det} A)=\left(c_{1} \cdots c_{k}\right)$ as ideals, where $M / A(M)$ has the cyclic decomposition $R /\left(c_{1}\right) \times \cdots \times R /\left(c_{k}\right)$. Therefore the full submodules of M are the same thing as images of linear operators $A: M \rightarrow M$ with nonzero determinant, and $\operatorname{det} A$ is determined up to unit multiple by the structure of $M / A(M)$ as an R-module. Writing a full submodule M^{\prime} of M as $A(M)$ for some linear operator A on M, how much does M^{\prime} determine A ?

Lemma 2. If A_{1} and A_{2} are two linear operators on M with nonzero determinant, then $A_{1}(M)=A_{2}(M)$ if and only if $A_{1}=A_{2} U$ for some $U \in \operatorname{GL}(M)$.

Proof. Let e_{1}, \ldots, e_{n} be a basis of M. If $A_{1}(M)=A_{2}(M)$ then $A_{1}\left(e_{i}\right)=A_{2}\left(f_{i}\right)$ for some $f_{i} \in M$. Let $U: M \rightarrow M$ be the linear map satisfying $U\left(e_{i}\right)=f_{i}$ for all i. Then $A_{1}\left(e_{i}\right)=$ $A_{2}\left(U\left(e_{i}\right)\right)=A_{2} U\left(e_{i}\right)$, so by linearity $A_{1}(m)=A_{2} U(m)$ for all $m \in M$, and thus $A_{1}=A_{2} U$. From $A_{1}(M)=A_{2}(M)$ we get $M / A_{1}(M)=M / A_{2}(M)$, so $\operatorname{det} A_{1}$ and $\operatorname{det} A_{2}$ are equal up to unit multiple. Then the condition $\operatorname{det} A_{1}=\left(\operatorname{det} A_{2}\right)(\operatorname{det} U)$ implies $\operatorname{det} U \in R^{\times}$, so $U \in \operatorname{GL}(M)$.

Conversely, if $A_{1}=A_{2} U$ with $U \in \operatorname{GL}(M)$ then $A_{1}(M)=A_{2}(U(M))=A_{2}(M)$.
By this lemma, if we write a full submodule of M as $A(M)$ for some $A \in \operatorname{End}(M)$, then A is determined by $A(M)$ up to right multiplication by an element of GL(M).

Pick two full submodules of M, say $A(M)$ and $B(M)$, with simultaneously aligned bases: there is a basis e_{1}, \ldots, e_{n} of M and two sets of n nonzero a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in R such that

$$
M=\bigoplus_{i=1}^{n} R e_{i}, \quad A(M)=\bigoplus_{i=1}^{n} R a_{i} e_{i}, \quad B(M)=\bigoplus_{i=1}^{n} R b_{i} e_{i}
$$

Let $D: M \rightarrow M$ and $D^{\prime}: M \rightarrow M$ be the linear maps defined by $D\left(e_{i}\right)=a_{i} e_{i}$ and $D^{\prime}\left(e_{i}\right)=$ $b_{i} e_{i}$. Written as matrices with respect to the basis e_{1}, \ldots, e_{n}, both D and D^{\prime} become diagonal matrices, so D and D^{\prime} are diagonalizable operators on M. Easily $A(M)=D(M)$ and $B(M)=D^{\prime}(M)$, so $D=A U$ and $D^{\prime}=B V$ for some U and V in GL (M). Obviously D and D^{\prime} commute, so $A U$ and $B V$ commute. We now show the converse is true too.

Theorem 3. Choose A and B in $\operatorname{End}(M)$ with $\operatorname{det} A \neq 0$ and $\operatorname{det} B \neq 0$. Suppose there are U and V in $\mathrm{GL}(M)$ such that $A U$ and $B V$ commute and are diagonalizable. Then the submodules $A(M)$ and $B(M)$ of M have simultaneously aligned bases.
Proof. Set $A^{\prime}=A U$ and $B^{\prime}=B V$, so $A^{\prime}(M)=A(M)$ and $B^{\prime}(M)=B(M)$. Since A^{\prime} is diagonalizable, there is a basis e_{1}, \ldots, e_{n} of M and nonzero a_{1}, \ldots, a_{n} in R such that $A^{\prime}\left(e_{i}\right)=a_{i} e_{i}$ for all i. Then

$$
M=\bigoplus_{i=1}^{n} R e_{i}, \quad A^{\prime}(M)=\bigoplus_{i=1}^{n} R A^{\prime}\left(e_{i}\right)=\bigoplus_{i=1}^{n} R a_{i} e_{i} .
$$

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct values among a_{1}, \ldots, a_{n} and set $M_{j}=\left\{v \in M: A^{\prime}(v)=\lambda_{j} v\right\}$ (this is the λ_{j}-eigenspace of A^{\prime}). Each e_{i} is in some M_{j}, so $M=M_{1}+M_{2}+\cdots+M_{k}$. Elements from different M_{j} 's are linearly independent (same as proof in vector spaces that eigenvectors for different eigenvalues of a linear operator are linearly independent). Therefore

$$
M=M_{1} \oplus \cdots \oplus M_{k} .
$$

For $v \in M_{j}, A^{\prime}\left(B^{\prime} v\right)=B^{\prime}\left(A^{\prime} v\right)=B^{\prime}\left(\lambda_{j} v\right)=\lambda_{j}\left(B^{\prime} v\right)$, so $B^{\prime}\left(M_{j}\right) \subset M_{j}$ for all j. Let d_{j} be the rank of M_{j}. Since M_{j} is a finite free R-module, the structure theorem for modules over a PID says there is a basis $e_{1 j}, \ldots, e_{d_{j} j}$ of M_{j} and nonzero $c_{1 j}, \ldots, c_{d_{j} j}$ in R such that

$$
M_{j}=R e_{1 j} \oplus \cdots \oplus R e_{d_{j} j}, \quad B^{\prime}\left(M_{j}\right)=R c_{1 j} e_{1 j} \oplus \cdots \oplus R c_{d_{j} j} e_{d_{j} j}
$$

Then

$$
\begin{gathered}
M=\bigoplus_{j=1}^{k} M_{j}=\bigoplus_{j=1}^{k} \bigoplus_{\ell=1}^{d_{j}} R e_{\ell j}, \\
B(M)=B^{\prime}(M)=\bigoplus_{j=1}^{k} B^{\prime}\left(M_{j}\right)=\bigoplus_{j=1}^{k} \bigoplus_{\ell=1}^{d_{j}} R c_{\ell j} e_{\ell j},
\end{gathered}
$$

and

$$
A(M)=A^{\prime}(M)=\bigoplus_{j=1}^{k} A^{\prime}\left(M_{j}\right)=\bigoplus_{j=1}^{k} \lambda_{j} M_{j}=\bigoplus_{j=1}^{k} \bigoplus_{\ell=1}^{d_{j}} R \lambda_{j} e_{\ell j} .
$$

We have found simultaneously aligned bases for $A(M)$ and $B(M)$ in M.
Let's consider now any finite number of full submodules, not just two. The definition of simultaneously aligned bases for more than two full submodules of a finite free R-module is clear: a basis for the whole module that can be scaled to a basis of each of the submodules.

Example 4. If we view the ring of integers of a number field as a Z-module, any finite set of nonzero ideals in it has simultaneously aligned \mathbf{Z}-bases. This is proved in [1], where Example 1 also appears for the case $R=\mathbf{Z}$ and $\pi=3$.

Corollary 5. For $r \geq 2$ and A_{1}, \ldots, A_{r} in $\operatorname{End}(M)$ with nonzero determinants, the submodules $A_{1}(M), \ldots, A_{r}(M)$ of M have simultaneously aligned bases if and only if there are U_{1}, \ldots, U_{r} in $\mathrm{GL}(M)$ such that $A_{1} U_{1}, \ldots, A_{r} U_{r}$ are diagonalizable and pairwise commuting.

In particular, if A_{1}, \ldots, A_{r} are diagonalizable and pairwise commuting in $\operatorname{End}(M)$ with nonzero determinants then the submodules $A_{1}(M), \ldots, A_{r}(M)$ of M have simultaneously aligned bases.
Proof. If there are simultaneously aligned bases for $A_{1}(M), \ldots, A_{r}(M)$, then the same argument as before leads to U_{1}, \ldots, U_{r} in $\mathrm{GL}(M)$ such that $A_{1} U_{1}, \ldots, A_{r} U_{r}$ are diagonalizable and pairwise commuting.

Conversely, suppose there are U_{1}, \ldots, U_{r} in GL (M) such that $A_{1} U_{1}, \ldots, A_{r} U_{r}$ are diagonalizable and pairwise commuting operators on M. Set $A_{1}^{\prime}=A_{1} U_{1}, \ldots, A_{r}^{\prime}=A_{r} U_{r}$. We want to show the submodules $A_{1}(M), \ldots A_{r}(M)$ have simultaneously aligned bases in M. Since $A_{1}^{\prime}(M)=A_{1}(M), \ldots, A_{r}^{\prime}(M)=A_{r}(M)$, we can replace A_{1}, \ldots, A_{r} with $A_{1}^{\prime}, \ldots, A_{r}^{\prime}$: to show $A_{1}^{\prime}(M), \ldots, A_{r}^{\prime}(M)$ have simultaneously aligned bases when $A_{1}^{\prime}, \ldots, A_{r}^{\prime}$ are diagonalizable and pairwise commuting, we will proceed by the same inductive argument that is used to show a set of commuting diagonalizable operators on a finite-dimensional vector space are simultaneously diagonalizable.

Since A_{1}^{\prime} is diagonalizable, there is a basis e_{1}, \ldots, e_{n} of M and nonzero a_{1}, \ldots, a_{n} in R such that $A_{1}^{\prime}\left(e_{i}\right)=a_{i} e_{i}$ for all i, so

$$
M=\bigoplus_{i=1}^{n} R e_{i}, \quad A_{1}^{\prime}(M)=\bigoplus_{i=1}^{n} R A_{1}^{\prime}\left(e_{i}\right)=\bigoplus_{i=1}^{n} R a_{i} e_{i} .
$$

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct values among a_{1}, \ldots, a_{n}. Then as before,

$$
M=M_{1} \oplus \cdots \oplus M_{k},
$$

where $M_{j}=\left\{v \in M: A_{1}^{\prime}(v)=\lambda_{j} v\right\}$ (and $M_{j} \neq\{0\}$). As before, each M_{j} is preserved by $A_{2}^{\prime}, \ldots, A_{r}^{\prime}$ and the restrictions of these operators ${ }^{1}$ to M_{j} are pairwise commuting with nonzero determinant. Once we show the restrictions of $A_{2}^{\prime}, \ldots, A_{r}^{\prime}$ to M_{j} are each diagonalizable, then by induction on the number of operators there are simultaneously aligned bases for $A_{2}^{\prime}\left(M_{j}\right), \ldots, A_{r}^{\prime}\left(M_{j}\right)$ as submodules of M_{j} (that is, each M_{j} has a basis that can be scaled termwise to provide a basis of those submodules). All elements of M_{j} are eigenvectors for A_{1}^{\prime}, so by stringing together bases of M_{1}, \ldots, M_{k} to give a basis of M we have a simultaneously aligned basis for $A_{1}^{\prime}(M), \ldots, A_{r}^{\prime}(M)$ in M, and then we'd be done (since $\left.A_{1}^{\prime}(M)=A_{1}(M), \ldots, A_{r}^{\prime}(M)=A_{r}(M)\right)$.

References

[1] H. B. Mann and K. Yamamoto, "On canonical bases of ideals," J. Combinatorial Theory 2 (1967), 71-76.

[^0]
[^0]: ${ }^{1}$ We have no reason to expect A_{2}, \ldots, A_{r} preserve the M_{j} 's.

