THE SYLOW THEOREMS

KEITH CONRAD

1. Introduction

The converse of Lagrange’s theorem is false: if G is a finite group and $d \mid |G|$, then there may not be a subgroup of G with order d. The simplest example of this is the group A_4, of order 12, which has no subgroup of order 6. The Norwegian mathematician Peter Ludwig Sylow [1] discovered that a converse result is true when d is a prime power: if p is a prime number and $p^k \mid |G|$ then G must contain a subgroup of order p^k. Sylow also discovered important relations among the subgroups with order the largest power of p dividing $|G|$, such as the fact that all subgroups of that order are conjugate to each other.

For example, a group of order 100 = $2^2 \cdot 5^2$ must contain subgroups of order 1, 2, 4, 5, and 25, the subgroups of order 4 are conjugate to each other, and the subgroups of order 25 are conjugate to each other. It is not necessarily the case that the subgroups of order 2 are conjugate or that the subgroups of order 5 are conjugate.

Definition 1.1. Let G be a finite group and p be a prime. A subgroup of G whose order is the highest power of p dividing $|G|$ is called a p-Sylow subgroup of G. A p-Sylow subgroup for some p is called a Sylow subgroup.

In a group of order 100, a 2-Sylow subgroup has order 4, a 5-Sylow subgroup has order 25, and a p-Sylow subgroup is trivial if $p \neq 2$ or 5.

In a group of order 12, a 2-Sylow subgroup has order 4, a 3-Sylow subgroup has order 3, and a p-Sylow subgroup is trivial if $p > 3$. Let’s look at a few examples of Sylow subgroups in groups of order 12.

Example 1.2. In $\mathbb{Z}/(12)$, the only 2-Sylow subgroup is $\{0,3,6,9\} = \langle 3 \rangle$ and the only 3-Sylow subgroup is $\{0,4,8\} = \langle 4 \rangle$.

Example 1.3. In A_4 there is one subgroup of order 4, so the only 2-Sylow subgroup is

$$\{(1), (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (14)(23) \rangle.$$

There are four 3-Sylow subgroups:

$$\{(1), (123), (132)\} = \langle (123) \rangle, \quad \{(1), (124), (142)\} = \langle (124) \rangle,$$

$$\{(1), (134), (143)\} = \langle (134) \rangle, \quad \{(1), (234), (243)\} = \langle (234) \rangle.$$

Example 1.4. In D_6 there are three 2-Sylow subgroups:

$$\{1, r^3, s, r^3s\} = \langle r^3, s \rangle, \quad \{1, r^3, rs, r^4s\} = \langle r^3, rs \rangle, \quad \{1, r^3, r^2s, r^5s\} = \langle r^3, r^2s \rangle.$$

The only 3-Sylow subgroup of D_6 is $\{1, r^2, r^4\} = \langle r^2 \rangle$.

In a group of order 24, a 2-Sylow subgroup has order 8 and a 3-Sylow subgroup has order 3. Let’s look at two examples.
Example 1.5. In S_4, the 3-Sylow subgroups are the 3-Sylow subgroups of A_4 (an element of 3-power order in S_4 must be a 3-cycle, and they all lie in A_4). We determined the 3-Sylow subgroups of A_4 in Example 1.3; there are four of them.

There are three 2-Sylow subgroups of S_4, and they are interesting to work out since they can be understood as copies of D_4 inside S_4. The number of ways to label the four vertices of a square as 1, 2, 3, and 4 is $4! = 24$, but up to rotations and reflections of the square there are really just three different ways of carrying out the labeling, as follows.

\[
\begin{array}{c|c}
1 & 2 \\
3 & 4 \\
\end{array}
\quad \begin{array}{c|c}
2 & 3 \\
1 & 4 \\
\end{array}
\quad \begin{array}{c|c}
3 & 2 \\
1 & 4 \\
\end{array}
\]

Every other labeling of the square is a rotated or reflected version of one of these three squares. For example, the square below is obtained from the middle square above by reflecting across a horizontal line through the middle of the square.

\[
\begin{array}{c|c}
1 & 3 \\
2 & 4 \\
\end{array}
\]

When D_4 acts on a square with labeled vertices, each motion of D_4 creates a permutation of the four vertices, and this permutation is an element of S_4. For example, a 90 degree rotation of the square is a 4-cycle on the vertices. In this way we obtain a copy of D_4 inside S_4. The three essentially different labelings of the vertices of the square above embed D_4 into S_4 as three different subgroups of order 8:

\[
\{1, (1234), (1432), (12)(34), (13)(24), (14)(23), (13), (24)\} = \langle (1234), (13) \rangle,
\]

\[
\{1, (1243), (1342), (12)(34), (14)(23), (12), (13)(24), (14), (23)\} = \langle (1243), (14) \rangle,
\]

\[
\{1, (1324), (1423), (12)(34), (12)(24), (13), (24), (14), (23)\} = \langle (1324), (12) \rangle.
\]

These are the 2-Sylow subgroups of S_4.

Example 1.6. The group $\text{SL}_2(\mathbb{Z}/(3))$ has order 24. An explicit tabulation of the elements of this group reveals that there are only 8 elements in the group with 2-power order:

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},
\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.
\]

These form the only 2-Sylow subgroup, which is isomorphic to Q_8 by labeling the matrices in the first row as $1, i, j, k$ and the matrices in the second row as $-1, -i, -j, -k$.

There are four 3-Sylow subgroups: $\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rangle$, $\langle \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \rangle$, and $\langle \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \rangle$.
Here are the Sylow theorems. They are often given in three parts. The result we call Sylow III* is not always stated explicitly as part of the Sylow theorems.

Theorem 1.7 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and each p-subgroup of G lies in some p-Sylow subgroup of G.

Theorem 1.8 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.9 (Sylow III). For each prime p, let n_p be the number of p-Sylow subgroups of G. Write $|G| = p^k m$, where p doesn’t divide m. Then

\[n_p \equiv 1 \mod p \quad \text{and} \quad n_p \mid m. \]

Theorem 1.10 (Sylow III*). For each prime p, let n_p be the number of p-Sylow subgroups of G. Then $n_p = [G : N(P)]$, where P is a p-Sylow subgroup and $N(P)$ is its normalizer.

The existence part of Sylow I has been illustrated in all the previous examples.

Sylow II says for two p-Sylow subgroups H and K of G that there is some $g \in G$ such that $gHg^{-1} = K$. This is illustrated in the table below, where Example 1.2 is skipped since $\mathbb{Z}/(12)$ is abelian.

<table>
<thead>
<tr>
<th>Example</th>
<th>Group</th>
<th>Size</th>
<th>p</th>
<th>H</th>
<th>K</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>A_4</td>
<td>12</td>
<td>3</td>
<td>\langle (123) \rangle</td>
<td>\langle (124) \rangle</td>
<td>(243)</td>
</tr>
<tr>
<td>1.4</td>
<td>D_6</td>
<td>12</td>
<td>2</td>
<td>\langle r^3, s \rangle</td>
<td>\langle r^3, rs \rangle</td>
<td>r^2</td>
</tr>
<tr>
<td>1.5</td>
<td>S_4</td>
<td>24</td>
<td>2</td>
<td>\langle (1234), (13) \rangle</td>
<td>\langle (1243), (14) \rangle</td>
<td>(34)</td>
</tr>
<tr>
<td>1.6</td>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>3</td>
<td>\langle \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \rangle</td>
<td>\langle \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \rangle</td>
<td>\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}</td>
</tr>
</tbody>
</table>

When trying to conjugate one cyclic subgroup to another cyclic subgroup, beware: not all generators of the two groups have to be conjugate. For example, in A_4 the subgroups $\langle (123) \rangle = \{ (1), (123), (132) \}$ and $\langle (124) \rangle = \{ (1), (124), (142) \}$ are conjugate, but the conjugacy class of (123) in A_4 is $\{ (123), (142), (134), (243) \}$, so there’s no way to conjugate (123) to (124) by an element of A_4; we must conjugate (123) to (142). The 3-cycles (123) and (124) are conjugate in S_4, but not in A_4. Similarly, $\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$ and $\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle$ are conjugate in $\text{GL}_2(\mathbb{Z}/(3))$ but not in $\text{SL}_2(\mathbb{Z}/(3))$, so when Sylow II says the subgroups $\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$ and $\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rangle$ are conjugate in $\text{SL}_2(\mathbb{Z}/(3))$ a conjugating matrix must send $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Let’s see what Sylow III tells us about the number of 2-Sylow and 3-Sylow subgroups of a group of order 12. For $p = 2$ and $p = 3$ in Sylow III, the divisibility conditions are $n_2 \mid 3$ and $n_3 \mid 4$ and the congruence conditions are $n_2 \equiv 1 \mod 2$ and $n_3 \equiv 1 \mod 3$. The divisibility conditions imply n_2 is 1 or 2 and n_3 is 1, 2, or 4. The congruence $n_2 \equiv 1 \mod 2$ tells us nothing new (1 and 3 are both odd), but the congruence $n_3 \equiv 1 \mod 3$ rules out the option $n_3 = 2$. Therefore n_2 is 1 or 3 and n_3 is 1 or 4 when $|G| = 12$.

If $|G| = 24$ we again find n_2 is 1 or 3 while n_3 is 1 or 4. (For instance, from $n_3 \mid 8$ and $n_3 \equiv 1 \mod 3$ the only choices are $n_3 = 1$ and $n_3 = 4$.) Therefore as soon as we find more than one 2-Sylow subgroup there must be three of them, and as soon as we find more than one 3-Sylow subgroup there must be four of them. The table below shows the values of n_2 and n_3 in the examples above.

<table>
<thead>
<tr>
<th>Example</th>
<th>Group</th>
<th>Size</th>
<th>n_2</th>
<th>n_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>$\mathbb{Z}/(12)$</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>A_4</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>D_6</td>
<td>12</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>S_4</td>
<td>24</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>$\text{SL}_2(\mathbb{Z}/(3))$</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
2. Proof of the Sylow Theorems

Our proof of the Sylow theorems will use group actions, which we assume the reader knows. The table below is a summary. For each theorem the table lists a group, a set it acts on, and the action. Let Syl$_p(G)$ be the set of p-Sylow subgroups of G, so $n_p = |\text{Syl}_p(G)|$.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Group</th>
<th>Set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylow I</td>
<td>p-subgroup H</td>
<td>G/H</td>
<td>left mult.</td>
</tr>
<tr>
<td>Sylow II</td>
<td>p-Sylow subgroup Q</td>
<td>G/P</td>
<td>left mult.</td>
</tr>
<tr>
<td>Sylow III ($n_p \equiv 1 \mod p$)</td>
<td>$P \in \text{Syl}_p(G)$</td>
<td>$\text{Syl}_p(G)$</td>
<td>conjugation</td>
</tr>
<tr>
<td>Sylow III ($n_p</td>
<td>m$)</td>
<td>G</td>
<td>$\text{Syl}_p(G)$</td>
</tr>
<tr>
<td>Sylow III*</td>
<td>G</td>
<td>$\text{Syl}_p(G)$</td>
<td>conjugation</td>
</tr>
</tbody>
</table>

The two conclusions of Sylow III are listed separately in the table since they are proved using different group actions.

Our proofs will usually involve the action of a p-group on a set and use the fixed-point congruence for such actions: $|X| \equiv |\text{Fix}_\Gamma(X)| \mod p$, where X is a finite set being acted on by a finite p-group Γ and $\text{Fix}_\Gamma(X)$ is the fixed points of Γ in X.

Proof of Sylow I: Let p^k be the highest power of p in $|G|$. The result is obvious if $k = 0$, since the trivial subgroup is a p-Sylow subgroup, so we can take $k \geq 1$, hence $p | |G|$.

Our strategy for proving Sylow I is to **prove a stronger result**: there is a subgroup of order p^i for $0 \leq i \leq k$. More specifically, if $|H| = p^i$ and $i < k$, we will show there is a p-subgroup $H' \supset H$ with $[H' : H] = p$, so $|H'| = p^{i+1}$. Then, starting with H as the trivial subgroup, we can repeat this process with H' in place of H to create increasingly larger subgroups

\[
\{e\} = H_0 \subset H_1 \subset H_2 \subset \cdots
\]

where $|H_i| = p^i$, and after k steps we reach H_k, which is a p-Sylow subgroup of G. And if we start with H as a p-subgroup, we will have shown H is contained in a p-Sylow subgroup.

Consider the left multiplication action of H on the left cosets G/H (this need not be a group). This is an action of a finite p-group H on the set G/H, so by the fixed-point congruence for actions of nontrivial p-groups,

\[(2.1) \quad |G/H| \equiv |\text{Fix}_H(G/H)| \mod p.
\]

Here is what it means for gH in G/H to be fixed by the group H acting by left multiplication:

\[
hgH = gH \quad \text{for all} \quad h \in H \quad \iff \quad hg \in gH \quad \text{for all} \quad h \in H
\]

\[
\iff \quad g^{-1}hg \in H \quad \text{for all} \quad h \in H
\]

\[
\iff \quad g^{-1}Hg \subseteq H
\]

\[
\iff \quad g^{-1}Hg = H \quad \text{because} \quad |g^{-1}Hg| = |H|
\]

\[
\iff \quad g \in N(H).
\]

Thus $\text{Fix}_H(G/H) = \{gH : g \in N(H)\} = N(H)/H$, so (2.1) becomes

\[(2.2) \quad |G : H| \equiv |N(H) : H| \mod p.
\]

Because $H \triangleleft N(H)$, $N(H)/H$ is a group.

When $|H| = p^i$ and $i < k$, the index $[G : H]$ is divisible by p, so the congruence (2.2) implies $|N(H) : H|$ is divisible by p, so $N(H)/H$ is a group with order divisible by p. Thus $N(H)/H$ has a subgroup of order p by Cauchy’s theorem. All subgroups of the quotient group $N(H)/H$ have the form H'/H, where H' is a subgroup between H and
N(H). Therefore a subgroup of order p in N(H)/H is H'/H such that [H':H] = p, so |H'| = p|H| = p^{j+1}. This can be repeated until we reach a subgroup of order p^k, and we’re done.

Proof of Sylow II: For p-Sylow subgroups P and Q, we want to show they are conjugate.

Consider the action of Q on G/P by left multiplication. Since Q is a finite p-group,

$$|G/P| ≡ |\text{Fix}_Q(G/P)| \mod p.$$

The left side is $[G:P]$, which is nonzero modulo p since P is a p-Sylow subgroup. Thus $|\text{Fix}_Q(G/P)|$ can’t be 0, so there is a fixed point in G/P. Call it gP. That is, qgP = gP for all q ∈ Q. Equivalently, qg ∈ gP for all q ∈ Q, so Q ⊂ gPg^{-1}. Therefore $Q = gPg^{-1}$, since Q and gPg^{-1} have the same size and we’re done.

Proof of Sylow III: We will prove $n_p ≡ 1 \mod p$ and then $n_p | m$.

To show $n_p ≡ 1 \mod p$, consider the action of P on the set Syl_p(G) by conjugation. The size of Syl_p(G) is n_p. Since P is a finite p-group, by the fixed-point congruence we have

$$n_p ≡ |\{\text{fixed points}\}| \mod p.$$

Fixed points for P acting by conjugation on Syl_p(G) are Q ∈ Syl_p(G) such that gQg^{-1} = Q for all g ∈ P. One choice for Q is P. For all such Q, P ⊂ N(Q). Also Q ⊂ N(Q), so P and Q are p-Sylow subgroups in N(Q). Applying Sylow II to the group N(Q), P and Q are conjugate in N(Q). Since Q < N(Q), the only subgroup of N(Q) conjugate to Q is Q, so P = Q. Thus P is the only fixed point when P acts on Syl_p(G), so $n_p ≡ 1 \mod p$.

To show $n_p | m$, consider the action of G by conjugation on Syl_p(G). Since the p-Sylow subgroups are conjugate to each other (Sylow II), there is one orbit. A set on which a group acts with one orbit has size dividing the size of the group, so $n_p | |G|$. From $n_p ≡ 1 \mod p$, the number n_p is relatively prime to p, so $n_p | m$ and we’re done.

Proof of Sylow III': Let P be a p-Sylow subgroup of G and let G act on Syl_p(G) by conjugation. By the orbit-stabilizer formula,

$$n_p = |\text{Syl}_p(G)| = [G:\text{Stab}_P].$$

The stabilizer Stab_P of the “point” P in Syl_p(G) (viewing P as a point is why we write {P}) is

$$\text{Stab}_P = \{g : gPg^{-1} = P\} = N(P).$$

Thus $n_p = |G:N(P)|$ and we’re done.

In the proof of Sylow I, we saw that if H is a p-subgroup of G that is not a p-Sylow subgroup then N(H) is strictly larger than H. What can be said about N(P) when P is a p-Sylow subgroup? It may or may not be larger than P, but we will show that taking the normalizer a second time will not give anything new.

Theorem 2.1. Let P be a p-Sylow subgroup of a finite group G. Then N(N(P)) = N(P).

More generally, if H is a subgroup of G that contains N(P) then N(H) = H.

Proof. We will prove H ⊂ N(H) and N(H) ⊂ H. The containment H ⊂ N(H) is easy.

To prove N(H) ⊂ H let $x ∈ N(H)$, so $xHx^{-1} = H$. Since $P ⊂ N(P) ⊂ H$ we have $xPx^{-1} ⊂ xHx^{-1} = H$, so P and xPx^{-1} are both p-Sylow subgroups of H. By Sylow II for the group H, there is $y ∈ H$ such that $xPx^{-1} = yPy^{-1}$. Thus $y^{-1}xP(y^{-1}x)^{-1} = P$, so $y^{-1}x ∈ N(P) ⊂ H$, so $x ∈ yH = H$. □
3. Historical Remarks

Sylow’s proof of his theorems appeared in [1]. Here is what he showed (of course, without using the label “Sylow subgroup”).

1. There exist \(p \)-Sylow subgroups. Moreover, \([G : N(P)] \equiv 1 \text{ mod } p\) for each \(p \)-Sylow subgroup \(P \).

2. Let \(P \) be a \(p \)-Sylow subgroup. The number of \(p \)-Sylow subgroups is \([G : N(P)]\). All \(p \)-Sylow subgroups are conjugate.

3. Each finite \(p \)-group \(G \) with size \(p^k \) contains an increasing chain of subgroups

\[\{e\} = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_k \subset G, \]

where each subgroup has index \(p \) in the next one. In particular, \(|G_i| = p^i \) for all \(i \).

Here is how Sylow phrased his first theorem (the first item on the above list):\(^1\)

Si \(p^{\alpha} \) désigne la plus grande puissance du nombre premier \(p \) qui divise l’ordre du groupe \(G \), ce groupe contient un autre \(H \) de l’ordre \(p^{\alpha} \); si de plus \(p^{\alpha} \nu \) désigne l’ordre du plus grand groupe contenu dans \(G \) dont les substitutions sont permutables à \(H \), l’ordre de \(G \) sera de la forme \(p^{\alpha} \nu(p^m + 1) \).

In English, using current terminology, this says

If \(p^{\alpha} \) is the largest power of the prime \(p \) which divides the size of the group \(G \), this group contains a subgroup \(H \) of order \(p^{\alpha} \); if moreover \(p^{\alpha} \nu \) is the size of the largest subgroup of \(G \) that normalizes \(H \), the size of \(G \) is of the form \(p^{\alpha} \nu(p^m + 1) \).

Sylow did not have the abstract concept of a group: all groups for him arose as subgroups of symmetric groups, so groups were always “groupes de substitutions.” The condition that an element \(x \in G \) is “permutable” with a subgroup \(H \) means \(xH = Hx \), or in other words \(x \in N(H) \). The end of the first part of his theorem says the normalizer of a Sylow subgroup has index \(pm + 1 \) for some \(m \), which means the index is \(\equiv 1 \text{ mod } p \).

4. Analogues of the Sylow Theorems

There are analogues of the first two Sylow theorems and Theorem 2.1 for other types of subgroups.

1. A Hall subgroup of a finite group \(G \) is a subgroup \(H \) whose order and index are relatively prime. For example, in a group of order 60 a subgroup of order 12 has index 5 and thus is a Hall subgroup. A \(p \)-subgroup is a Hall subgroup if and only if it is a Sylow subgroup. In 1928 Philip Hall proved in every solvable group of order \(n \) that there is a Hall subgroup of each order \(d \) dividing \(n \) where \((d, n/d) = 1 \) and two Hall subgroups with the same order are conjugate. Also the normalizer of a Hall subgroup of a solvable group is its own normalizer. Conversely, Hall proved that a finite group of order \(n \) containing a Hall subgroup of order \(d \) for each \(d \) dividing \(n \) such that \((d, n/d) = 1 \) has to be a solvable group.

2. In a compact connected Lie group \(G \), maximal tori (maximal connected abelian subgroups of \(G \)) satisfy properties analogous to Sylow subgroups: they exist, every torus is in a maximal torus, and all maximal tori are conjugate. The proof of conjugacy uses the Lefschetz fixed point theorem. Like normalizers of Sylow subgroups,

\(^1\)We modify some of his notation: he wrote the subgroup as \(g \), not \(H \), and the prime as \(n \), not \(p \).
the normalizer of a maximal torus is its own normalizer. Unlike Sylow subgroups, maximal tori are always abelian and every element of G is in some maximal torus.

(3) In a connected linear algebraic group, maximal connected unipotent subgroups are like Sylow subgroups: they exist, every connected unipotent subgroup is in a maximal connected unipotent subgroup, and all maximal connected unipotent subgroups are conjugate. The proof of conjugacy uses the Borel fixed point theorem. The normalizer of a maximal connected unipotent subgroup is called a Borel subgroup, and like normalizers of Sylow subgroups each Borel subgroup is its own normalizer.

References