
CONSEQUENCES OF THE SYLOW THEOREMS

KEITH CONRAD

For a group theorist, Sylow’s Theorem is such a basic tool, and so fundamental, that it is
used almost without thinking, like breathing. Geoff Robinson

1. Statement of the Sylow theorems

We recall here the statement of the Sylow theorems.

Theorem 1.1 (Sylow I). A finite group G has a p-Sylow subgroup for every prime p and
every p-subgroup of G lies in a p-Sylow subgroup of G.

Theorem 1.2 (Sylow II). For each prime p, the p-Sylow subgroups of G are conjugate.

Theorem 1.3 (Sylow III). Let np be the number of p-Sylow subgroups of G. Write |G| =
pkm, where p doesn’t divide m. Then

np | m and np ≡ 1 mod p.

Theorem 1.4 (Sylow III*). Let np be the number of p-Sylow subgroups of G. Then np =
[G : N(P )], where P is an arbitrary p-Sylow subgroup and N(P ) is its normalizer in G.

We will first show how the conditions on np in the Sylow theorems let us compute np
for several specific groups. Then we will see applications of the Sylow theorems to group
structure: commutativity, normal subgroups, and classifying groups of order 105 and simple
groups of order 60.

We will not have too much use for Sylow III* here.1

2. Applications to specific groups

Theorem 2.1. The groups A5 and S5 each have 10 subgroups of size 3 and 6 subgroups of
size 5.

Proof. An element of odd order in a symmetric group is an even permutation, so the 3-Sylow
and 5-Sylow subgroups of S5 lie in A5. Therefore it suffices to focus on A5.

Since |A5| = 60 = 22 · 3 · 5, the 3-Sylow subgroups have size 3 and the 5-Sylows have size
5. Call the numbers n3 and n5. By Sylow III, n3 | 20 and n3 ≡ 1 mod 3, so n3 = 1, 4, or
10. The number of 3-cycles (abc) in A5 is 20, and these come in inverse pairs, giving us 10
subgroups of size 3. So n3 = 10. Turning to the 5-Sylows, n5 | 12 and n5 ≡ 1 mod 5, so n5
is 1 or 6. Since A5 has at least two subgroups of size 5 (the subgroups generated by (12345)
and by (21345) are different), n5 > 1 and therefore n5 = 6. �

Theorem 2.2. In Aff(Z/(5)), n2 = 5 and n5 = 1.

1It is used in Theorems 2.4 and 2.8, Corollary 8.5, and Theorem 9.4.
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Proof. This group has size 20, so the 2-Sylows have size 4 and the 5-Sylows have size 5.
By Sylow III, n2 | 5, so n2 = 1 or 5. The matrices ( 2 0

0 1 ) and ( 2 1
0 1 ) generate different

2-Sylow subgroups, so n2 = 5.
Now we turn to the 5-Sylow subgroups. By Sylow III, n5 | 4 and n5 ≡ 1 mod 5. The only

choice is n5 = 1. �

Let’s explore Aff(Z/(5)) a little further. Since we know the number of 2-Sylow and 5-
Sylow subgroups, we can search for all the Sylow subgroups and know when to stop. There
are five 2-Sylow subgroups and the five matrices ( 2 j

0 1
), where j ∈ Z/(5), generate different

subgroups of size 4, so these are all of the 2-Sylow subgroups (and they are cyclic). The
matrix ( 1 1

0 1 ) has order 5 and therefore generates the unique 5-Sylow subgroup.
As an illustration of Sylow II in Aff(Z/(5)), each element of 2-power order is conjugate

to an element of the subgroup 〈( 2 0
0 1 )〉. For instance, ( 2 1

0 1 ) has order 4 and an explicit search
reveals (

2 1
0 1

)
=

(
3 4
0 1

)(
2 0
0 1

)(
3 4
0 1

)−1
.

The matrix ( 4 4
0 1 ) has order 2 and(

4 4
0 1

)
=

(
3 2
0 1

)(
2 0
0 1

)2(
3 2
0 1

)−1
.

Remark 2.3. Here is a misapplication of the Sylow theorems. Suppose |G| = 42 = 2 · 3 · 7.
Using the third Sylow theorem, n2 ∈ {1, 3, 7, 21}, n3 = 1 or 7, and n7 = 1. For prime
p, different subgroups of order p intersect trivially and all p − 1 nontrivial elements in a
subgroup of order p have order p, so there are np(p − 1) elements of order p. Therefore G
has 6 elements of order seven. Using the maximal possibilities for n2 and n3, there are at
most 21 elements of order two and at most 14 elements of order three. Adding to this count
the single element of order one, we have counted at most 6 + 21 + 14 + 1 = 42 elements,
which is the size of G. Since we used the maximal possibilities for n2 and n3, and got 42
elements, n2 and n3 can’t be smaller than the maximal choices, so n2 = 21 and n3 = 7.
This reasoning is false, since Z/(42) has n2 = n3 = 1 and Aff(Z/(7)) has n2 = n3 = 7. The
source of the error is that some elements may have an order other than 1, 2, 3, or 7.

Theorem 2.4. For a prime p, each element of GL2(Z/(p)) with order p is conjugate to a
strictly upper-triangular matrix ( 1 a

0 1 ). The number of p-Sylow subgroups is p+ 1.

Proof. The size of GL2(Z/(p)) is (p2 − 1)(p2 − p) = p(p − 1)(p2 − 1). Therefore a p-Sylow
subgroup has size p. The matrix ( 1 1

0 1 ) has order p, so it generates a p-Sylow subgroup
P = 〈( 1 1

0 1 )〉 = {( 1 ∗
0 1 )} Since all p-Sylow subgroups are conjugate, a matrix with order p is

conjugate to some power of ( 1 1
0 1 ).

The number of p-Sylow subgroups is [GL2(Z/(p)) : N(P )] by Sylow III*. We’ll compute
N(P ) and then find its index. For ( a b

c d ) to lie in N(P ) means it conjugates ( 1 1
0 1 ) to some

power ( 1 ∗
0 1 ). Since(

a b
c d

)(
1 1
0 1

)(
a b
c d

)−1
=

(
1− ac/∆ a2/∆
−c2/∆ 1 + ac/∆

)
,

where ∆ = ad − bc 6= 0, ( a b
c d ) ∈ N(P ) precisely when c = 0. Therefore N(P ) = {( ∗ ∗0 ∗ )} in

GL2(Z/(p)). The size of N(P ) is (p− 1)2p. Since GL2(Z/(p)) has size p(p− 1)(p2 − 1), the
index of N(P ) is np = p+ 1. �
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Corollary 2.5. The number of elements of order p in GL2(Z/(p)) is p2 − 1.

Proof. Each p-Sylow subgroup has p − 1 elements of order p. Different p-Sylow subgroups
intersect trivially, so the number of elements of order p is (p− 1)np = p2 − 1. �

Theorem 2.6. There is a unique p-Sylow subgroup of Aff(Z/(p2)).

Proof. The group has size p2ϕ(p2) = p3(p− 1), so a p-Sylow subgroup has order p3.
Letting np be the number of p-Sylow subgroups, Sylow III says np | (p − 1) and np ≡

1 mod p. Therefore np = 1.
As an alternate proof, we can locate a p-Sylow subgroup of Aff(Z/(p2)) explicitly, namely

the matrices (
a b
0 1

)
where ap = 1 in (Z/(p2))×. (There are p choices for a and p2 choices for b.) This subgroup
is the kernel of the homomorphism Aff(Z/(p2)) → (Z/(p2))× given by ( a b

0 1 ) 7→ ap, so it is
a normal subgroup, and therefore is the unique p-Sylow subgroup by Sylow II. �

Note the unique p-Sylow subgroup of Aff(Z/(p2)) is a nonabelian group of size p3. It
has an element of order p2, namely ( 1 1

0 1 ), and therefore is not isomorphic to Heis(Z/(p))
when p 6= 2, since every non-identity element of Heis(Z/(p)) has order p. (It can be shown
for odd primes p that a nonabelian group of size p3 is isomorphic to Heis(Z/(p)) or to this
p-Sylow subgroup of Aff(Z/(p2)).2)

Can we characterize Heis(Z/(p)) as the unique p-Sylow subgroup of a larger group? Yes.

Theorem 2.7. For prime p, Heis(Z/(p)) is the unique p-Sylow subgroup of the group of
invertible upper-triangular matrices

(2.1)

 d1 a b
0 d2 c
0 0 d3


in GL3(Z/(p)).

Proof. This matrix group, call it U , has size (p−1)3p3, so Heis(Z/(p)) is a p-Sylow subgroup
of U . To show it is the only p-Sylow subgroup, the relations in Sylow III are not adequate.
They tell us np | (p− 1)3 and np ≡ 1 mod p, but it does not follow from this that np must
be 1. For instance, (p− 1)2 satisfies these two conditions in place of np.

To show np = 1, we will prove Heis(Z/(p)) C U . Projecting a matrix in U onto its 3
diagonal entries is a function from U to the 3-fold direct product (Z/(p))× × (Z/(p))× ×
(Z/(p))×. This is a homomorphism with kernel Heis(Z/(p)), so Heis(Z/(p))C U . �

Theorem 2.8. Let F be a finite field and q = |F|. For each prime p dividing q − 1, the
number of p-Sylow subgroups of Aff(F) is q.

Proof. The group Aff(F) has size q(q − 1) and contains H = {( a 0
0 1 ) : a ∈ F×}, which has

size q − 1. Let pr be the highest power of p dividing q − 1. Let P be the p-Sylow subgroup
of H (it’s unique since H is abelian). Then P is a p-Sylow subgroup of Aff(F) too and the
number of p-Sylow subgroups of Aff(F) is [Aff(F) : N(P )] by Sylow III*, where N(P ) is the
normalizer of P in Aff(F).

2See https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
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We will show N(P ) = H. Since H is abelian, P CH, so H ⊂ N(P ). To get the reverse
inclusion, suppose ( x y

0 1 ) is in N(P ). Pick a non-identity element of P , say ( a 0
0 1 ). Then

( x y
0 1 )( a 0

0 1 )( x y
0 1 )−1 = ( a y(1−a)

0 1
). For this to be in P at least requires y(1− a) = 0, so y = 0

since a 6= 1. Thus N(P ) ⊂ H.
The number of p-Sylow subgroups of Aff(F) is [Aff(F) : H] = q(q − 1)/q − 1 = q. �

Remark 2.9. From the theory of finite fields, every finite field has prime-power size and
for every prime power there is a field of that size. (Warning: a field of size 9 is not
constructed as Z/(9), since that is not a field. Fields of non-prime size can’t be constructed
as quotient rings of Z. Another method is needed.) Therefore Theorem 2.8 shows each
prime power ≡ 1 mod p is the number of p-Sylow subgroups of some finite group. For
example, 81 ≡ 1 mod 5 and there are 81 different 5-Sylow subgroups of Aff(F81), where F81

is a field of size 81.

It is an interesting question to ask if the congruence condition n ≡ 1 mod p from Sylow
III is the only constraint on p-Sylow counts: for n ∈ Z+ with n ≡ 1 mod p is there a finite
group in which the number of p-Sylow subgroups is n? The answer is affirmative when
n = 1 using Z/(p), so we only consider n > 1. When p = 2 the answer is affirmative using
dihedral groups: when n > 1 is odd a 2-Sylow subgroup of Dn has order 2 and the elements
of order 2 are precisely the n reflections, so the number of 2-Sylow subgroups of Dn is n.
If p 6= 2, there is an n ≡ 1 mod p that does not arise as a p-Sylow count: there is no finite
group G in which n3(G) = 22 or n5(G) = 21 or np(G) = 1 + 3p for prime p ≥ 7. This is
proved in [2].

3. Normal Sylow subgroups

Theorem 3.1. The condition np = 1 means a p-Sylow subgroup is a normal subgroup.

Proof. All p-Sylow subgroups are conjugate by Sylow II, so np = 1 precisely when a p-Sylow
subgroup of G is self-conjugate, i.e., is a normal subgroup of G. �

Be sure you understand that reasoning. We will often shift back and forth between the
condition np = 1 (if it holds) and the condition that G has a normal p-Sylow subgroup.3

In particular, the Sylow theorems are a tool for proving a group has a normal subgroup
besides the trivial subgroup and the whole group, because we can try to show np = 1 for
some p.4 This is based on the following consequence of the Sylow theorems.

Theorem 3.2. If p and q are different prime factors of |G| and np = 1 and nq = 1 then
the elements of the p-Sylow subgroup commute with the elements of the q-Sylow subgroup.

Proof. Let P be the p-Sylow subgroup and Q be the q-Sylow subgroup. Since P and Q
have relatively primes sizes, P ∩Q = {e} by Lagrange. The subgroups P and Q are normal
in G by Theorem 3.1. For x ∈ P and y ∈ Q,

xyx−1y−1 = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩Q = {e},
3If a subgroup H of a finite group G has order relatively prime to its index [G : H], then H is the unique
subgroup of its size if and only if H C G. In one direction, if H is the unique subgroup of its size then
gHg−1 = H for all g ∈ G, so H C G. In the other direction, assume N C G and (|N |, [G : N ]) = 1. If
|K| = |N | then the group homomorphism K → G → G/N is trivial since gcd(|K|, |G/N |) = 1, so K ⊂ N ,
and that implies K = N by comparing sizes. A Sylow subgroup of G is a special type of subgroup with
order relatively prime to its index in G.
4There are groups that have nontrivial normal subgroups but no nontrivial normal Sylow subgroups, such
as S4. See Example 5.6.
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so xy = yx. �

Note Theorem 3.2 is not saying the p-Sylow and q-Sylow subgroups of G are abelian, but
rather that elements of either subgroup commutes with elements of the other subgroup if
the two Sylow subgroups are the only subgroups of their size.

Theorem 3.3. All the Sylow subgroups of a finite group are normal if and only if the group
is isomorphic to the direct product of its Sylow subgroups.

Proof. If a group is isomorphic to the direct product of its Sylow subgroups then its Sylow
subgroups are normal since a group that is one of the factors in a direct product is a normal
subgroup of the direct product. Conversely, suppose G is finite and its Sylow subgroups
are all normal. Write the nontrivial Sylow subgroups as P1, . . . , Pm. Elements in Pi and Pj

commute with each other for i 6= j, by Theorem 3.2, so the map P1 × · · · × Pm → G given
by

(x1, . . . , xm) 7→ x1 · · ·xm
is a homomorphism. It is injective since the order of a product of commuting elements with
relatively prime orders is equal to the product of their orders. Our map is between two
groups of equal size, so from injectivity we get surjectivity, so we have an isomorphism. �

4. Commutativity properties based on |G|

All groups of order p2 are abelian.5 Cauchy’s theorem can be used to show all groups of
order pq with primes p < q and q 6≡ 1 mod p (e.g., pq = 15) are abelian (and in fact cyclic)6.
The Sylow theorems provide further tools to show all groups of a given size are abelian.

Lemma 4.1. Let G be a group with subgroups H and N , where N is a normal subgroup.

a) The set of products NH = {nh : n ∈ N,h ∈ H} is a subgroup of G.
b) NH = HN = {hn : h ∈ H,n ∈ N}.
c) If |N | and |H| are relatively prime, then |NH| = |N ||H|.

Proof. a) The set NH obviously contains e = e · e.
Since N C G, we can show NH is closed under multiplication: for n1, n2 ∈ N and

h1, h2 ∈ H,

n1h1 · n2h2 = n1(h1n2h
−1
1 ) · h1h2,

which is in NH since h1n2h
−1
1 ∈ h1Nh

−1
1 ∈ N and h1h2 ∈ H.

To show NH is closed under inversion, for n ∈ N and h ∈ H,

(nh)−1 = h−1n−1 = (h−1n−1h)h−1

and h−1n−1h ∈ h−1Nh = N .
b) That NH = HN7 follows from showing each side is a subset of the other: for n ∈ N

and h ∈ H,

nh = h(h−1nh), hn = (hnh−1)h

and h−1nh, hnh−1 ∈ N since N is a normal subgroup of G. So NH ⊂ HN and HN ⊂ NH.

5See Section 6 of https://kconrad.math.uconn.edu/blurbs/grouptheory/conjclass.pdf.
6See Section 3 of https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf.
7Saying NH = HN as sets does not mean nh = hn for n ∈ N and h ∈ H, but instead it means each nh is
some h′n′ and each hn is some n′′h′′.

https://kconrad.math.uconn.edu/blurbs/grouptheory/conjclass.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
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c) Each element of NH has the form nh for an n ∈ N and h ∈ H. This expression for
an element of NH is unique, by the condition (|N |, |H|) = 1:

nh = n′h′ =⇒ n′−1n = h′h−1 ∈ N ∩H,
and since N and H have relatively prime orders, N ∩H is a subgroup with order dividing
|N | and |H|, so |N ∩H| = 1. Thus N ∩H = {1}, so n′−1n = h′h−1 = 1. Hence n′ = n and
h′ = h, so counting different products nh where n ∈ N and h ∈ H is the same as counting
ordered pairs (n, h) for n ∈ N and h ∈ H. The number of those pairs |N ||H|. �

Remark 4.2. If we remove the normality condition for one of the subgroups, the set-
product need not be a subgroup: for subgroups H and K of G that are both non-normal,
the set HK = {hk : h ∈ H, k ∈ K} might not be closed under multiplication or inversion.

Theorem 4.3. Every group of size 45 is abelian.

Proof. Let G have size 45. In G, a 3-Sylow subgroup has size 9 and a 5-Sylow subgroup has
size 5. Using Sylow III,

n3 | 5, n3 ≡ 1 mod 3 =⇒ n3 = 1

and
n5 | 9, n5 ≡ 1 mod 5 =⇒ n5 = 1.

Therefore G has normal 3-Sylow and 5-Sylow subgroups. Denote them by P and Q respec-
tively, so |P | = 9 and |Q| = 5. Then P is abelian and Q is cyclic (thus abelian).

The set PQ = {ab : a ∈ P, b ∈ Q} is a subgroup of G by Lemma 4.1 since P and Q are
normal subgroups (we really only need one of them to be normal to use that lemma). Since
PQ contains P and Q as subgroups, Lagrange tells us |PQ| is divisible by both 9 and 5.
Therefore 45 | |PQ|, so PQ = G. Since P and Q are both abelian, we will know G is abelian
once we show each element of P commutes with each element of Q. This commutativity is
Theorem 3.2. �

Remark 4.4. The reader can check that the same argument shows every group of size
p2q with primes p < q and q 6≡ 1 mod p is abelian. Examples include 99 = 22 · 11 and
175 = 52 · 7.

Theorem 4.5. Let p and q be primes where p < q and q 6≡ 1 mod p. Then every group of
size pq is cyclic.

This can be proved using only Cauchy’s theorem.8 The proof we give here is in the same
spirit, but it uses the Sylow theorems to handle more efficiently certain parts of the proof.

Proof. Let |G| = pq, where p < q and q 6≡ 1 mod p. By Cauchy’s theorem, G has an element
a of order p and an element b of order q. Let P = 〈a〉 and Q = 〈b〉.

These subgroups P and Q have respective sizes p and q and are p-Sylow and q-Sylow
subgroups of G. By Sylow III, np | q and np ≡ 1 mod p. Then np is 1 or q, but since
q 6≡ 1 mod p we have np 6= q. So np = 1. Also by Sylow III, nq | p and nq ≡ 1 mod q. Since
1 < p < q we can’t have p ≡ 1 mod q, so nq = 1.9

From np = 1 and nq = 1, P and Q are both normal subgroups of G. Theorem 3.2 implies
elements of P commute with elements of Q, so a and b commute and they have relatively
prime orders p and q. Hence the product ab has order pq. Since |G| = pq, G is cyclic. �

8See Section 3 of https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf.
9Compare this to the proof in Lemma 3.4 of https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
that G has only one subgroup of size q.

https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
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5. Non-trivial normal subgroups

The consequences of the Sylow theorems in this section are cases where the size of G
forces G to have a nontrivial normal subgroup (usually, but not always, a normal Sylow
subgroup). This topic is a popular source of exercises in algebra textbooks, in part because
it can be used to determine all groups of various sizes up to isomorphism. For instance,
near the end of this section we will find all the groups of size 105.

Theorem 5.1. If |G| = 20 or 100 then G has a normal 5-Sylow subgroup.

Proof. By Sylow III, n5 | 4 and n5 ≡ 1 mod 5. Thus n5 = 1. �

This proof is identical to part of the proof of Theorem 2.2, which was concerned with a
specific group of size 20.

Theorem 5.2. If |G| = pq, where p < q are distinct primes, then G has a normal q-Sylow
subgroup.

Proof. Read the proof of Theorem 4.5, where it is shown that nq = 1. This part of the proof
did not use the congruence condition q 6≡ 1 mod p from that theorem, so nq = 1 whether or
not that congruence condition holds. �

The following lemma does not involve the Sylow theorems, but will be used in conjunction
with the Sylow theorems to prove more theorems about the existence of normal subgroups.

Lemma 5.3. If G has k subgroups of size p, it has k(p− 1) elements of order p.

Proof. In a subgroup of size p, all nonidentity elements have order p. Conversely, an element
of order p generates a subgroup of size p. By Lagrange, distinct subgroups of size p must
intersect trivially, so their nonidentity elements are disjoint from each other. Therefore each
subgroup of size p has its own p− 1 elements of order p, not shared by the other subgroups
of size p. The number of elements of order p is therefore k(p− 1). �

Theorem 5.4. If |G| = 12 then G has a normal 2-Sylow or 3-Sylow subgroup.

Proof. By Sylow III, n2 | 3, so n2 = 1 or 3. Also n3 | 4 and n3 ≡ 1 mod 3, so n3 = 1 or 4.
We want to show n2 = 1 or n3 = 1.

Assume n3 6= 1, so n3 = 4. Since the 3-Sylows have size 3, Lemma 5.3 says G has
n3 · 2 = 8 elements of order 3. The number of remaining elements is 12− 8 = 4. A 2-Sylow
subgroup has size 4, and thus fills up the remaining elements. Therefore n2 = 1. �

For example, A4 has n2 = 1 and n3 = 4, while D6 has n2 = 3 and n3 = 1.

Theorem 5.5. If |G| = 24 then G has a normal subgroup of size 4 or 8.

Proof. Let P be a 2-Sylow subgroup, so |P | = 8. Consider the left multiplication action
` : G→ Sym(G/P ) ∼= S3. Set K to be the kernel of `. Then

• K ⊂ P , so |K| | 8,
• G/K embeds into S3, so [G : K] | 6. That is, 4 | |K|.

This tells us |K| = 4 or 8. Since K is the kernel of `, K CG. �

Example 5.6. Let G = S4. The number of 2-Sylow subgroups is 3, so S4 does not have a
normal subgroup of size 8 (Theorem 3.1). Theorem 5.5 then says S4 must have a normal
subgroup of size 4. Indeed, one is

{(1), (12)(34), (13)(24), (14)(23)}.
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There are other subgroups of size 4, such as 〈(1234)〉, but they are not normal.

Example 5.7. Let G = SL2(Z/(3)). This group has size 24 and a normal 2-Sylow subgroup.

Lemma 5.8. If N CG and a p-Sylow subgroup P of N is normal in N , then P is normal
in G.

Proof. Since PCN , P is the only p-Sylow subgroup of N . For all g ∈ G, gPg−1 ⊂ gNg−1 =
N , so gPg−1 is a subgroup of N with the same order as P . Therefore gPg−1 = P . Since g
is arbitrary in G, gPg−1 = P . �

Theorem 5.9. If |G| = 30 then G has normal 3-Sylow and 5-Sylow subgroups.

Proof. Pick g ∈ G of order 2. Since |G| = 30, left multiplication `g : G→ G as a permutation
is a product of 15 disjoint transpositions, so sgn(`g) = −1. The composition sgn ◦` : G →
{±1}, where g 7→ sgn(`g), is a surjective homomorphism, so its kernel is normal in G with
size 15. Call it N . Then N is cyclic (Theorem 4.5). Its 3-Sylow and 5-Sylow subgroups are
normal in N (since N is abelian), so they are also normal in G by Lemma 5.8. �

Corollary 5.10. Each group of order 30 is isomorphic to Z/(30), D15, Z/(3) × D5, or
Z/(5)× S3.

Proof. Let G be a group of order 30. By the proof of Theorem 5.9, G has a normal
subgroup N of order 15 and N has to be cyclic by Theorem 4.5. Some g ∈ G has order 2, so
G = N〈g〉 by Lemma 4.1 with N ∩ 〈g〉 = {e}. Since N CG, G ∼= Z/(15) oϕ Z/(2) for some
homomorphism ϕ : Z/(2)→ (Z/(15))×, where the group law in the semidirect product is

(a, b)(c, d) = (a+ ϕb(c), b+ d) = (a+ ϕb
1c, b+ d).

The homomorphism ϕ is determined by ϕ1 ∈ (Z/(15))×, which has to be a solution of
u2 ≡ 1 mod 15. There are 4 possible values for u: ±1,±4 mod 15. Therefore there are at
most four semidirect products Z/(15) oϕ Z/(2), so there are at most four groups of order
30 up to isomorphism.

The four groups Z/(30), D15, Z/(3)×D5, and Z/(5)× S3 have order 30 and are noniso-
morphic based on counting elements of order 2:

• in Z/(30) there is one element of order 2,
• in D15, there are 15 elements of order 2 (the reflections),
• in Z/(3)×D5, there are 5 elements of order 2 (the reflections in D5),
• in Z/(5)× S3, there are 3 elements of order 2 (the 2-cycles in S3). �

We turn next to groups of order 105.

Theorem 5.11. Every group of size 105 has normal 5-Sylow and 7-Sylow subgroups. In
other words, every group of size 105 has unique subgroups of size 5 and 7.

Proof. We will first prove n5 = 1 or n7 = 1. Then we will refine this to n5 = 1 and n7 = 1.
By Sylow III,

n3 | 35, n3 ≡ 1 mod 3 =⇒ n3 = 1 or 7,

n5 | 21, n5 ≡ 1 mod 5 =⇒ n5 = 1 or 21,

n7 | 15, n7 ≡ 1 mod 7 =⇒ n7 = 1 or 15.

Could both n5 > 1 and n7 > 1? If so, then n5 = 21 and n7 = 15. Using Lemma 5.3, the
number of elements with order 5 is 21 · 4 = 84 and the number of elements with order 7 is
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15 · 6 = 90. Since 84 + 90 > |G|, we have a contradiction, so n5 = 1 or n7 = 1. In either
case we will show G has a subgroup with order 35.

Suppose n5 = 1 and let N5 be the (normal) 5-Sylow subgroup of G. Let P7 be a 7-Sylow
subgroup, so |P7| = 7 and P7N5 is a subgroup of G with order 7 · 5 = 35 by Lemma 4.1.

If n7 = 1, then let N7 be the (normal) 7-Sylow subgroup of G. Let P5 be a 5-Sylow
subgroup, so |P5| = 5 and P5N7 is a subgroup of G with order 5 · 7 = 35 by Lemma 4.1.

We have proved, whether n5 = 1 or n7 = 1, that G has a subgroup H of order 35, so
[G : H] = |G|/|H| = 105/35 = 3. We’ll show H is a normal subgroup of G by looking at
how G permutes the 3 left H-cosets. Left multiplication of each g ∈ G on the three left
H-cosets in G is is a permutation `g of the left H-cosets, so we get a homomorphism

` : G→ Sym(G/H) ∼= S3, where g 7→ `g.

Let K = ker(`), so G/K ∼= `(G). Thus |G/K| | 6. Also |G/K| = |G|/|K| divides |G| = 105,
so |G/K| divides (6, 105) = 3.

We are going to show K = H, so H C G (all kernels of homomorphisms are normal
subgroups). Each k ∈ K fixes all the left H-cosets using left multiplication: kgH = gH
for all g ∈ G. In particular, kH = H, so k ∈ H. Thus K ⊂ H ⊂ G, so |G/K| = [G : K]
is divisible by [G : H] = 3. Since |G/K| divides 3 and is divisible by 3, |G/K| = 3. Thus
3 = [G : K] = [G : H][H : K] = 3[H : K], so [H : K] = 1, which proves H = K, so HCG.10

Every group of size 35 is cyclic, by Theorem 4.5, so H is cyclic. In particular, each Sylow
subgroup of H is a normal subgroup of H. Since H C G, Lemma 5.8 tells us each Sylow
subgroup of H is a normal subgroup of G. A 5-Sylow or 7-Sylow subgroup of H is also a
5-Sylow or 7-Sylow subgroup of G, so their normality in G implies n5 = 1 and n7 = 1. �

Theorem 5.12. Every group of size 105 is isomorphic to Z/(5)×H, where |H| = 21.

Proof. Let |G| = 105. By Theorem 5.11 we have n5 = n7 = 1. Let N5 and N7 denote the
5-Sylow and 7-Sylow subgroups of G. Let P be a 3-Sylow subgroup of G, so |P | = 3. Then
the product set H = N7P is a subgroup of G with size 21 by Lemma 4.1. Since N5 C G,
N5H is a subgroup of G with size 105 by Lemma 4.1, so G = N5H. It remains to show
G ∼= N5 × H, which amounts to showing the elements of N5 commute with the elements
of H. Because |N5| and |H| are relatively prime, we could show elements of H and N5

commute if H CG by the argument used to prove Theorem 3.2, but H need not be normal
in G. So we need another method.

Consider the conjugation action of H on N5, which makes sense since N5CG. It gives us
a homomorphism H → Aut(N5) ∼= (Z/(5))×. Since H has size 21 and (Z/(5))× has order
4, this homomorphism on H is trivial, so elements of H fix elements of N5 by conjugation:
hnh−1 = n for all h ∈ H and n ∈ N . Rewriting that as hn = nh, all elements of N5

commute with all elements of H, so N5H ∼= N5 ×H ∼= Z/(5)×H. �

Corollary 5.13. Up to isomorphism there are two groups of size 105.

Proof. Groups of order pq for distinct primes p and q are classified in the handout on
consequences of Cauchy’s theorem11, which shows there are two groups of size 21 up to
isomorphism. One is abelian (the cyclic group) and one is not. Using these for H in

10This approach to showing H C G also shows each subgroup of a group G having index equal to the
least prime factor of |G| is normal. See Theorem 6.12 in https://kconrad.math.uconn.edu/blurbs/group

theory/gpaction.pdf.
11See Section 3 of https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
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Theorem 5.12 gives two groups of size 105, one being abelian (in fact cyclic) and the other
being nonabelian. �

Theorem 5.14. If |G| = p2q, where p and q are distinct primes, then G has a normal
p-Sylow subgroup if p > q and a normal q-Sylow subgroup if q > p unless |G| = 22 · 3, in
which case G has a normal 2-Sylow or 3-Sylow subgroup.

Proof. First suppose p > q. By Sylow III we have np ≡ 1 mod p and np | q. Since 1 < q < p
we can’t have np = q, so np = 1.

Now suppose q > p. By Sylow III, nq ≡ 1 mod q and nq | p2. Since 1 < p < q we can’t
have nq = p, so nq = 1 or nq = p2. If nq = p2 then p2 ≡ 1 mod q, so p ≡ ±1 mod q. Since
p 6≡ 1 mod q we have p ≡ −1 mod q, so q ≤ p + 1. Thus p < q ≤ p + 1, so q = p + 1. The
only consecutive primes are 2 and 3, so p = 2 and q = 3 Thus except when |G| = 22 · 3 = 12
we can’t have nq = p2, so nq = 1.

That a group of order 22 · 3 = 12 has a normal 2-Sylow or 3-Sylow subgroup is Theorem
5.4. For example, A4 has n2 = 1 and n3 = 4, and D6 has n2 = 3 and n3 = 1. �

Theorem 5.15. If |G| = p2q2, where p < q are distinct primes, then G has a normal
q-Sylow subgroup unless |G| = 36, in which case G has either a normal 2-Sylow or 3-Sylow
subgroup.

The size 36 is a genuine exception: here q = 3 and Z/(3)×A4 has n3 = 4.

Proof. Without loss of generality, p < q. By the Sylow theorems, nq | p2 and nq ≡ 1 mod q,
so nq = 1 or p2. If nq = 1 then the q-Sylow subgroup is normal. Now suppose nq = p2.
Then p2 ≡ 1 mod q, so p ≡ ±1 mod q. Since p < q, the congruence forces p = q − 1. As
consecutive primes, p = 2 and q = 3, which shows for |G| 6= 36 that nq = 1. (The reader
who doesn’t care too much about this theorem can skip the rest of the proof, which analyzes
the remaining case |G| = 36.)

For the rest of the proof, let |G| = 36. Then n3 = 1 or 4. We will show that if n3 = 4
then n2 = 1. Assume n3 = 4 and n2 > 1. Since n2 > 1, G has no subgroup of size 18 (it
would have index 2 and therefore be normal, so a 3-Sylow subgroup of it would be normal
in G by Lemma 5.8, which contradicts n3 > 1). Since n2 > 1, G is nonabelian. Our goal is
to get a contradiction. We will try to count elements of different orders in G and find the
total comes out to more than 36 elements. That will be our contradiction.

Let Q be a 3-Sylow in G, so [G : Q] = 4. Left multiplication of G on G/Q gives a
homomorphism G → Sym(G/Q) ∼= S4. Since |G| > |S4|, the kernel K is nontrivial. Since
K ⊂ Q, either |K| = 3 or K = Q. Since Q 6C G, Q does not equal K, so |K| = 3.

Since K C G, we can make G act on K by conjugations. This is a homomorphism
G→ Aut(K) ∼= Z/(2). If this homomorphism is onto (that is, some element of G conjugates
on K in a nontrivial way) then the kernel is a subgroup of G with size 18, which G does
not have. So the conjugation action of G on K is trivial, which means every element of
G commutes with the elements of K, so K ⊂ Z(G). Then 3 | |Z(G)|, so the size of Z(G)
is one of the numbers in {3, 6, 9, 12, 18, 36}. Since G is nonabelian and a group is abelian
when the quotient by its center is cyclic, |Z(G)| can’t be 12, 18, or 36. Since n3 > 1 there is
no normal subgroup of size 9, so |Z(G)| 6= 9. If |Z(G)| = 6 then the product set Z(G)Q is a
subgroup of size 18, a contradiction. So we must have |Z(G)| = 3, which means Z(G) = K.

Now we start counting elements with various orders. The center is a 3-subgroup of G, so
by the conjugacy of 3-Sylow subgroups every 3-Sylow subgroup contains K. Each pair of
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different 3-Sylow subgroups have K as their intersection, so we can count the total number
of elements of 3-power order: |K|+ n3 · (9− 3) = 27.

Let g ∈ G have order 2. Then K〈g〉 is a subgroup of order 6 by Lemma 4.1, and it is is
abelian and in fact cyclic since K ⊂ Z(G). The cyclic group K〈g〉 has a unique element
of order 2, which must be g. Therefore when g and g′ are different elements of order 2 in
G, the groups K〈g〉 and K〈g′〉 have K has their intersection. So each element of order 2 in
G provides us with 2 new elements of order 6. Let n be the number of elements of order
2 in G, so there are at least 2n elements of order 6, giving at least 3n elements in total
with order 2 or 6. Since we already found 27 elements with 3-power order (including the
identity), 3n ≤ 36 − 27, or n ≤ 3. We can get an inequality on n in the other direction:
n ≥ 2. Indeed, no element of order 2 lies in Z(G) = K, so some conjugate of an element of
order 2 is a second element of order 2. Thus n ≥ 2.

Since |{g ∈ G : g2 = e}| is even (by McKay’s proof of Cauchy’s theorem) and this number
is 1+n, n is odd, so n = 3. Therefore G has 3 elements of order 2, so at least 3n = 9 elements
of order 2 or 6. Adding this to 27 from before gives 9 + 27 = 36 = |G|, so each element of G
has 3-power order or order 2 or 6. In particular, the 2-Sylow subgroup of G is isomorphic
to Z/(2)× Z/(2) (no elements of order 4 in G). Then different 2-Sylow subgroups meet at
most in a group of order 2, which gives us 5 elements of order 2 from both subgroups. We
saw before that there are only 3 elements of order 2. This is a contradiction. �

6. Sylow numbers of subgroups and quotient groups

If H ⊂ G and N CG, we will show np(H) ≤ np(G) and np(G/N) ≤ np(G).

Theorem 6.1. Let H be a subgroup of G. For each P ∈ Sylp(G), there is a conjugate

gPg−1 such that gPg−1 ∩H ∈ Sylp(H).

Proof. Let H act on G/P by left multiplication. Since the size of G/P is not divisible by
p, some H-orbit in G/P has size not divisible by p. Let this be the H-orbit of gP . Since
|OrbgP | = |H|/|StabgP |, StabgP is a subgroup of H containing the maximal power of p
in |H|. We will show | StabgP | has p-power order, and that would make StabgP a p-Sylow
subgroup of H:

StabgP = {h ∈ H : hgP = gP}
= {h ∈ H : g−1hg ∈ P}
= {h : h ∈ gPg−1}
= gPg−1 ∩H,

so StabgP is a subgroup of the p-group gPg−1. �

The conjugation of P in Theorem 6.1 is important: it is false in general that if P ∈ Sylp(G)
and H is a subgroup of G then P ∩ H ∈ Sylp(H). For example, if P and H are two
different p-Sylow subgroups of G then P ∩H is a proper subgroup of H, so P ∩H is not in
Sylp(H) = {H}.

Example 6.2. Let G = Dn = 〈r, s〉 with n ≥ 3 odd, so 2-Sylow subgroups of G have order
2. Use P = {1, s} and H = {1, rs}.

An interesting application of Theorem 6.1 is the following: if a finite group G has sub-
groups H and K such that G = HK as a set then for each prime p there is a P ∈ Sylp(G)
such that P ∩H ∈ Sylp(H), P ∩K ∈ Sylp(K), and P = (P ∩H)(P ∩K) as sets. Here we
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allow H and K to overlap nontrivially and we don’t assume elements of H commute with
elements of K. See https://math.stackexchange.com/questions/610094/.

Remark 6.3. The proof of Theorem 6.1 did not use the Sylow theorems for H, so it shows
the existence of Sylow subgroups of a group implies the existence of Sylow subgroups of each
subgroup. In particular, we can show a finite group has a p-Sylow subgroup by embedding
it in a larger group where it might be easier to write down a p-Sylow subgroup.

For example, every finite group can be embedded in a symmetric group (Cayley’s theo-
rem). To be precise, the left multiplication action of G on G gives an embedding of G into
Sym(G) ∼= Sn, where n = |G|. Therefore if one can construct, for each prime p, a p-Sylow
subgroup of every symmetric group then we obtain the existence of a p-Sylow subgroup
of every finite group. Exercises 15 and 16 in [4, p. 84] give a construction of Sylow sub-
groups of symmetric groups using wreath products. A construction of a p-Sylow subgroup
of the symmetric groups Spk actually suffices, since Sn embeds into Spk for pk ≥ n; the
construction in this special case can be found in the discussion of the Sylow theorems in [3,
pp. 95–97].

Corollary 6.4. Let N C G. For each p-Sylow P of G, P ∩ N is a p-Sylow of N and all
p-Sylows of N arise in this way. In particular, np(N) ≤ np(G).

Proof. By Theorem 6.1, there is a g such that gPg−1 ∩N is a p-Sylow in N . Since N is a
normal subgroup of G,

gPg−1 ∩N = gPg−1 ∩ gNg−1 = g(P ∩N)g−1.

Therefore P ∩N is a p-Sylow subgroup of g−1Ng = N .
(There are proofs that P ∩N is a p-Sylow subgroup of N that do not rely on Theorem

6.1. Since P ∩ N is a p-group, as it is contained in P , it remains to show P ∩ N has
maximal p-power order in N . Here are two ways of showing that. First, we will show the
index [N : P ∩ N ] is not divisible by p. The set PN is a subgroup of G since N C G and
|PN | = |P ||N |/|P ∩ N |, so [N : P ∩ N ] = |N |/|P ∩ N | = |PN |/|P | = [PN : P ], which is
a factor of [G : P ] and thus is not divisible by p. Second, by the Sylow theorems P ∩ N
is contained in a p-Sylow subgroup of N , say K. Then K, being a p-subgroup of G, is
contained in a conjugate of P : K ⊂ gPg−1. Thus g−1Kg ⊂ P . Also g−1Kg ⊂ g−1Ng = N ,
so g−1Kg ⊂ P ∩N ⊂ K. Since |K| = |g−1Kg|, we get |P ∩N | = |K|, so P ∩N = K is a
p-Sylow subgroup of N .)

Let Q be a p-Sylow subgroup of N . Pick a p-Sylow of G, say P , which contains Q. Then
Q ⊂ P ∩N , and P ∩N is a p-Sylow of N , so Q = P ∩N . �

There is an extension of Corollary 6.4 to certain non-normal subgroups. Suppose H C
KCG (perhaps H is not normal in G). If P is a Sylow subgroup of G then P ∩K is a Sylow
subgroup of K, so (P ∩K)∩H = P ∩H is a Sylow subgroup of H. It is left to the reader to
show every Sylow subgroup of H arises in this way. This can be extended to every subgroup
that is at the bottom of a chain of subgroups increasing up to G with each one normal in the
next. Such subgroups are called subnormal. (For example, in D4 the subgroup 〈s〉 satisfies
〈s〉 C 〈s, r2〉 C D4, so 〈s〉 is subnormal in D4 but not normal in D4.) The condition on a
subgroup H ⊂ G that P ∩H is a Sylow subgroup of H for each Sylow subgroup P of G is
actually equivalent to H being subnormal. This was the Kegel–Wielandt conjecture, and
its proof [5] depends on the classification of finite simple groups.

We now show the inequality at the very end of Corollary 6.4 is true for all subgroups of
a finite group.

https://math.stackexchange.com/questions/610094/
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Theorem 6.5. Let G be a finite group and H be a subgroup. Choose a prime p. Distinct
p-Sylow subgroups of H do not lie in a common p-Sylow subgroup of G. In particular,
np(H) ≤ np(G).

Proof. Let Q and Q′ be distinct p-Sylow subgroups of H. If they lie in a common p-Sylow
subgroup of G then the group 〈Q,Q′〉 is a p-group and it lies in H. However its size is too
large, since it is a p-subgroup of H that properly contains the p-Sylow subgroup Q.

If we associate to each p-Sylow subgroup of H a p-Sylow subgroup of G it lies inside of
(there is no canonical way to do this if we have choices available) then this correspondence
from Sylp(H) to Sylp(G) is one-to-one, so np(H) ≤ np(G). �

Theorem 6.6. Let N CG. For every p-Sylow P of G, PN/N is a p-Sylow of G/N and all
p-Sylows of G/N arise in this way. In particular, np(G/N) ≤ np(G).

Proof. First, we will show for every p-Sylow P of G that PN/N is a p-Sylow of G/N .
The group PN/N is a p-group (either because every element has p-power order or because
PN/N ∼= P/(P ∩N)). Using the inclusions

G ⊃ PN ⊃ N, G ⊃ PN ⊃ P,

the first one shows [G/N : PN/N ] = [G : PN ] and the second one shows [G : PN ] 6≡
0 mod p. Therefore PN/N is a p-Sylow of G/N .

Now we show every p-Sylow of G/N has the form PN/N for some p-Sylow P of G.
Let Q ∈ Sylp(G/N) and write Q = H/N for some subgroup H ⊂ G containing N . Then
[G : H] = [G/N : Q] 6≡ 0 mod p. Choose P ∈ Sylp(H), so P ∈ Sylp(G) too by the previous
congruence. Then PN/N is a subgroup of Q. It is also a p-Sylow subgroup of G/N by the
previous paragraph, so Q = PN/N . �

Corollary 6.4 and Theorem 6.6 tell us the maps Sylp(G) → Sylp(N) and Sylp(G) →
Sylp(G/N) given by P 7→ P ∩N and P 7→ PN/N are surjective. By comparison, although
|Sylp(G)| ≥ |Sylp(H)| for every subgroup H, there are no natural maps between Sylp(G)
and Sylp(H) when H is non-normal in G. (The function Sylp(H) → Sylp(G) in the proof
of Theorem 6.5 is not natural.)

The inequality np(H) ≤ np(G) can’t generally be refined to divisibility. For example,
n3(A4) = 4 and n3(A5) = 10. As an exercise, decide if np(N) | np(G) or np(G/N) | np(G)
when N CG.

Corollary 6.7. If a group has a unique p-Sylow subgroup for some prime p then all sub-
groups and quotient groups have a unique p-Sylow subgroup.

Proof. By Theorems 6.5 and 6.6, an upper bound on the number of p-Sylow subgroups in
a subgroup or quotient group of the group is 1, and there is at least one p-Sylow subgroup
in each subgroup and quotient group of the group by the Sylow theorems. �

Theorem 6.6 gives another proof of Corollary 6.4: since PN/N is a p-Sylow subgroup of
G/N , its size [PN : N ] = [P : P ∩ N ] is the highest power of p in [G : N ]. Since |P | is
the highest power of p in |G|, we conclude that |P ∩N | is the highest power of p in |N |, so
P ∩N is a p-Sylow subgroup of N .

The proof of the next theorem is a nice application of the preservation of the Sylow
property when intersecting with a normal subgroup (Corollary 6.4).
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Theorem 6.8. Write |G| = 2nm, where m is not divisible by 2. If G has a cyclic 2-Sylow
subgroup then G has a normal subgroup of order m and it is the unique subgroup of G with
order m.

Proof. First let’s show that if G has a normal subgroup M of order m then M is the only
subgroup with order m. In fact, we’ll show every subgroup M ′ of G with odd order is
contained in M . The reduction homomorphism G→ G/M maps G to a group of order 2n,
so the image of the odd-order subgroup M ′ has to be trivial. Therefore M ′ is contained in
the kernel, which is M .12

The theorem is clear if n = 0, so we can suppose n ≥ 1.
Every 2-Sylow subgroup of G is cyclic if one is (they are conjugate to each other). Let

H be a 2-Sylow subgroup of G, with generator h0, so h0 has order 2n. First we will show
G has a subgroup of index 2, which must be normal since subgroups of index 2 are normal.

Consider the action of G on G by left multiplication. This action is a group homomor-
phism ` : G→ Sym(G). Let’s look in particular at `(h0), the left multiplication by h0 on G.

Decompose G into m right H-cosets Hg1, . . . ,Hgm. Each Hgi = {gi, h0gi, h20gi, . . . , h
2n−1
0 gi}

is an orbit for left multiplication by h0 on G, so the left multiplication by h0 on G is a
permutation that consists of m different cycles of length 2n. Therefore the sign for left mul-
tiplication by h0 on G is ((−1)2

n−1)m = (−1)m = −1. Thus the composite homomorphism
sgn ◦` → {±1} is onto. Its kernel is a normal subgroup of G with index 2. Call it N , so
|N | = 2n−1m.

If n = 1 we are done; N is a normal subgroup of G with order m. (This part repeats
the case when 2m = 30 from the proof of Theorem 5.9.) Suppose n ≥ 2. The intersection
H ∩N is a 2-Sylow subgroup of N (Corollary 6.4) so it has order 2n−1 and is cyclic since
every subgroup of the cyclic group H is cyclic. Therefore, by induction on n (using N in
place of G), the group N has a normal subgroup M C N of order m. At the start of the
proof, our argument that a normal subgroup of order m in G is the only subgroup of G
with order m also shows that a normal subgroup of N with order m is the only subgroup
of N with order m. For each g ∈ G, gMg−1 is a subgroup of gNg−1 = N with order m, so
gMg−1 = M . �

Remark 6.9. Theorem 6.8 generalizes to odd |G|, with 2 replaced by the smallest prime
factor p of |G|: if |G| = pnm with p not dividing m and G has a cyclic p-Sylow subgroup,
then G has a normal subgroup of order m and that is the only subgroup of G with order
m. See [8, p. 138] for a proof, which is different from the case p = 2 above.

Corollary 6.10. If |G| = 2m where m is odd then G contains a normal subgroup of size
m and all elements of order 2 in G are conjugate to each other.

Proof. A 2-Sylow subgroup of G has size 2, which must be cyclic. Therefore, by Theorem
6.8 (the base case n = 1), there is a normal subgroup of size m, or equivalently index 2.
From the proof of Theorem 6.8, this subgroup has a concrete description: it is the set of
g ∈ G such that left multiplication by g is an even permutation of G.

Since the 2-Sylow subgroups of G have size 2, the elements of order 2 each generate
conjugate subgroups by Sylow II, and therefore the elements themselves are conjugate. �

Example 6.11. A group of size 70 has a normal subgroup of size 35.

12The same argument shows that every normal subgroup whose order is relatively prime to its index is the
only subgroup with its order.
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Example 6.12. For odd m, all reflections in Dm are conjugate and there is a normal
subgroup of size m. Of course this is something we already know by explicit calculation in
dihedral groups, but Corollary 6.10 puts this situation into a larger context.

7. Sylow numbers of direct products

In a direct product of finite groups H ×K, not every subgroup needs to have the form
A×B where A is a subgroup of H and B is a subgroup of K. For example, in Z/(p)×Z/(p)
for prime p the diagonal subgroup 〈(1, 1)〉 is not A× B, and this is true more generally in
Z/(n)×Z/(n) for every n > 1.13 It turns out that the Sylow subgroups in a direct product
must occur as A×B.

Theorem 7.1. For a prime p and finite groups H and K, every p-Sylow subgroup of H×K
is P ×Q, where P ∈ Sylp(H) and Q ∈ Sylp(K). In particular, np(H ×K) = np(H)np(K).

Proof. By the Sylow theorems, H and K each have a p-Sylow subgroup, say SH and SK
respectively. All p-Sylow subgroups of H ×K are conjugate, so a general p-Sylow subgroup
of H ×K is

(h, k)(SH × SK)(h, k)−1 = (hSHh
−1)× (kSKk

−1),

which is a direct product of p-Sylow subgroups of H and K.
From this description of Sylp(H ×K), counting p-Sylow subgroups of H ×K is the same

as counting pairs (P,Q) where P ∈ Sylp(H) and Q ∈ Sylp(K). The number of such pairs is
np(H)np(K). �

8. Normalizers of Sylow subgroups

The normalizers of Sylow subgroups occur in Sylow III: the number of p-Sylow subgroups
is the index of the normalizer of a p-Sylow subgroup. We record here some additional
properties of Sylow normalizers.

We write Sylp(G) for the set of p-Sylow subgroups of G. It will be convenient sometimes
to denote the normalizer of a subgroup K ⊂ G as NG(K) rather than as N(K) to stress the
ambient group in which the normalizer is being computed.

Theorem 8.1. Let P ∈ Sylp(G). Then P is the unique p-Sylow subgroup of N(P ) and
N(P ) is the largest subgroup of G with this property.

Proof. Since P ∈ Sylp(N(P )), Sylow II for N(P ) says each p-Sylow subgroup of N(P ) is

gPg−1 for some g ∈ N(P ). By the definition of N(P ), gPg−1 = P . So P is the unique
p-Sylow subgroup of N(P ). (This kind of argument was used in the proof of Sylow III to
show np ≡ 1 mod p.)

Now suppose P ⊂ H ⊂ G and the only p-Sylow subgroup of H is P . For h ∈ H, hPh−1

is a p-Sylow subgroup of H, so hPh−1 = P . Thus h ∈ N(P ), so H ⊂ N(P ). �

Corollary 8.2. Let P ∈ Sylp(G). Then N(N(P )) = N(P ).

Proof. Every subgroup is contained in its normalizer, so N(P ) ⊂ N(N(P )). To prove the
reverse containment, let g ∈ N(N(P )). Then gN(P )g−1 = N(P ), so gPg−1 ⊂ gN(P )g−1 ⊂
N(P ). Thus gPg−1 is a p-Sylow subgroup of N(P ), so gPg−1 = P . Thus g ∈ N(P ). �

Theorem 8.3. Let N CG and P ∈ Sylp(N).

13If H and K have relatively prime orders then every subgroup of H ×K is of the form A×B.
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(1) [Frattini argument] If N CG and P ∈ Sylp(N) then G = N ·NG(P ).
(2) If P CN then P CG.

Note P is a Sylow subgroup of N , not necessarily of G. The second part was met before
as Lemma 5.8 and was used multiple times. We will give a new proof of it here, using the
first part of Theorem 8.3.

Proof. Pick g ∈ G. Since P ⊂ N and N C G, gPg−1 ⊂ N . Then by Sylow II for the
group N , there is an n ∈ N such that gPg−1 = nPn−1, so n−1gPg−1n = P . That means
n−1g ∈ NG(P ), so g ∈ nNG(P ). Thus G = N ·NG(P ).

If P CN then N ⊂ NG(P ), so N ·NG(P ) = NG(P ). Thus G = NG(P ), so P CG. �

The Frattini argument is very useful in finite group theory (e.g., in the study of nilpotent
groups). We will apply the second part of Theorem 8.3 several times in the next section.

Normality is not usually transitive: if N1CN2 and N2CG, it need not follow that N1CG.
(This is illustrated by 〈s〉C 〈r2, s〉CD4.) Theorem 8.3 gives a setting where something like
this is true: a normal Sylow subgroup of a normal subgroup is a normal subgroup.

Example 8.4. Let G = GL2(Z/(3)) and N = SL2(Z/(3)). There is a unique 2-Sylow
subgroup of N , so it is normal in N , and thus normal in G. Thus the 2-Sylow subgroup of
N lies in every 2-Sylow subgroup of G (but is not itself a 2-Sylow subgroup of G).

Corollary 8.5. Let P ∈ Sylp(G). If NG(P ) ⊂ H ⊂ G then NG(H) = H and [G : H] ≡
1 mod p.

When H = NG(P ), the conclusions here are Corollary 8.2 and the third Sylow theorem
(since [G : NG(P )] = np).

Proof. Since P is a Sylow subgroup of G and P ⊂ NG(P ) ⊂ H, P is a Sylow subgroup of
H. Then, since H C NG(H), Theorem 8.3 (with NG(H) in place of G) implies NG(H) =
H NNG(H)(P ) ⊂ H NG(P ) ⊂ H. The reverse inclusion is obvious, so NG(H) = H.

Since NG(P ) ⊂ H, the normalizer of P in H is also NG(P ) (that is, NH(P ) = NG(P )).
By Sylow III and III* applied to H and to G, we have

np(G) = [G : NG(P )] ≡ 1 mod p,

np(H) = [H : NH(P )] = [H : NG(H)] ≡ 1 mod p.

Thus their ratio, which is [G : H], is ≡ 1 mod p. �

9. Simple groups of order 60

We call a group simple when it is nontrivial and its only normal subgroups are the trivial
subgroup and the whole group. For example, a group of prime size is simple for the crude
reason that it has no subgroups at all besides the trivial subgroup and the whole group.
An abelian group of non-prime size is not simple, since it always has a proper nontrivial
subgroup, which is necessarily normal. Thus all simple groups other than a group of prime
size are nonabelian.

Simple groups can be characterized in terms of group homomorphisms, as follows.

Theorem 9.1. A nontrivial group G is simple if and only if every nontrivial group homo-
morphism out of G is an embedding.
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Proof. Suppose G is simple. Let f : G→ H be a homomorphism, with f(g) 6= e for some g.
Then the kernel of f is a proper normal subgroup of G. Since G is simple, its only proper
normal subgroup is trivial, so the kernel of f is trivial, which means f is an embedding.
Conversely, suppose all nontrivial homomorphisms out of G are embeddings. If N CG and
N 6= G then the reduction map G → G/N is a homomorphism with kernel N . The image
is not just the identity, so by hypothesis this is an embedding. Therefore the kernel N is
trivial, so G is simple. �

Theorem 9.2. The group A5 is simple.

Proof. We want to show the only normal subgroups of A5 are (1) and A5.
There are 5 conjugacy classes in A5, with representatives and sizes as indicated in the

following table.

Rep. (1) (12345) (21345) (12)(34) (123)
Size 1 12 12 15 20

If A5 has a normal subgroup N then N is a union of conjugacy classes – including (1) –
whose total size divides 60. However, no sum of the above numbers that includes 1 is a
factor of 60 except for 1 and 60. Therefore N is trivial or A5. �

The proof of Theorem 9.2 required knowledge of the conjugacy classes in A5. We now
prove A5 is simple using much less information: its size and that it has more than one
5-Sylow subgroup. (cf. Theorem 2.1). The result will apply to each group with the same
two properties. Our discussion is based on [1, pp. 145–146].

Theorem 9.3. If |G| = 60 and n5 > 1 then G is a simple group.

Proof. Assume G is not simple, so there is N CG with 1 < |N | < 60. That means

|N | ∈ {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}.
We will get a contradiction. Our argument will use many of the previous consequences we
drew from the Sylow theorems (to groups of size 12, 15, 20, and 30).

First we show |N | is not divisible by 5. Assume 5 | |N |, so N contains a 5-Sylow subgroup,
which is also a 5-Sylow subgroup of G since 60 = 5 · 12. Because N C G, Sylow II shows
all the 5-Sylow subgroups of G lie in N . Let n5 be the number of 5-Sylows in G (which we
know are all subgroups of N). Since n5 | 12 and n5 ≡ 1 mod 5, n5 = 1 or 6. Because n5 > 1
by hypothesis, n5 = 6. Therefore N contains six different subgroups of size 5. Counting
elements of N with orders 1 or 5, Lemma 5.3 says

|N | ≥ n5 · 4 + 1 = 25.

Since |N | is a proper factor of 60, |N | = 30. But then, by Theorem 5.9, N has only one
5-Sylow subgroup. This is a contradiction of n5 = 6, so |N | is not divisible by 5. This
means

|N | ∈ {2, 3, 4, 6, 12}.
If |N | equals 6 then Theorem 5.2 says N contains a normal 3-Sylow subgroup. If |N |

equals 12 then Theorem 5.4 says N contains a normal 2-Sylow or 3-Sylow subgroup. A
normal Sylow subgroup of N is a normal subgroup of G by Lemma 5.8 or Theorem 8.3.
Because such a normal subgroup of G has size 3 or 4, which is one of the possibilities already
under consideration for |N |, we are reduced to eliminating the possibility that |N | = 2, 3,
or 4.
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If |N | equals 2, 3, or 4, let G = G/N , so G is a group with size 30, 20, or 15. By Theorem
4.5, a group of size 15 is cyclic and thus has a normal 5-Sylow subgroup. By Theorem 5.1,
a group of size 20 has a normal 5-Sylow subgroup. By Theorem 5.9, a group of size 30 has
a normal 5-Sylow subgroup. Therefore in all cases G contains a normal 5-Sylow subgroup,
say P , with |P | = 5.

Consider the projection π : G→ G. Set H = π−1(P ). Since P CG, HCG. Since H 6= G,
H is a proper normal subgroup of G. Since π sends H onto P , |H| is divisible by 5. But
we showed earlier that G contains no proper normal subgroups of size divisible by 5.

Since all choices for |N | have been eliminated, there is no such N . Thus G is simple. �

The next result shows that A5 is the only simple group of size 60, up to isomorphism.
(In total, there are 13 groups of size 60 up to isomorphism.) The proof will use Sylow III*.

Theorem 9.4. Every simple group of size 60 is isomorphic to A5.

Proof. Let G be a simple group of size 60. To prove G is isomorphic to A5, we will make
G act on a set of 5 objects and then show this action is given by the even permutations of
the 5 objects.

We seek an action on cosets. Suppose G has a subgroup H with [G : H] = 5 (i.e., |H| =
12), so the left multiplication action of G on the coset space G/H gives a homomorphism

ϕ : G→ Sym(G/H) ∼= S5.

The kernel of ϕ is a normal subgroup of G, and therefore is trivial or is G since G is simple.
If g ∈ G is in the kernel of ϕ then gH = H, so g ∈ H. In particular, the kernel of ϕ is a
subgroup of H and therefore the kernel can’t be G. Thus the kernel of ϕ is trivial, so ϕ
is an embedding of G into S5; G is isomorphic to its image ϕ(G). In particular, ϕ(G) is a
simple group of size 60. Let’s prove this image is A5.

If ϕ(G) 6⊂ A5 then ϕ(G) contains an odd permutation. That means the sign homomor-
phism

sgn: ϕ(G)→ {±1}
is surjective, so its kernel is a normal subgroup of ϕ(G) with index 2. However, ϕ(G) doesn’t
have such normal subgroups since it is simple. (Remember, ϕ gives an isomorphism of G
with ϕ(G).) We conclude that all elements of ϕ(G) have sign 1, so ϕ(G) ⊂ A5. Both groups
have size 60, so ϕ(G) = A5.

We have shown that if G has a subgroup H with index 5 then the left multiplication
action of G on the coset space G/H gives an isomorphism of G with A5. The rest of the
proof is devoted to showing G has a subgroup with index 5.

Step 1: For each proper subgroup H ⊂ G, [G : H] ≥ 5. Thus |H| ≤ 12.

Let t = [G : H]. The left multiplication action of G on G/H gives a homomorphism
G→ Sym(G/H) ∼= St. Since H is a proper subgroup and G is simple, this homomorphism
has trivial kernel. (The reason follows as before, when we were only concerned with index
5 subgroups: the kernel is a subgroup of H and therefore is a proper normal subgroup of
G, which must be trivial since G is simple.) Therefore we have an embedding of G into St,
so 60 | t!. This can happen only when t ≥ 5.

Step 2: G has a subgroup with index 5.

We use Sylow III for the primes 2, 3, and 5. They tell us that

n2 ∈ {1, 3, 5, 15}, n3 ∈ {1, 4, 10}, n5 ∈ {1, 6}.
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Since G is simple, the nontrivial Sylow subgroups are not normal, so n2, n3, and n5 all
exceed 1. Moreover, because Sylow III* says each np is the index of a subgroup of G, Step
1 tells us n2, n3, n5 ≥ 5. Therefore

n2 ∈ {5, 15}, n3 = 10, n5 = 6.

If n2 = 5 then Sylow III* says there is a subgroup of G with index 5 and we’re done. What
should we do now: show the only other possibility, that n2 = 15, leads to a contradiction?
Instead we will show that if n2 = 15 then there is a second way to show G has a subgroup
with index 5.

Assume n2 = 15. By Lemma 5.3, G has n3 · 2 = 20 elements of order 3 and n5 · 4 = 24
elements of order 5. This is a total of 44 elements, which leaves at most 60 − 44 = 16
elements that can lie in the 2-Sylow subgroups of G. Each 2-Sylow subgroup of G has size
4 (and thus is abelian), so if n2 = 15 then we have 15 different subgroups of size 4 squeezed
into a 16-element subset of G. These 2-Sylow subgroups can’t all pairwise intersect trivially
(otherwise there would be 3 ·15 = 45 non-identity elements among them). Pick two different
2-Sylows, say P and Q, which intersect nontrivially. Let I = P ∩ Q. Both P and Q are
abelian (they have size 4), so I is normal in each. Therefore the normalizer of I in G
contains both P and Q, so it has size properly divisible by 4. The normalizer of I is not
all of G since G has no proper nontrivial normal subgroups. Since proper subgroups of G
have size 1, 2, 3, 4, 6, or 12, the normalizer of I has size 12 and thus [G : I] = 5. �

Since n2(A5) = 5, we know after the proof that the assumption n2 = 15 in the last
paragraph does not actually occur.

Appendix A. Characterizing Cyclic Groups

The Sylow theorems can be used to prove some theorems about all finite groups after
they are proved for p-groups. Here is an example.

Theorem A.1. A finite group with at most one subgroup of each size is cyclic.

Proof. Our argument has two steps: verify the theorem for groups of prime-power order
and then use Sylow I to derive the general case from the prime-power case.

Step 1: Let |G| = pk where p is prime, k ≥ 1, and assume G has at most one subgroup
of each size. To show G is cyclic, let g be an element of G with maximal order. We want
〈g〉 = G. Pick h ∈ G, so the order of h is a power of p by Lagrange. Let g have order pm

and h have order pn, so n ≤ m. Then pn | pm, so there is a subgroup of the cyclic group

〈g〉 with order pn. (Explicitly, it is 〈gpm−n〉.) Also 〈h〉 has order pn, so our hypothesis that
G has at most one subgroup per size implies 〈h〉 ⊂ 〈g〉, so h ∈ 〈g〉. Therefore G ⊂ 〈g〉, so
〈g〉 = G. (I learned this argument from Trevor Hyde.)

Step 2: Let G be a finite group with at most one subgroup per size. Therefore np = 1
for all primes p. For different primes p and q dividing |G|, the elements of the p-Sylow and
q-Sylow subgroups commute with each other by Theorem 3.2.

All subgroups of G have at most one subgroup of each size (otherwise G itself would have
two subgroups of the same size), so by Step 1 the p-Sylow subgroup of G is cyclic. Choose
a generator gp of the p-Sylow subgroup of G. The order of gp is the size of the p-Sylow
subgroup of G. These gp’s commute as p varies, by the previous paragraph, and their orders
are relatively prime, so the product of the gp’s has order equal to the product of the sizes
of the Sylow subgroups of G. This product of sizes is |G|, so G is cyclic. �



20 KEITH CONRAD

Here is another application of Sylow I to prove a similar theorem.

Theorem A.2. Let G be a finite group such that, for each n dividing |G|, the equation
xn = 1 in G has at most n solutions. Then G is cyclic.

Proof. We again argue in two steps: check the prime power case (not using the Sylow
theorems) and reduce the general case to the prime-power case using Sylow I.

Step 1: Let |G| = pk. Our argument will be similar to that of Step 1 in the previous

theorem. Choose g ∈ G with maximal order, say pm. All pm elements of 〈g〉 satisfy xp
m

= 1,
so by hypothesis the solutions to xp

m
= 1 in G are precisely the elements of 〈g〉. For each

h ∈ G, its order is a p-power at most pm, so the order of h divides pm, which implies
hp

m
= 1. Thus h ∈ 〈g〉. Since h was arbitrary, G = 〈g〉.

Step 2: Let p be a prime dividing |G| and pk be the largest power of p in |G|. Every

g ∈ G of p-power order in G has order dividing pk (all orders divide |G|), so g is a solution

to xp
k

= 1. Let P be a p-Sylow subgroup of G. It provides us with pk solutions to this
equation, so by assumption these are all the solutions. Therefore all elements of p-power
order are in P , so P is the only p-Sylow subgroup.

The hypothesis on G passes to its subgroups, such as its Sylow subgroups, so by step 1
every Sylow subgroup of G is cyclic. That G is cyclic now follows by the same argument as
in Step 2 of the proof of Theorem A.1. �

The theorems in this section are not as impressive as they might appear because they
can be proved using only information about cyclic groups and Lagrange’s theorem.14

References

[1] D. Dummit and R. Foote, “Abstract Algebra,” 3rd ed., Wiley, 2004.
[2] M. Hall, On the Number of Sylow Subgroups in a Finite Group, J. Algebra 7 (1961), 363–371.
[3] I. Herstein, “Topics in Algebra,” 2nd ed., Wiley, 1975.
[4] N. Jacobson, “Basic Algebra I,” 2nd ed., W. H. Freeman & Co., New York, 1985
[5] P. B. Kleidman, A proof of the Kegel–Wielandt conjecture on subnormal subgroups, Ann. of Math. 133

(1991), 369–428.
[6] C. Leedham-Green, “The Structure of Groups of Prime Power Order,” Oxford Univ. Press, Oxford, 2002.
[7] D. J. S. Robinson, “A Course in the Theory of Groups,” Springer-Verlag, New York, 1982.
[8] W. R. Scott, “Group Theory,” Dover, New York, 1987.

14See Section 7 in https://kconrad.math.uconn.edu/blurbs/grouptheory/coset.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/coset.pdf

	1. Statement of the Sylow theorems
	2. Applications to specific groups
	3. Normal Sylow subgroups
	4. Commutativity properties based on |G|
	5. Non-trivial normal subgroups
	6. Sylow numbers of subgroups and quotient groups
	7. Sylow numbers of direct products
	8. Normalizers of Sylow subgroups
	9. Simple groups of order 60
	Appendix A. Characterizing Cyclic Groups
	References

