
THE SYLOW THEOREMS

KEITH CONRAD

1. Introduction

The converse of Lagrange’s theorem is false: if G is a finite group and d | |G|, then there
may not be a subgroup of G with order d. The simplest example of this is the group A4, of
order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig
Sylow [4] discovered that a converse result is true when d is a prime power: if p is a prime
number and pk | |G| then G must contain a subgroup of order pk. Sylow also discovered
important relations among the subgroups whose order is the largest power of p dividing |G|,
such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order 100 = 22 · 52 must contain subgroups of order 1, 2, 4, 5,
and 25, the subgroups of order 4 are conjugate to each other, and the subgroups of order
25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2
are conjugate or that the subgroups of order 5 are conjugate.

Definition 1.1. Let G be a finite group and p be a prime. A subgroup of G whose order is
the highest power of p dividing |G| is called a p-Sylow subgroup1 of G. A p-Sylow subgroup
for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order
25, and a p-Sylow subgroup is trivial if p 6= 2 or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3,
and a p-Sylow subgroup is trivial if p > 3. Let’s look at a few examples of Sylow subgroups
in groups of order 12.

Example 1.2. In Z/(12), the only 2-Sylow subgroup is {0, 3, 6, 9} = 〈3〉 and the only
3-Sylow subgroup is {0, 4, 8} = 〈4〉.

Example 1.3. In A4 there is one subgroup of order 4, so the only 2-Sylow subgroup is

{(1), (12)(34), (13)(24), (14)(23)} = 〈(12)(34), (14)(23)〉.

There are four 3-Sylow subgroups:

{(1), (123), (132)} = 〈(123)〉, {(1), (124), (142)} = 〈(124)〉,

{(1), (134), (143)} = 〈(134)〉, {(1), (234), (243)} = 〈(234)〉.

Example 1.4. In D6 there are three 2-Sylow subgroups:

{1, r3, s, r3s} = 〈r3, s〉, {1, r3, rs, r4s} = 〈r3, rs〉, {1, r3, r2s, r5s} = 〈r3, r2s〉.

The only 3-Sylow subgroup of D6 is {1, r2, r4} = 〈r2〉.

1Also called a Sylow p-subgroup. The term “p-Sylow subgroup” is used in Herstein’s Topics in Algebra (2nd
ed.), which is where I first learned group theory.
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In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order
3. Let’s look at two examples.

Example 1.5. In S4, the 3-Sylow subgroups are the 3-Sylow subgroups of A4 (an element
of 3-power order in S4 must be a 3-cycle, and they all lie in A4). We determined the 3-Sylow
subgroups of A4 in Example 1.3; there are four of them.

There are three 2-Sylow subgroups of S4, and they are interesting to work out since they
can be understood as copies of D4 inside S4. The number of ways to label the four vertices
of a square as 1, 2, 3, and 4 is 4! = 24, but up to rotations and reflections of the square
there are really just three different ways of carrying out the labeling, as follows.

1

2 3

4 1

2 4

3 1

3 2

4

Every other labeling of the square is a rotated or reflected version of one of these three
squares. For example, the square below is obtained from the middle square above by
reflecting across a horizontal line through the middle of the square.

2

1 3

4

When D4 acts on a square with labeled vertices, each motion of D4 creates a permutation
of the four vertices, and this permutation is an element of S4. For example, a 90-degree
rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of D4 inside
S4. The three essentially different labelings of the vertices of the square above embed D4

into S4 as three different subgroups of order 8:

{1, (1234), (1432), (12)(34), (13)(24), (14)(23), (13), (24)} = 〈(1234), (13)〉,

{1, (1243), (1342), (12)(34), (13)(24), (14)(23), (14), (23)} = 〈(1243), (14)〉,
{1, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)} = 〈(1324), (12)〉.

These are the 2-Sylow subgroups of S4.

Example 1.6. The group SL2(Z/(3)) has order 24. It is not isomorphic to S4 since its
center {±I2} is nontrivial. By explicit calculation, SL2(Z/(3)) has only 8 elements with
2-power order: (

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 1
1 −1

)
,

(
−1 1
1 1

)
,(

−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
−1 −1
−1 1

)
,

(
1 −1
−1 −1

)
.
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These form the only 2-Sylow subgroup, which is isomorphic to Q8 by labeling the matrices
in the first row as 1, i, j, k and the matrices in the second row as −1,−i,−j,−k.

There are four 3-Sylow subgroups of SL2(Z/(3)): 〈( 1 1
0 1 )〉, 〈( 1 0

1 1 )〉, 〈( 0 1
2 2 )〉, and 〈( 0 2

1 2 )〉.

Here are the Sylow theorems. They are often given in three parts. The result we call
Sylow III* is not always stated explicitly as part of the Sylow theorems.2

Theorem 1.7 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and
each p-subgroup of G lies in some p-Sylow subgroup of G.

Theorem 1.8 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.9 (Sylow III). For each prime p, let np be the number of p-Sylow subgroups of

G. Write |G| = pkm, where p doesn’t divide m. Then

np | m and np ≡ 1 mod p.

Theorem 1.10 (Sylow III*). For each prime p, let np be the number of p-Sylow subgroups
of G. Then np = [G : N(P )], where P is a p-Sylow subgroup and N(P ) is its normalizer.

The existence part of Sylow I has been illustrated in all the previous examples.
Sylow II says for two p-Sylow subgroups H and K of G that there is some g ∈ G such

that gHg−1 = K. This is illustrated in the table below, where Example 1.2 is skipped since
Z/(12) is abelian.

Example Group Size p H K g
1.3 A4 12 3 〈(123)〉 〈(124)〉 (243)
1.4 D6 12 2 〈r3, s〉 〈r3, rs〉 r2

1.5 S4 24 2 〈(1234), (13)〉 〈(1243), (14)〉 (34)
1.6 SL2(Z/(3)) 24 3 〈( 1 1

0 1 )〉 〈( 1 0
1 1 )〉 ( 0 1

2 1 )

When trying to conjugate one cyclic subgroup to another cyclic subgroup, be careful: not
all generators of the two groups have to be conjugate. For example, in A4 the subgroups
〈(123)〉 = {(1), (123), (132)} and 〈(124)〉 = {(1), (124), (142)} are conjugate, but the
conjugacy class of (123) in A4 is {(123), (142), (134), (243)}, so there’s no way to conjugate
(123) to (124) by an element of A4; we must conjugate (123) to (142). The 3-cycles (123)
and (124) are conjugate in S4, but not in A4. Similarly, ( 1 1

0 1 ) and ( 1 0
1 1 ) are conjugate in

GL2(Z/(3)) but not in SL2(Z/(3)), so when Sylow II says the subgroups 〈( 1 1
0 1 )〉 and 〈( 1 0

1 1 )〉
are conjugate in SL2(Z/(3)) a conjugating matrix must send ( 1 1

0 1 ) to ( 1 0
1 1 )

2
= ( 1 0

2 1 ).
Let’s see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups

of a group of order 12. For p = 2 and p = 3 in Sylow III, the divisibility conditions are
n2 | 3 and n3 | 4 and the congruence conditions are n2 ≡ 1 mod 2 and n3 ≡ 1 mod 3. The
divisibility conditions imply n2 is 1 or 3 and n3 is 1, 2, or 4. The congruence n2 ≡ 1 mod 2
tells us nothing new (1 and 3 are both odd), but the congruence n3 ≡ 1 mod 3 rules out
the option n3 = 2. Therefore n2 is 1 or 3 and n3 is 1 or 4 when |G| = 12.

If |G| = 24 we again find n2 is 1 or 3 while n3 is 1 or 4. (For instance, from n3 | 8 and
n3 ≡ 1 mod 3 the only choices are n3 = 1 and n3 = 4.) Therefore as soon as we find more
than one 2-Sylow subgroup there must be three of them, and as soon as we find more than
one 3-Sylow subgroup there must be four of them. The table below shows the values of n2

and n3 in the examples above.

2In Sylow’s paper, parts I and III* are in [4, Théorème I] while parts II and III are in [4, Théorème II].
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Example Group Size n2 n3

1.2 Z/(12) 12 1 1
1.3 A4 12 1 4
1.4 D6 12 3 1
1.5 S4 24 3 4
1.6 SL2(Z/(3)) 24 1 4

2. Proof of the Sylow Theorems

Our proof of the Sylow theorems will use group actions. The table below is a summary.
For each theorem the table lists a group, a set it acts on, and the action. Let Sylp(G) be
the set of p-Sylow subgroups of G, so np = |Sylp(G)|.

Theorem Group Set Action
Sylow I p-subgroup H G/H left mult.
Sylow II p-Sylow subgroup Q G/P left mult.

Sylow III (np | m) G Sylp(G) conjugation
Sylow III (np ≡ 1 mod p) P ∈ Sylp(G) Sylp(G) conjugation

Sylow III∗ G Sylp(G) conjugation

The two conclusions of Sylow III are listed separately in the table since they are proved
using different group actions.

Our proofs will usually involve the action of a p-group on a set and use the fixed-point
congruence for such actions: when X is a finite set being acted on by a finite p-group Γ,

(2.1) |X| ≡ |FixΓ(X)| mod p,

where FixΓ(X) is the set of fixed points of Γ in X.

Proof of Sylow I: Let pk be the highest power of p in |G|. The result is obvious if k = 0,
since the trivial subgroup is a p-Sylow subgroup, so we can take k ≥ 1, hence p | |G|.

Our strategy for proving Sylow I is to prove a stronger result: G has a subgroup of
order pi for 0 ≤ i ≤ k. More precisely, if |H| = pi and i < k, we will show there is a
p-subgroup H ′ ⊃ H with [H ′ : H] = p, so |H ′| = pi+1. Then, starting with H as the trivial
subgroup, repeat this process with H ′ in place of H to create larger subgroups

{e} = H0 ⊂ H1 ⊂ H2 ⊂ · · ·
with |Hi| = pi, and after k steps we reach Hk, of order pk, which is a p-Sylow subgroup.
Starting with H as a p-subgroup, we will have shown H is contained in a p-Sylow subgroup.

Consider the left multiplication action of H on the left cosets G/H (note G/H might not
be a group). This is an action of a finite p-group H on the set G/H, so by the fixed-point
congruence (2.1) for actions of nontrivial p-groups,

(2.2) |G/H| ≡ |FixH(G/H)| mod p.

Here is what it means for gH inG/H to be fixed by the groupH acting by left multiplication:

hgH = gH for all h ∈ H ⇐⇒ hg ∈ gH for all h ∈ H
⇐⇒ g−1hg ∈ H for all h ∈ H
⇐⇒ g−1Hg ⊂ H
⇐⇒ g−1Hg = H because |g−1Hg| = |H|
⇐⇒ g ∈ N(H).
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Thus FixH(G/H) = {gH : g ∈ N(H)} = N(H)/H, so (2.2) becomes

(2.3) [G : H] ≡ [N(H) : H] mod p.

Because H CN(H), N(H)/H is a group.
When |H| = pi and i < k, the index [G : H] is divisible by p, so the congruence (2.3)

implies [N(H) : H] is divisible by p. Therefore the group N(H)/H has order divisible by
p. By Cauchy’s theorem, N(H)/H has a subgroup 〈g〉 of order p (necessarily cyclic). The
reduction homomorphism N(H) → N(H)/H has kernel H, so the inverse image of 〈g〉 in
N(H) is a subgroup that contains H and has order p|H| = pi+1.3 We have shown each
subgroup of G with order pi for i < k is contained in a subgroup of G with order pi+1. This
can be repeated until we reach a subgroup of order pk.

Proof of Sylow II: For p-Sylow subgroups P and Q, we want to show they are conjugate.
Let Q act on G/P by left multiplication. Since Q is a finite p-group, (2.1) says

|G/P | ≡ |FixQ(G/P )| mod p.

The left side is [G : P ], which is nonzero modulo p since P is a p-Sylow subgroup. Thus
|FixQ(G/P )| can’t be 0, so there is a fixed point in G/P . Call it gP . That is, qgP = gP
for all q ∈ Q. Equivalently, qg ∈ gP for all q ∈ Q, so Q ⊂ gPg−1. Therefore Q = gPg−1,
since Q and gPg−1 have the same size and we’re done.

Proof of Sylow III: We will prove np ≡ 1 mod p and then np | m.
To show np ≡ 1 mod p, let P act on Sylp(G) by conjugation. The size of Sylp(G) is np.

Since P is a finite p-group, (2.1) says

np ≡ |{fixed points}| mod p.

Fixed points for P acting by conjugation on Sylp(G) are Q ∈ Sylp(G) such that gQg−1 = Q
for all g ∈ P . One choice for Q is P . For all such Q, P ⊂ N(Q). Also Q ⊂ N(Q), so P
and Q are p-Sylow subgroups in N(Q). Applying Sylow II to the group N(Q), P and Q are
conjugate in N(Q). Since Q C N(Q), the only subgroup of N(Q) conjugate to Q is Q, so
P = Q. Thus P is the only fixed point when P acts on Sylp(G), so np ≡ 1 mod p.

To show np | m, consider the action of G by conjugation on Sylp(G). Since the p-Sylow
subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group
acts with one orbit has size dividing the size of the group, so np | |G|. From np ≡ 1 mod p,
the number np is relatively prime to p, so np | m and we’re done.

Proof of Sylow III∗: Let P be a p-Sylow subgroup of G and let G act on Sylp(G) by
conjugation. By the orbit-stabilizer formula,

np = |Sylp(G)| = [G : Stab{P}].

The stabilizer Stab{P} of the “point” P in Sylp(G) (viewing P as a point is why we write
{P}) is

Stab{P} = {g : gPg−1 = P} = N(P ).

Thus np = [G : N(P )] and we’re done.

3If f : G→ G̃ is a surjective homomorphism of finite groups with kernel K and M is a subgroup of G̃, then
the inverse image f−1(M) = {g ∈ G : f(g) ∈ M} is a subgroup of G and |f−1(M)| = |M ||K|. The reason
|f−1(M)| = |M ||K| is that K ⊂ f−1(M) so the restriction of f to a function f−1(M) → M is a surjective
homomorphism with kernel K, so f−1(M)/K ∼= M . Thus |f−1(M)|/|K| = |M |, so |f−1(M)| = |M ||K|.
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In the proof of Sylow I, we saw that if H is a p-subgroup of G that is not a p-Sylow
subgroup then N(H) is strictly larger than H. What can be said about N(P ) when P is a
p-Sylow subgroup? It may or may not be larger than P , but we will show that taking the
normalizer a second time will not give anything new.

Theorem 2.1. Let P be a p-Sylow subgroup of a finite group G. Then N(N(P )) = N(P ).
More generally, if H is a subgroup of G that contains N(P ) then N(H) = H.

Proof. We will prove H ⊂ N(H) and N(H) ⊂ H. The containment H ⊂ N(H) is easy,
To prove N(H) ⊂ H let x ∈ N(H), so xHx−1 = H. Since P ⊂ N(P ) ⊂ H we have

xPx−1 ⊂ xHx−1 = H, so P and xPx−1 are both p-Sylow subgroups of H. By Sylow II
for the group H, there is y ∈ H such that xPx−1 = yPy−1. Thus y−1xP (y−1x)−1 = P , so
y−1x ∈ N(P ) ⊂ H, so x ∈ yH = H. �

3. Historical Remarks

Sylow’s proof of his theorems appeared in [4]. Here is what he showed about every prime
p and finite group G (of course, without using the label “Sylow subgroup”).

(1) There is a p-Sylow subgroup of G. Moreover, [G : N(P )] ≡ 1 mod p for each p-Sylow
subgroup P .

(2) Let P be a p-Sylow subgroup of G. The number of p-Sylow subgroups of G is
[G : N(P )]. All p-Sylow subgroups of G are conjugate.

(3) Each finite p-group H with size pk contains an increasing chain of subgroups

{e} = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊂ H,
where each subgroup has index p in the next one. In particular, |Hi| = pi for all i.

To prove part (3), which is [4, Théorème III], Sylow proved that every nontrivial p-group
has a nontrivial center [4, p. 588]. Whle these results on finite p-groups appear in all books
on group theory, that they are due to Sylow has been forgotten. If in (3) we take for H
a p-Sylow subgroup of G then (3) shows G has a subgroup of order pi for each p-power pi

dividing |G|, a result that is the second sentence of Sylow’s paper.
Here is how Sylow [4, Théorème I] wrote item (1) above:4

Si pα désigne la plus grande puissance du nombre premier p qui divise l’ordre
du groupe G, ce groupe contient un autre H de l’ordre pα; si de plus pαν
désigne l’ordre du plus grand groupe contenu dans G dont les substitutions
sont permutables à H, l’ordre de G sera de la forme pαν(pm+ 1).

In English, using current terminology, this says

If pα is the largest power of the prime p which divides the size of the group
G, this group contains a subgroup H of order pα; if moreover pαν is the size
of the largest subgroup of G that normalizes H, the size of G is of the form
pαν(pm+ 1).

Sylow did not have the abstract concept of a group: all groups for him arose as subgroups
of symmetric groups, so groups were always “groupes de substitutions.” The condition that
an element x ∈ G is “permutable” with a subgroup H means xH = Hx, or in other words
x ∈ N(H). The end of the first part of his theorem says the normalizer of a Sylow subgroup
has index pm+ 1 for some m, which means the index is ≡ 1 mod p.

4We modify some of his notation: he wrote the subgroup as g, not H, and the prime as n, not p.



THE SYLOW THEOREMS 7

Sylow’s approach to proving the existence of Sylow subgroups of G was to start with a
p-subgroup H in G of maximal order and prove p - [G : H], so |H| is the largest power of p
dividing |G|. (A version of his proof in modern language is in [1, Sect. 2] and [5, Sect. 2], or
Section 2 in https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowmore.pdf.)
In some accounts of the Sylow theorems, a p-Sylow subgroup of G is not defined as a
subgroup of G whose order is the biggest power of p dividing |G|, but as a p-subgroup of G
with maximal order. That point of view goes right back to Sylow’s own work.

4. Analogues of the Sylow Theorems

There are analogues of the first two Sylow theorems and Theorem 2.1 for certain types
of subgroups.

(1) A Hall subgroup of a finite group G is a subgroup H whose order and index are
relatively prime. For example, in a group of order 60 a subgroup of order 12 has
index 5 and thus is a Hall subgroup. Every Sylow subgroup is a Hall subgroup, and
a p-subgroup is a Hall subgroup if and only if it is a Sylow subgroup. Hall subgroups
were introduced in 1928 by the group theorist Philip Hall [2], who called them S
subgroups rather than Hall subgroups. He proved that in every solvable group of
order n and each d dividing n such that (d, n/d) = 1 there is a Hall subgroup of
order d, all Hall subgroups with the same order are conjugate, and the normalizer of
a Hall subgroup of a solvable group is its own normalizer. About 10 years later, Hall
[3] proved a converse result showing the solvability hypothesis on G is necessary: if
a finite group G of order n contains a Hall subgroup of order d for each d dividing
n such that (d, n/d) = 1, then G is solvable.

(2) In a compact connected Lie group G, maximal tori (maximal connected abelian
subgroups of G) satisfy properties analogous to Sylow subgroups: they exist, every
torus is in a maximal torus, and all maximal tori are conjugate. The proof of conju-
gacy uses the Lefschetz fixed point theorem. (This plays a role analogous to the the
fixed-point congruence (2.1) in the proof of the Sylow theorems.) Like normalizers
of Sylow subgroups, the normalizer of a maximal torus is its own normalizer. Unlike
the relation of Sylow subgroups in a general finite group, maximal tori are always
abelian and every element of G is in some maximal torus.

(3) In a connected linear algebraic group, maximal connected unipotent subgroups are
like Sylow subgroups: they exist, every connected unipotent subgroup is in a maxi-
mal connected unipotent subgroup, and all maximal connected unipotent subgroups
are conjugate. The proof of conjugacy uses the Borel fixed point theorem. The nor-
malizer of a maximal connected unipotent subgroup is called a Borel subgroup, and
like normalizers of Sylow subgroups each Borel subgroup is its own normalizer.
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