THE SIGN OF A PERMUTATION

KEITH CONRAD

1. Introduction

Throughout this discussion, $n \geq 2$. Each cycle in S_{n} is a product of transpositions: the identity (1) is $(12)(12)$, and a k-cycle with $k \geq 2$ can be written as

$$
\left(i_{1} i_{2} \cdots i_{k}\right)=\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right) \cdots\left(i_{k-1} i_{k}\right)
$$

For example, a 3-cycle $(a b c)$ - which implicitly means a, b, and c are distinct - is a product of two transpositions:

$$
(a b c)=(a b)(b c)
$$

This is not the only way to write $(a b c)$ using transpositions, e.g., $(a b c)=(b c)(a c)=(a c)(a b)$.
Since each permutation in S_{n} is a product of cycles and each cycle is a product of transpositions, each permutation in S_{n} is a product of transpositions. ${ }^{1}$ Although every permutation is a product of disjoint cycles and those cycles are unique up to order (they commute), a permutation is almost never a product of disjoint transpositions since a product of disjoint transpositions has order at most 2 .

Example 1.1. Let $\sigma=(15243)$. Then two expressions for σ as a product of transpositions are

$$
\sigma=(15)(52)(24)(43)
$$

and

$$
\sigma=(12)(34)(23)(12)(23)(34)(45)(34)(23)(12)
$$

Example 1.2. Let $\sigma=(13)(132)(243)$. Note the cycles here are not disjoint. Expressions of σ as a product of transpositions include

$$
\sigma=(24)
$$

and

$$
\sigma=(13)(13)(32)(24)(43)
$$

Write a general permutation $\sigma \in S_{n}$ as

$$
\sigma=\tau_{1} \tau_{2} \cdots \tau_{r}
$$

where the τ_{i} 's are transpositions and r is the number of transpositions. Although the τ_{i} 's are not determined uniquely, there is a fundamental parity constraint: r mod 2 is determined uniquely. For instance, the two expressions for (15243) in Example 1.1 involve 4 and 10 transpositions, which are both even. It is impossible to write (15243) as the product of an odd number of transpositions. In Example 1.2, the permutation $(13)(132)(243)$ is

[^0]written as a product of 1 and 5 transpositions, which are both odd. It impossible to write $(13)(132)(243)$ as a product of an even number of transpositions.

Once we see that $r \bmod 2$ is uniquely determined for σ, it will make sense to refer to σ as an even permutation if r is even and an odd permutation if r is odd. This will lead to an important subgroup of S_{n}, the alternating group A_{n}, whose size is $n!/ 2$.

2. Definition of the sign

Theorem 2.1. Write $\sigma \in S_{n}$ as a product of transpositions in two ways:

$$
\begin{equation*}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{r}=\tau_{1}^{\prime} \tau_{2}^{\prime} \cdots \tau_{r^{\prime}}^{\prime} \tag{2.1}
\end{equation*}
$$

Then $r \equiv r^{\prime} \bmod 2$.
Proof. The two products of transpositions that equal σ in (2.1) lead to an expression of the identity permutation as a product of $r+r^{\prime}$ transpositions:

$$
\text { (1) }=\sigma \sigma^{-1}=\tau_{1} \tau_{2} \cdots \tau_{r} \tau_{r^{\prime}}^{\prime} \tau_{r^{\prime}-1}^{\prime} \cdots \tau_{1}^{\prime} .
$$

(Note $\tau^{-1}=\tau$ for transpositions τ and inverting a product reverses the order of multiplication.)

Claim: A product of transpositions that is (1) must use an even number of transpositions. This claim forces $r+r^{\prime}$ above to be even, so $r \equiv r^{\prime} \bmod 2$, which is what we wanted.
To prove the claim, write (1) in S_{n} as a product of k transpositions:

$$
\begin{equation*}
(1)=\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \cdots\left(a_{k} b_{k}\right), \tag{2.2}
\end{equation*}
$$

where $k \geq 1$ and $a_{i} \neq b_{i}$ for all i. We want to show k is even and will prove this by induction on $k .^{2}$

The product on the right side of (2.2) can't have $k=1$ since a single transposition is not (1). We could have $k=2$, which is even. Suppose, by induction, that $k \geq 3$ and every product of fewer than k transpositions that equals (1) uses an even number of transpositions.

In (2.2), some transposition $\left(a_{i} b_{i}\right)$ for $i>1$ has to move a_{1} (otherwise the overall product on the right side of (2.2) sends a_{1} to b_{1}, which is not the identity permutation). So a_{1} must be an a_{i} or b_{i} for $i>1$. Since $\left(a_{i} b_{i}\right)=\left(b_{i} a_{i}\right)$, we can suppose a_{i} is a_{1}. The two equations

$$
(c d)(a b)=(a b)(c d), \quad(b c)(a b)=(a c)(b c),
$$

where different letters are different numbers, show a product of two transpositions where the one on the right moves a and the one on the left does not move a can be rewritten as a product of two transpositions in which the one on the left moves a and the one on the right does not move a. Call these two equations rewriting rules. In (2.2) they let us rewrite the overall product without changing the number of transpositions so that the transposition $\left(a_{2} b_{2}\right)$ moves a_{1}, meaning a_{2} or b_{2} is a_{1}. Without loss of generality, $a_{2}=a_{1}$. Now consider the cases $b_{2}=b_{1}$ and $b_{2} \neq b_{1}$.

Case 1: $b_{2}=b_{1}$. The product $\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)$ in (2.2) is $\left(a_{1} b_{1}\right)\left(a_{1} b_{1}\right)$, which is the identity and can be removed. This turns the right side of (2.2) into a product of $k-2$ transpositions. By induction, $k-2$ is even so $k=(k-2)+2$ is even.

Case 2: $b_{2} \neq b_{1}$. Check $\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)$ in (2.2), which is $\left(a_{1} b_{1}\right)\left(a_{1} b_{2}\right)$, can be written as $\left(a_{1} b_{2}\right)\left(b_{1} b_{2}\right)$ since a_{1}, b_{1}, and b_{2} are all different. Then (2.2) can be rewritten as

$$
\begin{equation*}
(1)=\left(a_{1} b_{2}\right)\left(b_{1} b_{2}\right)\left(a_{3} b_{3}\right) \cdots\left(a_{k} b_{k}\right), \tag{2.3}
\end{equation*}
$$

[^1]where only the first two transpositions have been changed. The product on the right involves the same number k of transpositions as before, but there are fewer transpositions in (2.3) that move a_{1} than we had in (2.2) since the start of the product in (2.2) is $\left(a_{1} b_{1}\right)\left(a_{1} b_{2}\right)$ and in (2.3) it is $\left(a_{1} b_{2}\right)\left(b_{1} b_{2}\right) .{ }^{3}$

Since the overall product in (2.3) is (1), some transposition besides $\left(a_{1} b_{1}\right)$ moves a_{1}. The transposition $\left(b_{1} b_{2}\right)$ in (2.3) does not move a_{1}, so by using the rewriting rules above with (2.3) in place of (2.2), we land again in either Case 1, which lets us drop the number of transpositions by 2 and then we're done by induction, or in Case 2, which lets us lower the overall number of transpositions moving a_{1} by 1 without changing the total number k of transpositions.

When (1) is a product of transpositions with the leftmost transposition moving a_{1}, there is always another transposition in the product moving a_{1}. Since Case 2 reduces that number by 1 without changing the number of transpositions, after enough steps we can't be in Case 2 anymore, so we have to be in Case 1 and then we are done by induction.

Remark 2.2. The bibliography at the end contains references to many different proofs of Theorem 2.1. The proof given above is adapted from [15].

Definition 2.3. When a permutation σ in S_{n} can be written as a product of r transpositions, we call $(-1)^{r}$ the sign of σ :

$$
\operatorname{sgn}(\sigma)=(-1)^{r} \text { if } \sigma=\tau_{1} \tau_{2} \cdots \tau_{r}
$$

Permutations with sign 1 are called even and those with sign -1 are called odd. This label is also called the parity of the permutation. ${ }^{4}$

Theorem 2.1 tells us that the r in Definition 2.3 has a well-defined value modulo 2 , so the sign of a permutation makes sense.

Example 2.4. The permutation in Example 1.1 has sign 1 (it is even) and the permutation in Example 1.2 has sign -1 (it is odd).

Example 2.5. Each transposition in S_{n} has sign -1 and is odd.
Example 2.6. The identity is (12)(12), so it has sign 1 and is even.
Example 2.7. The permutation $(143)(26)$ is $(14)(43)(26)$, a product of three transpositions, so it has sign -1 .

Example 2.8. The 3 -cycle (123) is $(12)(23)$, a product of 2 transpositions, so $\operatorname{sgn}(123)=1$.
Example 2.9. What is the sign of a k-cycle? Since

$$
\left(i_{1} i_{2} \cdots i_{k}\right)=\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right) \cdots\left(i_{k-1} i_{k}\right)
$$

which involves $k-1$ transpositions,

$$
\operatorname{sgn}\left(i_{1} i_{2} \cdots i_{k}\right)=(-1)^{k-1}
$$

[^2]In words, a cycle with even length has sign -1 and a cycle with odd length has sign 1 . This is because the exponent in the sign formula above is $k-1$, not k. To remember that the parity of a cycle is 'opposite' to the parity of its length (a cycle of odd length is even and a cycle of even length is odd), remember that 2-cycles (transpositions) are odd.

The sign is a function $S_{n} \rightarrow\{ \pm 1\}$. It has both values (when $n \geq 2$): the identity has sign 1 and a transposition has sign -1 . Also, the sign is multiplicative in the following sense.

Theorem 2.10. For $\sigma, \sigma^{\prime} \in S_{n}, \operatorname{sgn}\left(\sigma \sigma^{\prime}\right)=\operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{\prime}\right)$.
Proof. If σ is a product of k transpositions and σ^{\prime} is a product of k^{\prime} transpositions, then $\sigma \sigma^{\prime}$ can be written as a product of $k+k^{\prime}$ transpositions. Therefore

$$
\operatorname{sgn}\left(\sigma \sigma^{\prime}\right)=(-1)^{k+k^{\prime}}=(-1)^{k}(-1)^{k^{\prime}}=\operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{\prime}\right)
$$

Corollary 2.11. Inverting and conjugating a permutation do not change its sign.
Proof. Since $\operatorname{sgn}\left(\sigma \sigma^{-1}\right)=\operatorname{sgn}(1)=1, \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{-1}\right)=1$, $\operatorname{so} \operatorname{sgn}\left(\sigma^{-1}\right)=\operatorname{sgn}(\sigma)^{-1}=$ $\operatorname{sgn}(\sigma)$. Similarly, if $\sigma^{\prime}=\pi \sigma \pi^{-1}$, then

$$
\operatorname{sgn}\left(\sigma^{\prime}\right)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\sigma)
$$

Theorem 2.10 lets us compute signs of permutations using any decomposition into a product of cycles: disjointness of the cycles is not needed. Just remember that a cycle's parity is determined by its length and is opposite to the parity of its length (e.g., transpositions have length 2 and sign -1). For instance, in Example 1.1, σ is a 5 -cycle, $\operatorname{so} \operatorname{sgn}(\sigma)=1$. In Example 1.2,

$$
\operatorname{sgn}((13)(132)(243))=\operatorname{sgn}(13) \operatorname{sgn}(132) \operatorname{sgn}(243)=(-1)(1)(1)=-1
$$

3. A SECOND DESCRIPTION OF THE SIGN

One place signs of permutations show up elsewhere in mathematics is in a formula for the determinant. Given an $n \times n$ matrix ($a_{i j}$), its determinant is a long sum of products taken n terms at a time, and assorted plus and minus sign coefficients. These plus and minus signs are signs of permutations:

$$
\operatorname{det}\left(a_{i j}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} .
$$

For example, taking $n=2$,

$$
\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\operatorname{sgn}(1) a_{11} a_{22}+\operatorname{sgn}(12) a_{12} a_{21}=a_{11} a_{22}-a_{12} a_{21}
$$

In fact, determinants provide an alternate way of thinking about the sign of a permutation. For $\sigma \in S_{n}$, let $T_{\sigma}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by the rule

$$
T_{\sigma}\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right)=x_{1} \mathbf{e}_{\sigma(1)}+\cdots+x_{n} \mathbf{e}_{\sigma(n)}
$$

In other words, send \mathbf{e}_{i} to $\mathbf{e}_{\sigma(i)}$ and extend by linearity to all of \mathbf{R}^{n}. This transformation permutes the standard basis of \mathbf{R}^{n} according to the way σ permutes $\{1,2, \ldots, n\}$. Writing T_{σ} as a matrix provides a realization of σ as a matrix where each row and each column has a single 1 . These are called permutation matrices.

Example 3.1. Let $\sigma=(123)$ in S_{3}. Then $T_{\sigma}\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, T_{\sigma}\left(\mathbf{e}_{2}\right)=\mathbf{e}_{3}$, and $T_{\sigma}\left(\mathbf{e}_{3}\right)=\mathbf{e}_{1}$. As a matrix,

$$
\left[T_{\sigma}\right]=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Example 3.2. Let $\sigma=(13)(24)$ in S_{4}. Then

$$
\left[T_{\sigma}\right]=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

The correspondence $\sigma \mapsto T_{\sigma}$ is multiplicative: $T_{\sigma_{1}}\left(T_{\sigma_{2}} \mathbf{e}_{i}\right)=T_{\sigma_{1}}\left(\mathbf{e}_{\sigma_{2}(i)}\right)=\mathbf{e}_{\sigma_{1}\left(\sigma_{2}(i)\right)}$, which is $T_{\sigma_{1} \sigma_{2}}\left(\mathbf{e}_{i}\right)$, so by linearity $T_{\sigma_{1}} T_{\sigma_{2}}=T_{\sigma_{1} \sigma_{2}}$. Taking determinants, $\operatorname{det}\left(T_{\sigma_{1}}\right) \operatorname{det}\left(T_{\sigma_{2}}\right)=$ $\operatorname{det}\left(T_{\sigma_{1} \sigma_{2}}\right)$. What is $\operatorname{det}\left(T_{\sigma}\right)$? Since T_{σ} has a single 1 in each row and column, the sum for $\operatorname{det}\left(T_{\sigma}\right)$ contains a single nonzero term corresponding to the permutation of $\{1,2, \ldots, n\}$ associated to σ. This term is $\operatorname{sgn}(\sigma)$, so $\operatorname{det}\left(T_{\sigma}\right)=\operatorname{sgn}(\sigma)$. In words, the sign of a permutation is the determinant of the associated permutation matrix. Since permutation matrices are multiplicative, as is the determinant, this gives us a new way of understanding why the sign of permutations is multiplicative.

4. A third description of the sign

While the sign on S_{n} was defined in terms of concrete computations, its algebraic property in Theorem 2.10 turns out to characterize it.

Theorem 4.1. For $n \geq 2$, let $h: S_{n} \rightarrow\{ \pm 1\}$ satisfy $h\left(\sigma \sigma^{\prime}\right)=h(\sigma) h\left(\sigma^{\prime}\right)$ for all $\sigma, \sigma^{\prime} \in S_{n}$. Then $h(\sigma)=1$ for all σ or $h(\sigma)=\operatorname{sgn}(\sigma)$ for all σ. Thus, if h is multiplicative and not identically 1, then $h=$ sgn.
Proof. The main idea is to show h is determined by its value at a single transposition, say $h(12)$. We may suppose $n>2$, as the result is trivial if $n=2$.

Step 1: For every transposition $\tau, h(\tau)=h(12)$.
$\overline{\mathrm{A} \text { transposition other than (12) moves at most one of } 1 \text { and 2. First we treat transposi- }}$ tions moving either 1 or 2 (but not both). Then we treat transpositions moving neither 1 nor 2.

A transposition that moves 1 but not 2 has the form (1b), where $b>2$. Check that

$$
(1 b)=(2 b)(12)(2 b),
$$

so applying h to both sides of this equation gives us

$$
h(1 b)=h(2 b) h(12) h(2 b)=(h(2 b))^{2} h(12)=h(12) .
$$

Notice that, although (12) and (2b) do not commute in S_{n}, their h-values do commute since h takes values in $\{ \pm 1\}$, which is commutative. The case of a transposition moving 2 but not 1 is analogous.

Now suppose our transposition moves neither 1 nor 2 , so it is ($a b$), where a and b both exceed 2. Check that

$$
(a b)=(1 a)(2 b)(12)(2 b)(1 a) .
$$

Applying h to both sides,

$$
h(a b)=h(1 a) h(2 b) h(12) h(2 b) h(1 a)=h(1 a)^{2} h(2 b)^{2} h(12)=h(12) .
$$

Step 2: Computation of $h(\sigma)$ for each σ.
Suppose σ is a product of k transpositions. By Step 1, all transpositions have the same h-value, say $u \in\{ \pm 1\}$, so $h(\sigma)=u^{k}$ If $u=1$, then $h(\sigma)=1$ for all σ. If $u=-1$, then $h(\sigma)=(-1)^{k}=\operatorname{sgn}(\sigma)$ for all σ.

Theorem 4.1 has an application to physics. In quantum mechanics, each state of a system is modeled by a one-dimensional subspace of a certain vector space. In a quantum system of n identical particles (such as n electrons) rearrangements of the particles are indistinguishable, so the one-dimensional subspace representing the system leads by the axioms of quantum mechanics to a multiplicative function $S_{n} \rightarrow\{ \pm 1\}$. By Theorem 4.1 this function is either identically 1 or the sign, which is related to the classification of particles into two symmetry types: bosons and fermions.

5. The Alternating Group

The identity permutation is even, and by Theorem 2.10 the product of even permutations is even. A permutation and its inverse are a product of the same number of transpositions (why?), so the inverse of an even permutation is even. This means the set of even permutations in S_{n} is a subgroup. Its called the n-th alternating group A_{n} :

$$
A_{n}=\left\{\sigma \in S_{n}: \operatorname{sgn}(\sigma)=1\right\}
$$

Remember: a permutation is in A_{n} when it is a product of an even number of transpositions.
Example 5.1. Take $n=2$. Then $S_{2}=\{(1),(12)\}$ and $A_{2}=\{(1)\}$.
Example 5.2. Take $n=3$. Then $A_{3}=\{(1),(123),(132)\}$, which is cyclic (either nonidentity element is a generator).

Example 5.3. The group A_{4} consists of 12 permutations of $1,2,3,4$:
(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

Example 5.4. Every 3 -cycle is even, so A_{n} contains all 3 -cycles when $n \geq 3$. In particular, A_{n} is nonabelian for $n \geq 4$ since (123) and (124) do not commute.

Although we have not defined the sign on S_{1}, the group S_{1} is trivial so let's just declare the sign to be 1 on S_{1}. Then $A_{1}=S_{1}$.

Remark 5.5. The reason for the label 'alternating' in the name of A_{n} is connected with the behavior of the multi-variable polynomial

$$
\begin{equation*}
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \tag{5.1}
\end{equation*}
$$

under a permutation of its variables. Here is what it looks like when $n=2,3,4$:

$$
\begin{gathered}
X_{2}-X_{1}, \quad\left(X_{3}-X_{2}\right)\left(X_{3}-X_{1}\right)\left(X_{2}-X_{1}\right), \\
\left(X_{4}-X_{3}\right)\left(X_{4}-X_{2}\right)\left(X_{4}-X_{1}\right)\left(X_{3}-X_{2}\right)\left(X_{3}-X_{1}\right)\left(X_{2}-X_{1}\right) .
\end{gathered}
$$

The polynomial (5.1) is a product of $\binom{n}{2}$ terms.
When the variables are permuted, the polynomial will change at most by an overall sign. For example, if we exchange X_{1} and X_{2} then $\left(X_{3}-X_{2}\right)\left(X_{3}-X_{1}\right)\left(X_{2}-X_{1}\right)$ becomes $\left(X_{3}-X_{1}\right)\left(X_{3}-X_{2}\right)\left(X_{1}-X_{2}\right)$, which is $-\left(X_{3}-X_{2}\right)\left(X_{3}-X_{1}\right)\left(X_{2}-X_{1}\right)$; the 3rd alternating
polynomial changed by a sign. In general, rearranging the variables in (5.1) by a permutation $\sigma \in S_{n}$ changes the polynomial by the sign of that permutation:

$$
\prod_{i<j}\left(X_{\sigma(j)}-X_{\sigma(i)}\right)=\operatorname{sgn}(\sigma) \prod_{i<j}\left(X_{j}-X_{i}\right)
$$

A polynomial whose value changes by an overall sign, either 1 or -1 , when each pair of its variables is permuted is called an alternating polynomial. The product (5.1) is the most basic example of an alternating polynomial in n variables. A permutation of the variables leaves (5.1) unchanged precisely when the sign of the permutation is 1 . This is why the group of permutations of the variables that preserve (5.1) is called the alternating group.

How large is A_{n} ?
Theorem 5.6. For $n \geq 2,\left|A_{n}\right|=n!/ 2$.
Proof. Pick a transposition, say $\tau=(12)$. Then $\tau \notin A_{n}$. If $\sigma \notin A_{n}$, then $\operatorname{sgn}(\sigma \tau)=$ $(-1)(-1)=1$, so $\sigma \tau \in A_{n}$. Therefore $\sigma \in A_{n} \tau$, where we write $A_{n} \tau$ to mean the set of permutations of the form $\pi \tau$ for $\pi \in A_{n}$. Thus, we have a decomposition of S_{n} into two parts:

$$
\begin{equation*}
S_{n}=A_{n} \cup A_{n} \tau \tag{5.2}
\end{equation*}
$$

This union is disjoint, since every element of A_{n} has sign 1 and every element of $A_{n} \tau$ has sign -1 . Moreover, $A_{n} \tau$ has the same size as A_{n} (multiplication on the right by τ swaps the two subsets), so (5.2) tells us $n!=2\left|A_{n}\right|$.

Here are the sizes of the smallest symmetric and alternating groups.

n	1	2	3	4	5	6	7
$\left\|S_{n}\right\|$	1	2	6	24	120	720	5040
$\left\|A_{n}\right\|$	1	1	3	12	60	360	2520

That all elements of S_{n} are products of transpositions has an analogue in A_{n} : they are all products of 3 -cycles.

Theorem 5.7. For $n \geq 3$, each element of A_{n} is a product of 3-cycles.
Proof. The identity (1) is (123)(132), which is a product of 3-cycles. Now pick a non-identity element of A_{n}, say σ. Write it as a product of transpositions in S_{n} :

$$
\sigma=\tau_{1} \tau_{2} \cdots \tau_{r}
$$

The left side has sign 1 and the right side has sign $(-1)^{r}$, so r is even. Therefore we can collect the products on the right into successive transpositions $\tau_{i} \tau_{i+1}$, where $i=1,3, \ldots$ is odd. We will now show every product of two transpositions in S_{n} is a product of two 3 -cycles, so σ is a product of 3 -cycles.

Case 1: τ_{i} and τ_{i+1} are equal. Then $\tau_{i} \tau_{i+1}=(1)=(123)(132)$, so we can replace $\tau_{i} \tau_{i+1}$ with a product of two 3 -cycles.

Case 2: τ_{i} and τ_{i+1} have exactly one element in common. Let the common element be a, so we can write $\tau_{i}=(a b)$ and $\tau_{i+1}=(a c)$, where $b \neq c$. Then

$$
\tau_{i} \tau_{i+1}=(a b)(a c)=(a c b)=(a b c)(a b c)
$$

so we can replace $\tau_{i} \tau_{i+1}$ with a product of two 3 -cycles.

Case 3: τ_{i} and τ_{i+1} have no elements in common. This means τ_{i} and τ_{i+1} are disjoint, so we can write $\tau_{i}=(a b)$ and $\tau_{i+1}=(c d)$ where a, b, c, d are distinct (so $n \geq 4$). Then

$$
\tau_{i} \tau_{i+1}=(a b)(c d)=(a b)(b c)(b c)(c d)=(b c a)(c d b)=(a b c)(b c d),
$$

so we can replace $\tau_{i} \tau_{i+1}$ with a product of two 3 -cycles.
Remark 5.8. Although there is a parity constraint on writing a permutation as a product of transpositions, there is no similar restriction on the number of 3 -cycles whose product is some element of A_{n}. To illustrate this, we'll show (1) is a product of $m 3$-cycles for every $m \geq 2$. First, from

$$
(1)=(123)(132)=(123)(123)(123)=(123)(132)(123)(132),
$$

we can write (1) as a product of 2,3 , and 43 -cycles. Multiplying each of these products by $(123)^{3 k}$, where $k \geq 1$, expresses (1) as a product of $3 k+2,3 k+3=3(k+1)$, and $3 k+4=3(k+1)+13$-cycles, so (1) is a product of any number of 3 -cycles except for a single 3 -cycle.

6. Minimal number of transpositions for a permutation

For $\sigma \in S_{n}$, what is the fewest number of transpositions in S_{n} with product σ ? For example, the 7 -cycle (1234567) can be written as a product of 6 transpositions:

$$
\begin{equation*}
(1234567)=(12)(23)(34)(45)(56)(67) . \tag{6.1}
\end{equation*}
$$

That shows the 7 -cycle is even, but it is not a product of 2 transpositions even though 2 is even, since a product of 2 transpositions moves at most 4 things while (1234567) moves 7 things. Can we use 4 transpositions? No. It turns out 6 transpositions is the minimal number for a 7 -cycle.
Theorem 6.1. Let $\sigma \in S_{n}$ be a product of m disjoint cycles, including 1-cycles. If we write $\sigma=\tau_{1} \tau_{2} \cdots \tau_{r}$ where each τ_{i} is a transposition, then the smallest value of r is $n-m$.
Example 6.2. Let $\sigma=(1234567)$ in S_{7}. Then $n=7, m=1$, and $n-m=6$. We have expressed σ as a product of 6 transpositions in (6.1). If we view σ in S_{10} as (1234567)(8)(9)(10) then $n=10, m=4$, and $n-m=6$ again. This shows 1 -cycles are a nice accounting tool.

Example 6.3. Let $\sigma=(123)(4567)$ in S_{7}. Then $n=7, m=2$, and $n-m=5$. An expression of σ as a product of 5 transpositions is (12)(23)(45)(56)(67).

Example 6.4. It is important in Theorem 6.1 that we are using disjoint cycles, which is a canonical way to decompose permutations into cycles. For instance, $\sigma=(12)(23)(34)$ is a product of 3 cycles in S_{4} that are not disjoint, and if we use $n=4$ and $m=3$ (incorrect) then $n-m=1$ and σ is not a transposition: it is the 4 -cycle (1234).

Now we prove Theorem 6.1.
Proof. First we show σ can be written as a product of $n-m$ transpositions. By assumption, $\sigma=c_{1} \cdots c_{m}$ where the c_{j} 's are disjoint cycles. Throw in 1-cycles for missing numbers (those fixed by σ) and that makes the sum of the lengths of the different cycles equal to n. Let ℓ_{j} be the length of $c_{j}: c_{j}=\left(a_{1 j} a_{2 j} \cdots a_{\ell_{j} j}\right)$. Each c_{j} is a product of $\ell_{j}-1$ transpositions:

$$
\left(a_{1 j} a_{2 j} \cdots a_{\ell_{j} j}\right)=\left(a_{1 j} a_{2 j}\right)\left(a_{2 j} a_{3 j}\right) \cdots\left(a_{\ell_{j}-1 j} a_{\ell_{j} j}\right)
$$

Multiplying these together for $j=1, \ldots, r$ expresses σ as a product of $\sum_{j=1}^{m}\left(\ell_{j}-1\right)=$ $\sum_{j=1}^{m} \ell_{j}-m=n-m$ transpositions. In Example 6.3, for instance, $\ell_{1}=3$ and $\ell_{2}=4$.

It remains to prove σ is not a product of less than $n-m$ transpositions. To do this we will use an argument based on linear maps and hyperplanes due to Mackiw [9].

For each permutation σ in S_{n}, associate a linear map $L_{\sigma}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ that permutes the standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of \mathbf{R}^{n} according to σ and extend this by linearity:

$$
L_{\sigma}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{\sigma(i)}, \quad L_{\sigma}\left(\sum_{k=1}^{n} x_{k} \mathbf{e}_{k}\right)=\sum_{k=1}^{n} x_{k} \mathbf{e}_{\sigma(k)} \text { for } x_{k} \in \mathbf{R} .
$$

For example, if $\sigma=(123)$ then

$$
L_{\sigma}\left(x_{1}, x_{2}, x_{3}\right)=L_{\sigma}\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}\right)=x_{1} \mathbf{e}_{2}+x_{2} \mathbf{e}_{3}+x_{3} \mathbf{e}_{1}=\left(x_{3}, x_{1}, x_{2}\right)
$$

Watch out: $L_{\sigma}\left(x_{1}, x_{2}, x_{3}\right)$ is not $\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)$, which is $\left(x_{2}, x_{3}, x_{1}\right)$! Permuting the basis vectors by σ amounts to permuting coordinates by σ^{-1} :

$$
L_{\sigma}\left(\sum_{k=1}^{n} x_{k} \mathbf{e}_{k}\right)=\sum_{k=1}^{n} x_{k} \mathbf{e}_{\sigma(k)}=\sum_{k=1}^{n} x_{\sigma^{-1}(k)} \mathbf{e}_{k},
$$

so $L_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)$. If $\sigma=\sigma^{-1}$ then this subtlety does not matter, and that includes the case when σ is a transposition.

For two permutations σ and σ^{\prime} in $S_{n}, L_{\sigma \sigma^{\prime}}=L_{\sigma} \circ L_{\sigma^{\prime}}$ on \mathbf{R}^{n} since the linear maps on both sides have the same value on the standard basis of \mathbf{R}^{n}, where each side has the effect $\mathbf{e}_{k} \mapsto \mathbf{e}_{\sigma\left(\sigma^{\prime}(k)\right)}$. Thus when σ is a product r transpositions, say $\sigma=\tau_{1} \cdots \tau_{r}$, we have

$$
L_{\sigma}=L_{\tau_{1}} \circ \cdots \circ L_{\tau_{r}}
$$

We showed at the start of this proof that σ can be written as a product of $n-m$ transpositions, where σ contains m disjoint cycles. We want to show $r \geq n-m$ and will do this by looking at subspaces of \mathbf{R}^{n}. Let $W_{\sigma}=\left\{\mathbf{v} \in \mathbf{R}^{n}: L_{\sigma}(\mathbf{v})=\mathbf{v}\right\}$. For example, if $\sigma=(123)(4567)$ then

$$
W_{\sigma}=\{(a, a, a, b, b, b, b): a, b \in \mathbf{R}\}=\mathbf{R}(1,1,1,0,0,0,0)+\mathbf{R}(0,0,0,1,1,1,1),
$$

which has basis $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}, \mathbf{e}_{4}+\mathbf{e}_{5}+\mathbf{e}_{6}+\mathbf{e}_{7}\right\}$. More generally, when $\sigma=c_{1} \cdots c_{m}$ for disjoint cycles c_{1}, \ldots, c_{m} we have $W_{\sigma}=\sum_{j=1}^{m} \mathbf{R} \mathbf{w}_{j}$, where $\mathbf{w}_{j}=\sum_{i \in c_{j}} \mathbf{e}_{i}$: each \mathbf{w}_{j} is the sum of the standard basis vectors \mathbf{e}_{i} in \mathbf{R}^{n} where i is moved by c_{j}. The vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ are sums of disjoint sets of standard basis vectors in \mathbf{R}^{n}, so they are linearly independent. Since they span $W_{\sigma}, \operatorname{dim}\left(W_{\sigma}\right)=m$. We will show W_{σ} contains a subspace of dimension $n-r$, so $n-r \leq \operatorname{dim}\left(W_{\sigma}\right)=m$ and thus $r \geq n-m$, which is what we want.

For each transposition $\tau=(i j)$ in S_{n}, L_{τ} swaps the two basis vectors \mathbf{e}_{i} and \mathbf{e}_{j} and fixes the other basis vectors: $L_{\tau}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{j}, L_{\tau}\left(\mathbf{e}_{j}\right)=\mathbf{e}_{i}$, and $L_{\tau}\left(\mathbf{e}_{k}\right)=\mathbf{e}_{k}$ for $k \neq i, j$. Then

$$
L_{\tau}\left(\sum_{k=1}^{n} x_{k} \mathbf{e}_{k}\right)=x_{i} \mathbf{e}_{j}+x_{j} \mathbf{e}_{i}+\sum_{k \neq i, j} x_{k} \mathbf{e}_{k}
$$

A vector is fixed by L_{τ} precisely when the coefficients of \mathbf{e}_{i} and \mathbf{e}_{j} agree, so the set of vectors fixed by L_{τ} form

$$
W_{\tau}=\mathbf{R}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)+\sum_{k \neq i, j} \mathbf{R e}_{k},
$$

which is a hyperplane in \mathbf{R}^{n} (subspace of dimension $n-1$). Since $\sigma=\tau_{1} \cdots \tau_{r}$,

$$
\bigcap_{i=1}^{r} W_{\tau_{i}} \subset W_{\sigma}
$$

An intersection of r hyperplanes in \mathbf{R}^{n} has dimension at least $n-r$, so

$$
m=\operatorname{dim}\left(W_{\sigma}\right) \geq n-r
$$

Therefore $r \geq n-m$.

References

[1] T. L. Bartlow, An historical note on the parity of permutations, Amer. Math. Monthly 79 (1972), 766769.
[2] J. L. Brenner, A new proof that no permutation is both even and odd, Amer. Math. Monthly 74 (1957), 499-500.
[3] P. Cartier, Remarques sur la signature d'une permutation, Enseign. Math. 16 (1970), 7-19.
[4] A. L. Cauchy https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f73.item.
[5] E. L. Gray, An alternate proof for the invariance of parity of a permutation written as a product of transpositions, Amer. Math. Monthly 70 (1963), 995.
[6] I. Halperin, Odd and even permutations, Canadian Math. Bull. 3 (1960), 185-186.
[7] D. Higgs and P. de Witte, On products of transpositions and their graphs, Amer. Math. Monthly 86 (1979), 376-380.
[8] H. Liebeck, Even and odd permutations, Amer. Math. Monthly 76 (1969), 668.
[9] G. Mackiw, Permutations as products of transpositions, Amer. Math. Monthly 102 (1995), 438-440.
[10] G. A. Miller, On the groups generated by two operators, Bull. Amer. Math. Soc. 7 (1901), 424-426. URL https://www.ams.org/journals/bull/1901-07-10/S0002-9904-1901-00826-9/S0002-9904-1901 -00826-9.pdf.
[11] W. I. Miller, Even and odd permutations, MATYC Journal 5 (1971), 32.
[12] S. Nelson, Defining the sign of a permutation, Amer. Math. Monthly 94 (1987), 543-545.
[13] R. K. Oliver, On the parity of a permutation, Amer. Math. Monthly 118 (2011), 734-735.
[14] W. Phillips, On the definition of even and odd permutations, Amer. Math. Monthly 74 (1967), 12491251.
[15] E. L. Spitznagel, Jr., Note on the Alternating Group, Amer. Math. Monthly 75 (1968), 68-69.
[16] C. Weil, Another approach to the alternating subgroup of the symmetric group, Amer. Math. Monthly 71 (1964), 545-546.

[^0]: ${ }^{1}$ We can prove that every permutation in S_{n} is a product of transpositions without mentioning cycles, by using biology. If n objects are placed in front of you and you are asked to rearrange them in a particular way, you could do it by swapping objects two at a time with your two hands. I heard this argument from Ryan Kinser.

[^1]: ${ }^{2}$ A visualization of this proof is in https://www. youtube.com/watch?v=p6kCYbKIMak starting at 13:50.

[^2]: ${ }^{3}$ Since $\left(a_{1} b_{1}\right)$ and ($a_{1} b_{2}$) were assumed all along to be honest transpositions, b_{1} and b_{2} do not equal a_{1}, so ($b_{1} b_{2}$) doesn't move a_{1}.
 ${ }^{4}$ As an example of old terminology, Miller [10] in 1901 called even permutations "positive" and odd permutations "negative".

