THE SYLOW THEOREMS

KEITH CONRAD

1. Introduction

The converse of Lagrange’s theorem is false: if G is a finite group and $d \mid |G|$, then there may not be a subgroup of G with order d. The simplest example of this is the group A_4, of order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig Sylow [1] discovered that a converse result is true when d is a prime power: if p is a prime number and $p^k \mid |G|$ then G must contain a subgroup of order p^k. Sylow also discovered important relations among the subgroups with order the largest power of p dividing $|G|$, such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order $100 = 2^2 \cdot 5^2$ must contain subgroups of order 1, 2, 4, 5, and 25, the subgroups of order 4 are conjugate to each other, and the subgroups of order 25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2 are conjugate or that the subgroups of order 5 are conjugate.

Definition 1.1. Let G be a finite group and p be a prime. Any subgroup of G whose order is the highest power of p dividing $|G|$ is called a p-Sylow subgroup of G. A p-Sylow subgroup for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order 25, and a p-Sylow subgroup is trivial if $p \neq 2$ or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3, and a p-Sylow subgroup is trivial if $p > 3$. Let’s look at a few examples of Sylow subgroups in groups of order 12.

Example 1.2. In $\mathbb{Z}/(12)$, the only 2-Sylow subgroup is $\{0, 3, 6, 9\} = \langle 3 \rangle$ and the only 3-Sylow subgroup is $\{0, 4, 8\} = \langle 4 \rangle$.

Example 1.3. In A_4 there is one subgroup of order 4, so the only 2-Sylow subgroup is

$$\{(1), (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (14)(23) \rangle.$$

There are four 3-Sylow subgroups:

$$\{(1), (123), (132)\} = \langle (123) \rangle, \quad \{(1), (124), (142)\} = \langle (124) \rangle,$$

$$\{(1), (134), (143)\} = \langle (134) \rangle, \quad \{(1), (234), (243)\} = \langle (234) \rangle.$$

Example 1.4. In D_6 there are three 2-Sylow subgroups:

$$\{1, r^3, s, r^3s\} = \langle r^3, s \rangle, \quad \{1, r^3, rs, r^4s\} = \langle r^3, rs \rangle, \quad \{1, r^3, r^2s, r^5s\} = \langle r^3, r^2s \rangle.$$

The only 3-Sylow subgroup of D_6 is $\{1, r^2, r^4\} = \langle r^2 \rangle$.

In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order 3. Let’s look at two examples.
Example 1.5. In S_4, the 3-Sylow subgroups are the 3-Sylow subgroups of A_4 (an element of 3-power order in S_4 must be a 3-cycle, and they all lie in A_4). We determined the 3-Sylow subgroups of A_4 in Example 1.3; there are four of them.

There are three 2-Sylow subgroups of S_4, and they are interesting to work out since they can be understood as copies of D_4 inside S_4. The number of ways to label the four vertices of a square as 1, 2, 3, and 4 is $4! = 24$, but up to rotations and reflections of the square there are really just three different ways of carrying out the labeling, as follows.

Any other labeling of the square is a rotated or reflected version of one of these three squares. For example, the square below is obtained from the middle square above by reflecting across a horizontal line through the middle of the square.

When D_4 acts on a square with labeled vertices, each motion of D_4 creates a permutation of the four vertices, and this permutation is an element of S_4. For example, a 90 degree rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of D_4 inside S_4. The three essentially different labelings of the vertices of the square above embed D_4 into S_4 as three different subgroups of order 8:

$\{1, (12)(34), (13)(24), (14)(23), (12), (13), (24)\} = \langle (1234), (13) \rangle$,

$\{1, (1243), (1342), (12)(34), (13)(24), (14)(23), (14), (23)\} = \langle (1243), (14) \rangle$,

$\{1, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)\} = \langle (1324), (12) \rangle$.

These are the 2-Sylow subgroups of S_4.

Example 1.6. The group $\text{SL}_2(\mathbb{Z}/(3))$ has order 24. An explicit tabulation of the elements of this group reveals that there are only 8 elements in the group with 2-power order:

$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},$

$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.$

These form the only 2-Sylow subgroup, which is isomorphic to Q_8 by labeling the matrices in the first row as $1, i, j, k$ and the matrices in the second row as $-1, -i, -j, -k$.

There are four 3-Sylow subgroups: $\langle (\frac{1}{0}, 1 \rangle, \langle (\frac{1}{1}, 1 \rangle, \langle (\frac{0}{1}, 2 \rangle, and \langle (\frac{2}{1}, 2 \rangle).$
Here are the Sylow theorems. They are often given in three parts. The result we call Sylow III* is not always stated explicitly as part of the Sylow theorems.

Theorem 1.7 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and each p-subgroup of G lies in some p-Sylow subgroup of G.

Theorem 1.8 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.9 (Sylow III). For each prime p, let n_p be the number of p-Sylow subgroups of G. Write $|G| = p^k m$, where p doesn’t divide m. Then

$$n_p \equiv 1 \mod p \quad \text{and} \quad n_p \mid m.$$

Theorem 1.10 (Sylow III*). For each prime p, let n_p be the number of p-Sylow subgroups of G. Then $n_p = [G : N(P)]$, where P is a p-Sylow subgroup and $N(P)$ is its normalizer.

The existence part of Sylow I has been illustrated in all the previous examples. Sylow II says for two p-Sylow subgroups H and K of G that there is some $g \in G$ such that $gHg^{-1} = K$. This is illustrated in the table below, where Example 1.2 is skipped since $\mathbb{Z}/(12)$ is abelian.

<table>
<thead>
<tr>
<th>Example</th>
<th>Group</th>
<th>Size</th>
<th>p</th>
<th>H</th>
<th>K</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>A_4</td>
<td>12</td>
<td>3</td>
<td>$\langle(123)\rangle$</td>
<td>$\langle(124)\rangle$</td>
<td>(243)</td>
</tr>
<tr>
<td>1.4</td>
<td>D_6</td>
<td>12</td>
<td>2</td>
<td>$\langle r^3, s \rangle$</td>
<td>$\langle r^3, rs \rangle$</td>
<td>r^2</td>
</tr>
<tr>
<td>1.5</td>
<td>S_4</td>
<td>24</td>
<td>2</td>
<td>$\langle(1234), (13)\rangle$</td>
<td>$\langle(1243), (14)\rangle$</td>
<td>(34)</td>
</tr>
<tr>
<td>1.6</td>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>3</td>
<td>$\langle(1 \ 0) \ \rangle$</td>
<td>$\langle(1 \ 0) \ \rangle$</td>
<td>$\langle(0 \ 1) \ \rangle$</td>
</tr>
</tbody>
</table>

When trying to conjugate one cyclic subgroup to another cyclic subgroup, be careful: not all generators of the two groups have to be conjugate. For example, in A_4 the subgroups $\langle(123)\rangle = \{(1), (123), (132)\}$ and $\langle(124)\rangle = \{(1), (124), (142)\}$ are conjugate, but the conjugacy class of (123) in A_4 is $\{(123), (142), (134), (243)\}$, so there’s no way to conjugate (123) to (124) by an element of A_4; we must conjugate (123) to (142). The 3-cycles (123) and (124) are conjugate in S_4, but not in A_4. Similarly, $(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})$ and $(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})$ are conjugate in $\text{GL}_2(\mathbb{Z}/(3))$ but not in $\text{SL}_2(\mathbb{Z}/(3))$, so when Sylow II says the subgroups $\langle(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \rangle$ and $\langle(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}) \rangle$ are conjugate in $\text{SL}_2(\mathbb{Z}/(3))$ a conjugating matrix must send $(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})$ to $(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})^2 = (\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})$.

Let’s see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups of a group of order 12. For $p = 2$ and $p = 3$ in Sylow III, the divisibility conditions are $n_2 \mid 3$ and $n_3 \mid 4$ and the congruence conditions are $n_2 \equiv 1 \mod 2$ and $n_3 \equiv 1 \mod 3$. The divisibility conditions imply n_2 is 1 or 3 and n_3 is 1, 2, or 4. The congruence $n_2 \equiv 1 \mod 2$ tells us nothing new (1 and 3 are both odd), but the congruence $n_3 \equiv 1 \mod 3$ rules out the option $n_3 = 2$. Therefore n_2 is 1 or 3 and n_3 is 1 3 or 4 when $|G| = 12$. If $|G| = 24$ we again find n_2 is 1 or 3 while n_3 is 1 or 4. (For instance, from $n_3 \mid 8$ and $n_3 \equiv 1 \mod 3$ the only choices are $n_3 = 1$ and $n_3 = 4$.) Therefore as soon as we find more than one 2-Sylow subgroup there must be three of them, and as soon as we find more than one 3-Sylow subgroup there must be four of them. The table below shows the values of n_2 and n_3 in the examples above.

<table>
<thead>
<tr>
<th>Example</th>
<th>Group</th>
<th>Size</th>
<th>n_2</th>
<th>n_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>$\mathbb{Z}/(12)$</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>A_4</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>D_6</td>
<td>12</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>S_4</td>
<td>24</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
2. Proof of the Sylow Theorems

Our proof of the Sylow theorems will use group actions, which we assume the reader knows. The table below is a summary. For each theorem the table lists a group, a set it acts on, and the action. Let \(\text{Syl}_p(G) \) be the set of \(p \)-Sylow subgroups of \(G \), so \(n_p = |\text{Syl}_p(G)| \).

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Group</th>
<th>Set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylow I</td>
<td>(p)-subgroup (H)</td>
<td>(G/H)</td>
<td>left mult.</td>
</tr>
<tr>
<td>Sylow II</td>
<td>(p)-Sylow subgroup (Q)</td>
<td>(G/P)</td>
<td>left mult.</td>
</tr>
<tr>
<td>Sylow III ((n_p \equiv 1 \mod p))</td>
<td>(P \in \text{Syl}_p(G))</td>
<td>(\text{Syl}_p(G))</td>
<td>conjugation</td>
</tr>
<tr>
<td>Sylow III ((n_p \mid m))</td>
<td>(G)</td>
<td>(\text{Syl}_p(G))</td>
<td>conjugation</td>
</tr>
<tr>
<td>Sylow III′</td>
<td>(G)</td>
<td>(\text{Syl}_p(G))</td>
<td>conjugation</td>
</tr>
</tbody>
</table>

The two conclusions of Sylow III are listed separately in the table since they are proved using different group actions.

Our proofs will usually involve the action of a \(p \)-group on a set and use the fixed-point congruence for such actions: \(|X| \equiv |\text{Fix}_\Gamma(X)| \mod p \), where \(X \) is a finite set being acted on by a finite \(p \)-group \(\Gamma \) and \(\text{Fix}_\Gamma(X) \) is the fixed points of \(\Gamma \) in \(X \).

Proof of Sylow I: Let \(p^k \) be the highest power of \(p \) in \(|G| \). The result is obvious if \(k = 0 \), since the trivial subgroup is a \(p \)-Sylow subgroup, so we can take \(k \geq 1 \), hence \(p \mid |G| \).

Our strategy for proving Sylow I is to prove a stronger result: there is a subgroup of order \(p^i \) for \(0 \leq i \leq k \). More specifically, if \(|H| = p^i \) and \(i < k \), we will show there is a \(p \)-subgroup \(H' \supset H \) with \(|H' : H| = p \), so \(|H'| = p^{i+1} \). Then, starting with \(H \) as the trivial subgroup, we can repeat this process with \(H' \) in place of \(H \) to create increasingly larger subgroups

\[
\{e\} = H_0 \subset H_1 \subset H_2 \subset \cdots
\]

where \(|H_i| = p^i \), and after \(k \) steps we reach \(H_k \), which is a \(p \)-Sylow subgroup of \(G \). And if we start with \(H \) as a \(p \)-subgroup, we will have shown \(H \) is contained in a \(p \)-Sylow subgroup.

Consider the left multiplication action of \(H \) on the left cosets \(G/H \) (this need not be a group). This is an action of a finite \(p \)-group \(H \) on the set \(G/H \), so by the fixed-point congruence for actions of nontrivial \(p \)-groups,

\[
|G/H| \equiv |\text{Fix}_H(G/H)| \mod p.
\]

Here is what it means for \(gH \) in \(G/H \) to be fixed by the group \(H \) acting by left multiplication:

\[
hgH = gH \text{ for all } h \in H \quad \iff \quad hg \in gH \text{ for all } h \in H
\]

\[
\iff \quad g^{-1}hg \in H \text{ for all } h \in H
\]

\[
\iff \quad g^{-1}Hg \subset H
\]

\[
\iff \quad g^{-1}Hg = H \text{ because } |g^{-1}Hg| = |H|
\]

\[
\iff \quad g \in \text{N}(H).
\]

Thus \(\text{Fix}_H(G/H) = \{gH : g \in \text{N}(H)\} = \text{N}(H)/H \), so (2.1) becomes

\[
|G : H| \equiv |\text{N}(H) : H| \mod p.
\]

Because \(H \triangleleft \text{N}(H) \), \(\text{N}(H)/H \) is a group.

When \(|H| = p^i \) and \(i < k \), the index \(|G : H| \) is divisible by \(p \), so the congruence (2.2) implies \(|\text{N}(H) : H| \) is divisible by \(p \), so \(\text{N}(H)/H \) is a group with order divisible by \(p \). Thus \(\text{N}(H)/H \) has a subgroup of order \(p \) by Cauchy’s theorem. All subgroups of the quotient group \(\text{N}(H)/H \) have the form \(H'/H \), where \(H' \) is a subgroup between \(H \) and
N(H). Therefore a subgroup of order \(p \) in \(N(H)/H \) is \(H'/H \) such that \([H' : H] = p \), so \(|H'| = p|H| = p^{i+1} \). This can be repeated until we reach a subgroup of order \(p^k \), and we’re done.

Proof of Sylow II: For \(p \)-Sylow subgroups \(P \) and \(Q \), we want to show they are conjugate. Consider the action of \(Q \) on \(G/P \) by left multiplication. Since \(Q \) is a finite \(p \)-group,

\[
|G/P| \equiv |\text{Fix}_Q(G/P)| \mod p.
\]

The left side is \([G : P] \), which is nonzero modulo \(p \) since \(P \) is a \(p \)-Sylow subgroup. Thus \(|\text{Fix}_Q(G/P)| \) can’t be 0, so there is a fixed point in \(G/P \). Call it \(gP \). That is, \(gQ = gP \) for all \(g \in Q \). Equivalently, \(gQg^{-1} = Q \) for all \(g \in Q \), so \(Q \subseteq gPg^{-1} \). Therefore \(Q = gPg^{-1} \), since \(Q \) and \(gPg^{-1} \) have the same size and we’re done.

Proof of Sylow III: We will prove \(n_p \equiv 1 \mod p \) and then \(n_p \mid m \).

To show \(n_p \equiv 1 \mod p \), consider the action of \(P \) on the set \(\text{Syl}_p(G) \) by conjugation. The size of \(\text{Syl}_p(G) \) is \(n_p \). Since \(P \) is a finite \(p \)-group, by the fixed-point congruence we have

\[
n_p \equiv |\{\text{fixed points}\}| \mod p.
\]

Fixed points for \(P \) acting by conjugation on \(\text{Syl}_p(G) \) are \(Q \in \text{Syl}_p(G) \) such that \(gQg^{-1} = Q \) for all \(g \in P \). One choice for \(Q \) is \(P \). For all such \(Q \), \(P \subseteq N(Q) \). Also \(Q \subseteq N(Q) \), so \(P \) and \(Q \) are \(p \)-Sylow subgroups in \(N(Q) \). Applying Sylow II to the group \(N(Q) \), \(P \) and \(Q \) are conjugate in \(N(Q) \). Since \(Q \triangleleft N(Q) \), the only subgroup of \(N(Q) \) conjugate to \(Q \) is \(Q \), so \(P = Q \). Thus \(P \) is the only fixed point when \(P \) acts on \(\text{Syl}_p(G) \), so \(n_p \equiv 1 \mod p \).

To show \(n_p \mid m \), consider the action of \(G \) by conjugation on \(\text{Syl}_p(G) \). Since the \(p \)-Sylow subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group acts with one orbit has size dividing the size of the group, so \(n_p \mid |G| \). From \(n_p \equiv 1 \mod p \), the number \(n_p \) is relatively prime to \(p \), so \(n_p \mid m \) and we’re done.

Proof of Sylow III: Let \(P \) be a \(p \)-Sylow subgroup of \(G \) and let \(G \) act on \(\text{Syl}_p(G) \) by conjugation. By the orbit-stabilizer formula,

\[
n_p = |\text{Syl}_p(G)| = |G : \text{Stab}_p|.
\]

The stabilizer \(\text{Stab}_p \) of the “point” \(P \) in \(\text{Syl}_p(G) \) (viewing \(P \) as a point is why we write \(\{P\} \)) is

\[
\text{Stab}_p = \{g : gPg^{-1} = P\} = N(P).
\]

Thus \(n_p = |G : N(P)| \) and we’re done.

In the proof of Sylow I, we saw that if \(H \) is a \(p \)-subgroup of \(G \) that is not a \(p \)-Sylow subgroup then \(N(H) \) is strictly larger than \(H \). What can be said about \(N(P) \) when \(P \) is a \(p \)-Sylow subgroup? It may or may not be larger than \(P \), but we will show that taking the normalizer a second time will not give anything new.

Theorem 2.1. Let \(P \) be a \(p \)-Sylow subgroup of a finite group \(G \). Then \(N(N(P)) = N(P) \). More generally, if \(H \) is a subgroup of \(G \) that contains \(N(P) \) then \(N(H) = H \).

Proof. We will prove \(H \subseteq N(H) \) and \(N(H) \subseteq H \). The containment \(H \subseteq N(H) \) is easy.

To prove \(N(H) \subseteq H \) let \(x \in N(H) \), so \(xHx^{-1} = H \). Since \(P \subseteq N(P) \subseteq H \) we have \(xPx^{-1} \subseteq xHx^{-1} = H \), so \(P \) and \(xPx^{-1} \) are both \(p \)-Sylow subgroups of \(H \). By Sylow II for the group \(H \), there is \(y \in H \) such that \(xPx^{-1} = yPy^{-1} \). Thus \(y^{-1}xP(y^{-1}x)^{-1} = P \), so \(y^{-1}x \in N(P) \subseteq H \), so \(x \in yH = H \). □
3. Historical Remarks

Sylow’s proof of his theorems appeared in [1]. Here is what he showed (of course, without using the label “Sylow subgroup”).

1. There exist \(p \)-Sylow subgroups. Moreover, \([G : N(P)] \equiv 1 \mod p \) for each \(p \)-Sylow subgroup \(P \).
2. Let \(P \) be a \(p \)-Sylow subgroup. The number of \(p \)-Sylow subgroups is \([G : N(P)] \). All \(p \)-Sylow subgroups are conjugate.
3. Any finite \(p \)-group \(G \) with size \(p^k \) contains an increasing chain of subgroups

\[
\{e\} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_k \subset G,
\]

where each subgroup has index \(p \) in the next one. In particular, \(|G_i| = p^i \) for all \(i \).

Here is how Sylow phrased his first theorem (the first item on the above list):

Si \(p^\alpha \) désigne la plus grande puissance du nombre premier \(p \) qui divise l’ordre du groupe \(G \), ce groupe contient un autre \(H \) de l’ordre \(p^\alpha \); si de plus \(p^\alpha \nu \) désigne l’ordre du plus grand groupe contenu dans \(G \) dont les substitutions sont permutables à \(H \), l’ordre de \(G \) sera de la forme \(p^\alpha \nu(pm + 1) \).

In English, using current terminology, this says

If \(p^\alpha \) is the largest power of the prime \(p \) which divides the size of the group \(G \), this group contains a subgroup \(H \) of order \(p^\alpha \); if moreover \(p^\alpha \nu \) is the size of the largest subgroup of \(G \) that normalizes \(H \), the size of \(G \) is of the form \(p^\alpha \nu(pm + 1) \).

Sylow did not have the abstract concept of a group: all groups for him arose as subgroups of symmetric groups, so groups were always “groupes de substitutions.” The condition that an element \(x \in G \) is “permutable” with a subgroup \(H \) means \(xH = Hx \), or in other words \(x \in N(H) \). The end of the first part of his theorem says the normalizer of a Sylow subgroup has index \(pm + 1 \) for some \(m \), which means the index is \(\equiv 1 \mod p \).

4. Analogues of the Sylow Theorems

There are analogues of the first two Sylow theorems and Theorem 2.1 for other types of subgroups.

1. A Hall subgroup of a finite group \(G \) is a subgroup \(H \) whose order and index are relatively prime. For example, in a group of order 60 a subgroup of order 12 has index 5 and thus is a Hall subgroup. A \(p \)-subgroup is a Hall subgroup if and only if it is a Sylow subgroup. In 1928 Philip Hall proved in every solvable group of order \(n \) that there is a Hall subgroup of each order \(d \) dividing \(n \) where \((d, n/d) = 1 \) and two Hall subgroups with the same order are conjugate. Also the normalizer of a Hall subgroup of a solvable group is its own normalizer. Conversely, Hall proved that a finite group of order \(n \) containing a Hall subgroup of order \(d \) for each \(d \) dividing \(n \) such that \((d, n/d) = 1 \) has to be a solvable group.

2. In a compact connected Lie group \(G \), maximal tori (maximal connected abelian subgroups of \(G \)) satisfy properties analogous to Sylow subgroups: they exist, every torus is in a maximal torus, and all maximal tori are conjugate. The proof of conjugacy uses the Lefschetz fixed point theorem. Like normalizers of Sylow subgroups,

\[1\]We modify some of his notation: he wrote the subgroup as \(g \), not \(H \), and the prime as \(n \), not \(p \).
the normalizer of a maximal torus is its own normalizer. Unlike Sylow subgroups, maximal tori are always abelian and every element of G is in some maximal torus.

(3) In a connected linear algebraic group, maximal connected unipotent subgroups are like Sylow subgroups: they exist, every connected unipotent subgroup is in a maximal connected unipotent subgroup, and all maximal connected unipotent subgroups are conjugate. The proof of conjugacy uses the Borel fixed point theorem. The normalizer of a maximal connected unipotent subgroup is called a Borel subgroup, and like normalizers of Sylow subgroups each Borel subgroup is its own normalizer.

References