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1. Introduction

Throughout this discussion, n ≥ 2. Each cycle in Sn is a product of transpositions: the
identity (1) is (12)(12), and a k-cycle with k ≥ 2 can be written as

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik).
For example, a 3-cycle (abc) – which implicitly means a, b, and c are distinct – is a product
of two transpositions:

(abc) = (ab)(bc).

This is not the only way to write (abc) using transpositions, e.g., (abc) = (bc)(ac) = (ac)(ab).
Since each permutation in Sn is a product of cycles and each cycle is a product of

transpositions, each permutation in Sn is a product of transpositions.1 Although every
permutation is a product of disjoint cycles and those cycles are unique up to order (they
commute), a permutation is almost never a product of disjoint transpositions since a product
of disjoint transpositions has order at most 2.

Example 1.1. Let σ = (15243). Then two expressions for σ as a product of transpositions
are

σ = (15)(52)(24)(43)

and
σ = (12)(34)(23)(12)(23)(34)(45)(34)(23)(12).

Example 1.2. Let σ = (13)(132)(243). Note the cycles here are not disjoint. Expressions
of σ as a product of transpositions include

σ = (24)

and
σ = (13)(13)(32)(24)(43).

Write a general permutation σ ∈ Sn as

σ = τ1τ2 · · · τr,
where the τi’s are transpositions and r is the number of transpositions. Although the τi’s
are not determined uniquely, there is a fundamental parity constraint: r mod 2 is deter-
mined uniquely. For instance, the two expressions for (15243) in Example 1.1 involve 4 and
10 transpositions, which are both even. It is impossible to write (15243) as the product
of an odd number of transpositions. In Example 1.2, the permutation (13)(132)(243) is

1We can prove that every permutation in Sn is a product of transpositions without mentioning cycles,
by using biology. If n objects are placed in front of you and you are asked to rearrange them in a particular
way, you could do it by swapping objects two at a time with your two hands. I heard this argument from
Ryan Kinser.
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written as a product of 1 and 5 transpositions, which are both odd. It impossible to write
(13)(132)(243) as a product of an even number of transpositions.

Once we see that r mod 2 is uniquely determined for σ, it will make sense to refer to σ
as an even permutation if r is even and an odd permutation if r is odd. This will lead to
an important subgroup of Sn, the alternating group An, whose size is n!/2.

2. Definition of the sign

Theorem 2.1. Write σ ∈ Sn as a product of transpositions in two ways:

(2.1) σ = τ1τ2 · · · τr = τ ′1τ
′
2 · · · τ ′r′ .

Then r ≡ r′ mod 2.

Proof. The two products of transpositions that equal σ in (2.1) lead to an expression of the
identity permutation as a product of r + r′ transpositions:

(1) = σσ−1 = τ1τ2 · · · τrτ ′r′τ ′r′−1 · · · τ ′1.

(Note τ−1 = τ for transpositions τ and inverting a product reverses the order of multipli-
cation.)

Claim: A product of transpositions that is (1) must use an even number of transpositions.
This claim forces r + r′ above to be even, so r ≡ r′ mod 2, which is what we wanted.
To prove the claim, write (1) in Sn as a product of k transpositions:

(2.2) (1) = (a1b1)(a2b2) · · · (akbk),
where k ≥ 1 and ai 6= bi for all i. We want to show k is even and will prove this by induction
on k.2

The product on the right side of (2.2) can’t have k = 1 since a single transposition is
not (1). We could have k = 2, which is even. Suppose, by induction, that k ≥ 3 and every
product of fewer than k transpositions that equals (1) uses an even number of transpositions.

In (2.2), some transposition (aibi) for i > 1 has to move a1 (otherwise the overall product
on the right side of (2.2) sends a1 to b1, which is not the identity permutation). So a1 must
be an ai or bi for i > 1. Since (aibi) = (biai), we can suppose ai is a1. The two equations

(cd)(ab) = (ab)(cd), (bc)(ab) = (ac)(bc),

where different letters are different numbers, show a product of two transpositions where
the one on the right moves a and the one on the left does not move a can be rewritten as
a product of two transpositions in which the one on the left moves a and the one on the
right does not move a. Call these two equations rewriting rules. In (2.2) they let us rewrite
the overall product without changing the number of transpositions so that the transposition
(a2b2) moves a1, meaning a2 or b2 is a1. Without loss of generality, a2 = a1. Now consider
the cases b2 = b1 and b2 6= b1.

Case 1: b2 = b1. The product (a1b1)(a2b2) in (2.2) is (a1b1)(a1b1), which is the identity
and can be removed. This turns the right side of (2.2) into a product of k−2 transpositions.
By induction, k − 2 is even so k = (k − 2) + 2 is even.

Case 2: b2 6= b1. Check (a1b1)(a2b2) in (2.2), which is (a1b1)(a1b2), can be written as
(a1b2)(b1b2) since a1, b1, and b2 are all different. Then (2.2) can be rewritten as

(2.3) (1) = (a1b2)(b1b2)(a3b3) · · · (akbk),

2A visualization of this proof is in https://www.youtube.com/watch?v=p6kCYbKIMak starting at 13:50.

https://www.youtube.com/watch?v=p6kCYbKIMak
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where only the first two transpositions have been changed. The product on the right involves
the same number k of transpositions as before, but there are fewer transpositions in (2.3)
that move a1 than we had in (2.2) since the start of the product in (2.2) is (a1b1)(a1b2) and
in (2.3) it is (a1b2)(b1b2).

3

Since the overall product in (2.3) is (1), some transposition besides (a1b1) moves a1. The
transposition (b1b2) in (2.3) does not move a1, so by using the rewriting rules above with
(2.3) in place of (2.2), we land again in either Case 1, which lets us drop the number of
transpositions by 2 and then we’re done by induction, or in Case 2, which lets us lower the
overall number of transpositions moving a1 by 1 without changing the total number k of
transpositions.

When (1) is a product of transpositions with the leftmost transposition moving a1, there
is always another transposition in the product moving a1. Since Case 2 reduces that number
by 1 without changing the number of transpositions, after enough steps we can’t be in Case
2 anymore, so we have to be in Case 1 and then we are done by induction. �

Remark 2.2. The bibliography at the end contains references to many different proofs of
Theorem 2.1. The proof given above is adapted from [15].

Definition 2.3. When a permutation σ in Sn can be written as a product of r transposi-
tions, we call (−1)r the sign of σ:

sgn(σ) = (−1)r if σ = τ1τ2 · · · τr.

Permutations with sign 1 are called even and those with sign −1 are called odd. This label
is also called the parity of the permutation.4

Theorem 2.1 tells us that the r in Definition 2.3 has a well-defined value modulo 2, so
the sign of a permutation makes sense.

Example 2.4. The permutation in Example 1.1 has sign 1 (it is even) and the permutation
in Example 1.2 has sign −1 (it is odd).

Example 2.5. Each transposition in Sn has sign −1 and is odd.

Example 2.6. The identity is (12)(12), so it has sign 1 and is even.

Example 2.7. The permutation (143)(26) is (14)(43)(26), a product of three transpositions,
so it has sign −1.

Example 2.8. The 3-cycle (123) is (12)(23), a product of 2 transpositions, so sgn(123) = 1.

Example 2.9. What is the sign of a k-cycle? Since

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik),

which involves k − 1 transpositions,

sgn(i1i2 · · · ik) = (−1)k−1.

3Since (a1b1) and (a1b2) were assumed all along to be honest transpositions, b1 and b2 do not equal a1,
so (b1b2) doesn’t move a1.

4As an example of old terminology, Miller [10] in 1901 called even permutations “positive” and odd
permutations “negative”.
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In words, a cycle with even length has sign −1 and a cycle with odd length has sign 1.
This is because the exponent in the sign formula above is k − 1, not k. To remember that
the parity of a cycle is ‘opposite’ to the parity of its length (a cycle of odd length is even
and a cycle of even length is odd), remember that 2-cycles (transpositions) are odd.

The sign is a function Sn → {±1}. It has both values (when n ≥ 2): the identity has sign
1 and a transposition has sign −1. Also, the sign is multiplicative in the following sense.

Theorem 2.10. For σ, σ′ ∈ Sn, sgn(σσ′) = sgn(σ)sgn(σ′).

Proof. If σ is a product of k transpositions and σ′ is a product of k′ transpositions, then
σσ′ can be written as a product of k + k′ transpositions. Therefore

sgn(σσ′) = (−1)k+k
′

= (−1)k(−1)k
′

= sgn(σ)sgn(σ′). �

Corollary 2.11. Inverting and conjugating a permutation do not change its sign.

Proof. Since sgn(σσ−1) = sgn(1) = 1, sgn(σ)sgn(σ−1) = 1, so sgn(σ−1) = sgn(σ)−1 =
sgn(σ). Similarly, if σ′ = πσπ−1, then

sgn(σ′) = sgn(π)sgn(σ)sgn(π−1) = sgn(σ). �

Theorem 2.10 lets us compute signs of permutations using any decomposition into a prod-
uct of cycles: disjointness of the cycles is not needed. Just remember that a cycle’s parity
is determined by its length and is opposite to the parity of its length (e.g., transpositions
have length 2 and sign −1). For instance, in Example 1.1, σ is a 5-cycle, so sgn(σ) = 1. In
Example 1.2,

sgn((13)(132)(243)) = sgn(13)sgn(132)sgn(243) = (−1)(1)(1) = −1.

3. A second description of the sign

One place signs of permutations show up elsewhere in mathematics is in a formula for
the determinant. Given an n × n matrix (aij), its determinant is a long sum of products
taken n terms at a time, and assorted plus and minus sign coefficients. These plus and
minus signs are signs of permutations:

det(aij) =
∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

For example, taking n = 2,

det

(
a11 a12
a21 a22

)
= sgn(1)a11a22 + sgn(12)a12a21 = a11a22 − a12a21.

In fact, determinants provide an alternate way of thinking about the sign of a permuta-
tion. For σ ∈ Sn, let Tσ : Rn → Rn by the rule

Tσ(x1e1 + · · ·+ xnen) = x1eσ(1) + · · ·+ xneσ(n).

In other words, send ei to eσ(i) and extend by linearity to all of Rn. This transformation
permutes the standard basis of Rn according to the way σ permutes {1, 2, . . . , n}. Writing
Tσ as a matrix provides a realization of σ as a matrix where each row and each column has
a single 1. These are called permutation matrices.
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Example 3.1. Let σ = (123) in S3. Then Tσ(e1) = e2, Tσ(e2) = e3, and Tσ(e3) = e1. As
a matrix,

[Tσ] =

0 0 1
1 0 0
0 1 0

 .

Example 3.2. Let σ = (13)(24) in S4. Then

[Tσ] =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

The correspondence σ 7→ Tσ is multiplicative: Tσ1(Tσ2ei) = Tσ1(eσ2(i)) = eσ1(σ2(i)), which
is Tσ1σ2(ei), so by linearity Tσ1Tσ2 = Tσ1σ2 . Taking determinants, det(Tσ1) det(Tσ2) =
det(Tσ1σ2). What is det(Tσ)? Since Tσ has a single 1 in each row and column, the sum for
det(Tσ) contains a single nonzero term corresponding to the permutation of {1, 2, . . . , n}
associated to σ. This term is sgn(σ), so det(Tσ) = sgn(σ). In words, the sign of a permuta-
tion is the determinant of the associated permutation matrix. Since permutation matrices
are multiplicative, as is the determinant, this gives us a new way of understanding why the
sign of permutations is multiplicative.

4. A third description of the sign

While the sign on Sn was defined in terms of concrete computations, its algebraic property
in Theorem 2.10 turns out to characterize it.

Theorem 4.1. For n ≥ 2, let h : Sn → {±1} satisfy h(σσ′) = h(σ)h(σ′) for all σ, σ′ ∈ Sn.
Then h(σ) = 1 for all σ or h(σ) = sgn(σ) for all σ. Thus, if h is multiplicative and not
identically 1, then h = sgn.

Proof. The main idea is to show h is determined by its value at a single transposition, say
h(12). We may suppose n > 2, as the result is trivial if n = 2.

Step 1: For every transposition τ , h(τ) = h(12).
A transposition other than (12) moves at most one of 1 and 2. First we treat transposi-

tions moving either 1 or 2 (but not both). Then we treat transpositions moving neither 1
nor 2.

A transposition that moves 1 but not 2 has the form (1b), where b > 2. Check that

(1b) = (2b)(12)(2b),

so applying h to both sides of this equation gives us

h(1b) = h(2b)h(12)h(2b) = (h(2b))2h(12) = h(12).

Notice that, although (12) and (2b) do not commute in Sn, their h-values do commute since
h takes values in {±1}, which is commutative. The case of a transposition moving 2 but
not 1 is analogous.

Now suppose our transposition moves neither 1 nor 2, so it is (ab), where a and b both
exceed 2. Check that

(ab) = (1a)(2b)(12)(2b)(1a).

Applying h to both sides,

h(ab) = h(1a)h(2b)h(12)h(2b)h(1a) = h(1a)2h(2b)2h(12) = h(12).
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Step 2: Computation of h(σ) for each σ.
Suppose σ is a product of k transpositions. By Step 1, all transpositions have the same

h-value, say u ∈ {±1}, so h(σ) = uk If u = 1, then h(σ) = 1 for all σ. If u = −1, then
h(σ) = (−1)k = sgn(σ) for all σ. �

Theorem 4.1 has an application to physics. In quantum mechanics, each state of a
system is modeled by a one-dimensional subspace of a certain vector space. In a quantum
system of n identical particles (such as n electrons) rearrangements of the particles are
indistinguishable, so the one-dimensional subspace representing the system leads by the
axioms of quantum mechanics to a multiplicative function Sn → {±1}. By Theorem 4.1
this function is either identically 1 or the sign, which is related to the classification of
particles into two symmetry types: bosons and fermions.

5. The Alternating Group

The identity permutation is even, and by Theorem 2.10 the product of even permutations
is even. A permutation and its inverse are a product of the same number of transpositions
(why?), so the inverse of an even permutation is even. This means the set of even permu-
tations in Sn is a subgroup. Its called the n-th alternating group An:

An = {σ ∈ Sn : sgn(σ) = 1}.

Remember: a permutation is in An when it is a product of an even number of transpositions.

Example 5.1. Take n = 2. Then S2 = {(1), (12)} and A2 = {(1)}.

Example 5.2. Take n = 3. Then A3 = {(1), (123), (132)}, which is cyclic (either non-
identity element is a generator).

Example 5.3. The group A4 consists of 12 permutations of 1, 2, 3, 4:

(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Example 5.4. Every 3-cycle is even, so An contains all 3-cycles when n ≥ 3. In particular,
An is nonabelian for n ≥ 4 since (123) and (124) do not commute.

Although we have not defined the sign on S1, the group S1 is trivial so let’s just declare
the sign to be 1 on S1. Then A1 = S1.

Remark 5.5. The reason for the label ‘alternating’ in the name of An is connected with
the behavior of the multi-variable polynomial

(5.1)
∏

1≤i<j≤n
(Xj −Xi)

under a permutation of its variables. Here is what it looks like when n = 2, 3, 4:

X2 −X1, (X3 −X2)(X3 −X1)(X2 −X1),

(X4 −X3)(X4 −X2)(X4 −X1)(X3 −X2)(X3 −X1)(X2 −X1).

The polynomial (5.1) is a product of
(
n
2

)
terms.

When the variables are permuted, the polynomial will change at most by an overall
sign. For example, if we exchange X1 and X2 then (X3−X2)(X3−X1)(X2−X1) becomes
(X3−X1)(X3−X2)(X1−X2), which is −(X3−X2)(X3−X1)(X2−X1); the 3rd alternating
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polynomial changed by a sign. In general, rearranging the variables in (5.1) by a permutation
σ ∈ Sn changes the polynomial by the sign of that permutation:∏

i<j

(Xσ(j) −Xσ(i)) = sgn(σ)
∏
i<j

(Xj −Xi).

A polynomial whose value changes by an overall sign, either 1 or −1, when each pair of its
variables is permuted is called an alternating polynomial. The product (5.1) is the most
basic example of an alternating polynomial in n variables. A permutation of the variables
leaves (5.1) unchanged precisely when the sign of the permutation is 1. This is why the
group of permutations of the variables that preserve (5.1) is called the alternating group.

How large is An?

Theorem 5.6. For n ≥ 2, |An| = n!/2.

Proof. Pick a transposition, say τ = (12). Then τ 6∈ An. If σ 6∈ An, then sgn(στ) =
(−1)(−1) = 1, so στ ∈ An. Therefore σ ∈ Anτ , where we write Anτ to mean the set of
permutations of the form πτ for π ∈ An. Thus, we have a decomposition of Sn into two
parts:

(5.2) Sn = An ∪Anτ.

This union is disjoint, since every element of An has sign 1 and every element of Anτ has
sign −1. Moreover, Anτ has the same size as An (multiplication on the right by τ swaps
the two subsets), so (5.2) tells us n! = 2|An|. �

Here are the sizes of the smallest symmetric and alternating groups.

n 1 2 3 4 5 6 7
|Sn| 1 2 6 24 120 720 5040
|An| 1 1 3 12 60 360 2520

That all elements of Sn are products of transpositions has an analogue in An: they are
all products of 3-cycles.

Theorem 5.7. For n ≥ 3, each element of An is a product of 3-cycles.

Proof. The identity (1) is (123)(132), which is a product of 3-cycles. Now pick a non-identity
element of An, say σ. Write it as a product of transpositions in Sn:

σ = τ1τ2 · · · τr.

The left side has sign 1 and the right side has sign (−1)r, so r is even. Therefore we can
collect the products on the right into successive transpositions τiτi+1, where i = 1, 3, . . .
is odd. We will now show every product of two transpositions in Sn is a product of two
3-cycles, so σ is a product of 3-cycles.

Case 1: τi and τi+1 are equal. Then τiτi+1 = (1) = (123)(132), so we can replace τiτi+1

with a product of two 3-cycles.
Case 2: τi and τi+1 have exactly one element in common. Let the common element be a,

so we can write τi = (ab) and τi+1 = (ac), where b 6= c. Then

τiτi+1 = (ab)(ac) = (acb) = (abc)(abc),

so we can replace τiτi+1 with a product of two 3-cycles.
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Case 3: τi and τi+1 have no elements in common. This means τi and τi+1 are disjoint, so
we can write τi = (ab) and τi+1 = (cd) where a, b, c, d are distinct (so n ≥ 4). Then

τiτi+1 = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) = (abc)(bcd),

so we can replace τiτi+1 with a product of two 3-cycles. �

Remark 5.8. Although there is a parity constraint on writing a permutation as a product
of transpositions, there is no similar restriction on the number of 3-cycles whose product is
some element of An. To illustrate this, we’ll show (1) is a product of m 3-cycles for every
m ≥ 2. First, from

(1) = (123)(132) = (123)(123)(123) = (123)(132)(123)(132),

we can write (1) as a product of 2, 3, and 4 3-cycles. Multiplying each of these products
by (123)3k, where k ≥ 1, expresses (1) as a product of 3k + 2, 3k + 3 = 3(k + 1), and
3k + 4 = 3(k + 1) + 1 3-cycles, so (1) is a product of any number of 3-cycles except for a
single 3-cycle.

6. Minimal number of transpositions for a permutation

For σ ∈ Sn, what is the fewest number of transpositions in Sn with product σ? For
example, the 7-cycle (1234567) can be written as a product of 6 transpositions:

(6.1) (1234567) = (12)(23)(34)(45)(56)(67).

That shows the 7-cycle is even, but it is not a product of 2 transpositions even though 2
is even, since a product of 2 transpositions moves at most 4 things while (1234567) moves
7 things. Can we use 4 transpositions? No. It turns out 6 transpositions is the minimal
number for a 7-cycle.

Theorem 6.1. Let σ ∈ Sn be a product of m disjoint cycles, including 1-cycles. If we write
σ = τ1τ2 · · · τr where each τi is a transposition, then the smallest value of r is n−m.

Example 6.2. Let σ = (1234567) in S7. Then n = 7, m = 1, and n−m = 6. We have ex-
pressed σ as a product of 6 transpositions in (6.1). If we view σ in S10 as (1234567)(8)(9)(10)
then n = 10, m = 4, and n−m = 6 again. This shows 1-cycles are a nice accounting tool.

Example 6.3. Let σ = (123)(4567) in S7. Then n = 7, m = 2, and n − m = 5. An
expression of σ as a product of 5 transpositions is (12)(23)(45)(56)(67).

Example 6.4. It is important in Theorem 6.1 that we are using disjoint cycles, which is a
canonical way to decompose permutations into cycles. For instance, σ = (12)(23)(34) is a
product of 3 cycles in S4 that are not disjoint, and if we use n = 4 and m = 3 (incorrect)
then n−m = 1 and σ is not a transposition: it is the 4-cycle (1234).

Now we prove Theorem 6.1.

Proof. First we show σ can be written as a product of n−m transpositions. By assumption,
σ = c1 · · · cm where the cj ’s are disjoint cycles. Throw in 1-cycles for missing numbers (those
fixed by σ) and that makes the sum of the lengths of the different cycles equal to n. Let `j
be the length of cj : cj = (a1ja2j · · · a`jj). Each cj is a product of `j − 1 transpositions:

(a1ja2j · · · a`jj) = (a1ja2j)(a2ja3j) · · · (a`j−1 ja`jj).
Multiplying these together for j = 1, . . . , r expresses σ as a product of

∑m
j=1(`j − 1) =∑m

j=1 `j −m = n−m transpositions. In Example 6.3, for instance, `1 = 3 and `2 = 4.
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It remains to prove σ is not a product of less than n−m transpositions. To do this we
will use an argument based on linear maps and hyperplanes due to Mackiw [9].

For each permutation σ in Sn, associate a linear map Lσ : Rn → Rn that permutes the
standard basis e1, . . . , en of Rn according to σ and extend this by linearity:

Lσ(ei) = eσ(i), Lσ

(
n∑
k=1

xkek

)
=

n∑
k=1

xkeσ(k) for xk ∈ R.

For example, if σ = (123) then

Lσ(x1, x2, x3) = Lσ(x1e1 + x2e2 + x3e3) = x1e2 + x2e3 + x3e1 = (x3, x1, x2).

Watch out: Lσ(x1, x2, x3) is not (xσ(1), xσ(2), xσ(3)), which is (x2, x3, x1)! Permuting the

basis vectors by σ amounts to permuting coordinates by σ−1:

Lσ

(
n∑
k=1

xkek

)
=

n∑
k=1

xkeσ(k) =
n∑
k=1

xσ−1(k)ek,

so Lσ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)). If σ = σ−1 then this subtlety does not matter,
and that includes the case when σ is a transposition.

For two permutations σ and σ′ in Sn, Lσσ′ = Lσ ◦ Lσ′ on Rn since the linear maps on
both sides have the same value on the standard basis of Rn, where each side has the effect
ek 7→ eσ(σ′(k)). Thus when σ is a product r transpositions, say σ = τ1 · · · τr, we have

Lσ = Lτ1 ◦ · · · ◦ Lτr .
We showed at the start of this proof that σ can be written as a product of n − m

transpositions, where σ contains m disjoint cycles. We want to show r ≥ n −m and will
do this by looking at subspaces of Rn. Let Wσ = {v ∈ Rn : Lσ(v) = v}. For example, if
σ = (123)(4567) then

Wσ = {(a, a, a, b, b, b, b) : a, b ∈ R} = R(1, 1, 1, 0, 0, 0, 0) + R(0, 0, 0, 1, 1, 1, 1),

which has basis {e1 + e2 + e3, e4 + e5 + e6 + e7}. More generally, when σ = c1 · · · cm for
disjoint cycles c1, . . . , cm we have Wσ =

∑m
j=1 Rwj , where wj =

∑
i∈cj ei: each wj is the

sum of the standard basis vectors ei in Rn where i is moved by cj . The vectors w1, . . . ,wm

are sums of disjoint sets of standard basis vectors in Rn, so they are linearly independent.
Since they span Wσ, dim(Wσ) = m. We will show Wσ contains a subspace of dimension
n− r, so n− r ≤ dim(Wσ) = m and thus r ≥ n−m, which is what we want.

For each transposition τ = (ij) in Sn, Lτ swaps the two basis vectors ei and ej and fixes
the other basis vectors: Lτ (ei) = ej , Lτ (ej) = ei, and Lτ (ek) = ek for k 6= i, j. Then

Lτ

(
n∑
k=1

xkek

)
= xiej + xjei +

∑
k 6=i,j

xkek.

A vector is fixed by Lτ precisely when the coefficients of ei and ej agree, so the set of
vectors fixed by Lτ form

Wτ = R(ei + ej) +
∑
k 6=i,j

Rek,

which is a hyperplane in Rn (subspace of dimension n− 1). Since σ = τ1 · · · τr,
r⋂
i=1

Wτi ⊂Wσ.
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An intersection of r hyperplanes in Rn has dimension at least n− r, so

m = dim(Wσ) ≥ n− r.
Therefore r ≥ n−m. �
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