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Group theory is the study of symmetry. When an object appears symmetric, group theory
can help us study it. We apply the label “symmetric” to anything that is invariant under
some transformations. This can apply to geometric figures (a circle is highly symmetric,
being invariant under all rotations), but also to algebraic objects like functions: x2 +y2 +z2

is invariant under all rearrangements of x, y, and z and the trigonometric functions sin t
and cos t are invariant when t is replaced by t+ 2π.

Conservation laws in physics are related to the symmetry of physical laws under various
transformations. For instance, we expect the laws of physics to be unchanging in time.
This is an invariance under “translation” in time, and it leads to the conservation of energy.
Physical laws also should not depend on where you are in the universe. Invariance of
physical laws under “translation” in space leads to conservation of momentum. Invariance
of physical laws under (suitable) rotations leads to conservation of angular momentum. A
general theorem that explains how conservation laws of a physical system must arise from
its symmetries is due to Emmy Noether.

Modern particle physics would not exist without group theory; in fact, group theory
predicted the existence of many elementary particles before they were found experimentally.

The structure and behavior of molecules and crystals depends on their different symme-
tries. This makes group theory an essential tool in some areas of chemistry.

Within mathematics itself, group theory is very closely linked to symmetry in geometry.
In the Euclidean plane R2, the most symmetric kind of polygon is a regular polygon: its
sides and its interior angles are congruent. For n > 2 there is a regular polygon with n sides:
the equilateral triangle for n = 3, the square for n = 4, the regular pentagon for n = 5, and
so on. In R3 a regular polyhedron has congruent faces that are each regular polygons, with
the same number of faces meeting at each vertex. In contrast to the infinitely many regular
polygons in R2, there are only five (convex) regular polyhedra in R3, called the Platonic
solids. See Figure 1. In higher dimensions the analogue of a regular polygon and regular
polyhedron is called a regular polytope. What are the possibilities in Rd for d > 3?

Figure 1. The Five Platonic Solids
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• In R4 there are only six (convex) regular polytopes.
• For d > 4, the number of (convex) regular polytopes in Rd is always three: the

higher-dimensional analogues of the tetrahedron, cube, and octahedron in R3.

The reason there are only a few regular figures in each Rd for d > 2, but there are
infinitely many regular polygons in R2, is connected to the possible finite groups of rotations
in Euclidean space of different dimensions.

Consider another geometric topic: regular tilings of the plane. This means a tiling of the
plane by copies of congruent regular polygons, with no overlaps except along the boundaries
of the polygons. For instance, a standard sheet of graph paper illustrates a regular tiling of
R2 by squares (with 4 meeting at each vertex). See Figure 2.

Figure 2. Tiling the Plane with Congruent Squares

There are also regular tilings of R2 by equilateral triangles (with 6 meeting at each
vertex) and by regular hexagons (with 3 meeting at each vertex). See Figures 3 and 4.

Figure 3. Tiling the Plane with Congruent Equilateral Triangles

Figure 4. Tiling the Plane with Congruent Regular Hexagons

http://en.wikipedia.org/wiki/Tiling_by_regular_polygons
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And that is all: there is no tiling of R2 by (congruent) regular n-gons except when
n = 3, 4, and 6 (how could regular pentagons meet around a point without overlap?). And
for each of these three values of n there is essentially just one regular tiling, up to rotation
or translation of the plane.

The situation is different if we work with regular polygons in the hyperbolic plane H2,
rather than in the Euclidean plane R2. The hyperbolic plane H2 is the interior of a disc
in which “lines” are diameters passing through the center of the disc or circular arcs inside
the disc that meet the boundary in 90-degree angles. See Figure 5 (the boundary circle is
not part of H2).

Figure 5. Lines in the Hyperbolic Plane H2

In H2, unlike in R2, there are tilings by (congruent) regular n-gons for every value of
n > 2. Figure 6 shows a tiling of H2 by congruent regular pentagons.

Figure 6. Tiling H2 with Congruent Regular Pentagons

The regions in Figure 6 are pentagons because their boundaries consist of five hyperbolic
line segments (intervals along circular arcs meeting the boundary at 90-degree angles). The
boundary arcs in each pentagon all have the same hyperbolic length (certainly not the same
Euclidean length!), so they are regular pentagons, and the pentagons are congruent to each
other in H2 even though they don’t appear congruent as figures in the Euclidean plane.
Thus we have a tiling of H2 by congruent regular pentagons with four meeting at each
vertex. Nothing like this is possible for tilings of R2, the Euclidean plane.

There is also more than one tiling of H2 by regular n-gons for the same n. For instance,
taking n = 3, there is no tiling of H2 by congruent equilateral triangles meeting 6 at a
vertex, but there are tilings of H2 with 7 meeting at a vertex and 8 meeting at a vertex.
See Figures 7 and 8.

http://en.wikipedia.org/wiki/Poincar%C3%A9_disc_model
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Figure 7. Tiling H2 with Congruent Equilateral Triangles, 7 at a Vertex

Figure 8. Tiling H2 with Congruent Equilateral Triangles, 8 at a Vertex

That we can tile H2 by regular polygons in more possible ways than R2 is due to the
different structure of the group of rigid motions (distance-preserving transformations) in H2

compared to R2. Besides Euclidean and hyperbolic geometry, characteristic features of other
types of geometry (such as spherical geometry and projective geometry) are also related to
the group of allowed motions in the space underlying these geometries. The German
mathematician Felix Klein gave a famous lecture in Erlangen, in which he asserted that the
definition of a geometry is the study of the properties of a space that are invariant under
a chosen group of transformations of that space. In physics, two of the differences between
relativistic spacetime and non-relativistic spacetime are the velocity addition laws in each
setting and the motions of each spacetime that preserve the physical laws. Both of these
differences are connected to group theory: velocity addition satisfies the axioms for a group
operation and the motions preserving the physical laws form a group of transformations
of the corresponding spacetime: the Galilean group for non-relativisitic physics and the
Poincaré group for relativistic physics,

Group theory is used in geometry not only because the allowed transformations of a
geometric space are a group. For instance, besides using numerical invariants (such as the
dimension, which is a number) to describe properties of a space, there is the possibility
of introducing algebraic invariants of a space. That is, one can attach to a space certain
algebraic systems. Examples include different kinds of groups, such as the fundamental
group of a space. A plane with one point removed has a commutative fundamental group,
while a plane with two points removed has a noncommutative fundamental group. In higher
dimensions, where we can’t directly visualize spaces that are of interest, mathematicians

http://en.wikipedia.org/wiki/Erlangen_program
http://en.wikipedia.org/wiki/Fundamental_group
http://en.wikipedia.org/wiki/Fundamental_group
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often rely on algebraic invariants like the fundamental group to help verify that two spaces
are not the same.

Classical problems in algebra have been solved using group theory. In the Renaissance,
mathematicians found analogues of the quadratic formula for roots of general polynomials of
degree 3 and 4. Like the quadratic formula, the cubic and quartic formulas express the roots
of all polynomials of degree 3 and 4 in terms of the coefficients of the polynomials and root
extractions (square roots, cube roots, and fourth roots). The search for an analogue of the
quadratic formula for the roots of all polynomials of degree 5 or higher was unsuccessful. In
the 19th century, the failure to find such general formulas was explained by a subtle algebraic
symmetry in the roots of a polynomial discovered by Évariste Galois. He found a way to
attach a finite group to each polynomial f(x) and there is an analogue of the quadratic
formula for all the roots of f(x) exactly when the group associated to f(x) satisfies a
certain technical condition (too complicated to explain here, but see a 3Blue1Brown video
on group theory for an informal description). Not all groups satisfy the technical condition,
and by this method Galois could give explicit examples of fifth degree polynomials, such as
x5−x−1, whose roots can’t be described by anything like the quadratic formula. Learning
about this application of group theory to formulas for roots of polynomials would be a
suitable subject for a second course in abstract algebra.

The mathematics of public-key cryptography uses a lot of group theory. Different
cryptosystems use different groups, such as the group of units in modular arithmetic and
the group of rational points on elliptic curves over a finite field. This use of group theory
derives not from the “symmetry” perspective, but from the ease or difficulty of carrying out
certain computations in the groups. Other public-key cryptosystems use other algebraic
structures, such as lattices.

Some areas of analysis (the mathematical developments coming from calculus) involve
group theory. The subject of Fourier series is concerned with expanding a fairly general
2π-periodic function as an infinite series in the special 2π-periodic functions 1, sinx, cosx,
sin(2x), cos(2x), sin(3x), cos(3x), and so on. While Fourier series can be developed solely
as a topic within analysis (and at first it was), the modern viewpoint of them uses a fusion
of analysis, linear algebra, and group theory called harmonic analysis.

Identification numbers are all around us, such as the ISBN number for a book, the
VIN (Vehicle Identification Number) for a car, or the bar code on a UPS package. What
makes them useful is their check digit, which helps catch errors when communicating the
identification number over the phone or the internet or with a scanner. The different recipes
for constructing a check digit for a string of numbers are based on group theory. Usually
the group theory is trivial, just addition or multiplication in modular arithmetic. However,
a more clever use of other groups leads to a check-digit construction that catches more of
the most common types of communication errors. The key idea is to use a noncommutative
group.

On the lighter side, there are applications of group theory to puzzles, such as the 15-
puzzle and Rubik’s Cube. Group theory provides the conceptual framework for solving
such puzzles. To be fair, you can learn an algorithm for solving Rubik’s cube without
knowing group theory, just as you can learn how to drive a car without knowing automotive
mechanics. Of course, if you want to understand how a car works then you need to know
what is really going on under the hood. Group theory (symmetric groups, conjugations,
commutators, and semi-direct products) is what you find under the hood of Rubik’s cube.

http://en.wikipedia.org/wiki/Galois_theory
http://en.wikipedia.org/wiki/Solvable_group
https://www.youtube.com/watch?v=mH0oCDa74tE
http://en.wikipedia.org/wiki/RSA_(algorithm)
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
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