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1. Introduction

For two groups H and K, the most basic construction of a group that contains copies of
H and K as subgroups is the direct product H×K, where the group law is componentwise:
(h, k)(h′, k′) = (hh′, kk′). Since (h, 1)(h′, 1) = (hh′, 1) and (1, k)(1, k′) = (1, kk′), we can
embed H and K into H ×K “on the axes” by h 7→ (h, 1) and k 7→ (1, k) for h ∈ H and
k ∈ K. This lets us think of H ×K as a group generated by subgroups isomorphic to H
and K. The significance of direct products is that some groups not initially constructed as
direct products might decompose into a direct product of smaller groups, so we get a kind
of factorization of the group. For example, every finite abelian group is isomorphic to the
direct product of its Sylow subgroups. Other groups are not isomorphic to a direct product
of smaller groups, such as Sn for n ≥ 3.

There is a group construction using two groups H and K that is more subtle (more
cunning?) than H×K, called a semidirect product. Interesting features include: (i) it may
be nonabelian even if H and K are abelian (note H × K is abelian if and only if H and
K are abelian) and (ii) there can be multiple nonisomorphic semidirect products using the
same two groups.

2. Recognizing direct products

When H and K are embedded into H×K in the standard way, here are three properties
of the images of H and K inside H ×K:

• they generate H ×K: (h, k) = (h, 1)(1, k),
• they intersect trivially: (h, 1) = (1, k) =⇒ h = 1, k = 1,
• they commute elementwise: (h, 1)(1, k) = (1, k)(h, 1).

This can be turned into the following “recognition theorem” for a group G to look like
a direct product of two subgroups H and K: we have H ×K ∼= G by the specific mapping
(h, k) 7→ hk precisely when the above conditions hold.

Theorem 2.1. Let G be a group with subgroups H and K where

(1) G = HK; that is, every element of G has the form hk for some h ∈ H and k ∈ K,
(2) H ∩K = {1} in G,
(3) hk = kh for all h ∈ H and k ∈ K.

Then the map H ×K → G by (h, k) 7→ hk is an isomorphism.

Proof. Let f : H ×K → G by f(h, k) = hk. This is a homomorphism:

f((h, k)(h′, k′)) = f(hh′, kk′) = hh′kk′

and
f(h, k)f(h′, k′) = (hk)(h′k′) = h(kh′)k′ = h(h′k)k′ = hh′kk′,

where we use (3) to know that h′ and k commute.
1
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To show f is injective, we check its kernel is trivial: if f(h, k) = 1 then hk = 1 in G, so
h = k−1 ∈ H ∩K. By (2), H ∩K = {1}, so h = 1 and k = 1.

The function f is surjective by (1). �

There are many groups that decompose into a product of two subgroups that fit the first
and second conditions of Theorem 2.1 but not the third one.

Example 2.2. In G = Aff(R), let

H =

{(
1 y
0 1

)
: y ∈ R

}
∼= R, K =

{(
x 0
0 1

)
: x ∈ R×

}
∼= R×.

Since (
x y
0 1

)
=

(
1 y
0 1

)
︸ ︷︷ ︸
∈H

(
x 0
0 1

)
︸ ︷︷ ︸
∈K

we have G = HK, and clearly H ∩ K is trivial, but matrices in H and in K often do
not commute with each other. You can find your own such matrices (nearly any random
choice will work), but also observe that if elements of H and of K always commute with
one another then G ∼= H ×K by Theorem 2.1, but G 6∼= H ×K since H ×K is abelian (H
and K are abelian) while G is nonabelian.

Example 2.3. In G = GL2(R), let H = SL2(R) and K = {( x 0
0 1 ) : x ∈ R×}. For each

g ∈ G, the number ∆ = det g is nonzero and the matrix

(
∆ 0
0 1

)
has determinant ∆, so

g = g

(
∆ 0
0 1

)−1
︸ ︷︷ ︸

∈H

·
(

∆ 0
0 1

)
︸ ︷︷ ︸
∈K

.

Thus GL2(R) = HK, and easily H ∩K = {I2}. It turns out that GL2(R) 6∼= SL2(R)×R×.
For example, GL2(R) has infinitely many elements of order 2, such as reflections across any
line in R2 through the origin, but SL2(R) has just one element of order 2 (−I2; check it is
the only one!) and R× obviously does as well, so SL2(R)×R× has 3 elements of order 2.

Example 2.4. In G = Sn, for n ≥ 3, let H = An and K = 〈(12)〉 = {(1), (12)}. We have
G = HK: for σ ∈ Sn, if σ ∈ An then σ = σ · (1), while if σ /∈ An then σ = σ(12) · (12) and
σ(12) ∈ An. Clearly H ∩K = {(1)}. However, Sn 6∼= H ×K ∼= An × Z/(2) for n > 3 by
computing the center: for n ≥ 3, Sn has a trivial center while An × Z/(2) has a nontrivial
center since Z/(2) has a nontrivial center.

Example 2.5. In G = S4, let H be a 2-Sylow subgroup subgroup and K be a 3-Sylow
subgroup (so H ∼= D4 and K is cyclic of order 3). In the Sylow theorems for S4, n2 = 3 and
n3 = 4, so H and K are not normal in S4. The set HK can be written as H-cosets Hk and
as K-cosets hK, so |HK| is divisible by |H| = 8 and by |K| = 3, so |HK| = 24. Therefore
S4 = HK. The subgroups H and K intersect trivially. We have S4 6∼= H ×K ∼= D4×Z/(3)
since D4 × Z/(3) has a nontrivial center (D4 and Z/(3) both have nontrivial center) while
S4 has a trivial center.

A difference between the last example and the previous ones is that H and K are not
normal in G. In the earlier examples, H C G. Because of that difference, the semidirect
product we define below will include Examples 2.2, 2.3, 2.4 as special cases, but will not
include Example 2.5.
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3. Semidirect products

WhenH andK are subgroups of a groupG, the set-productHK might not be a subgroup.
For example, in S3 if H = 〈(12)〉 and K = 〈(13)〉 then HK = {(1), (12), (13), (132)} has size
4 and is not a subgroup of S3. However, if H or K is normal in G then HK is a subgroup.
Taking H CG, for instance,

(3.1) (hk)(h′k′) = (hkh′k−1)(kk′) ∈ HK, (hk)−1 = k−1h−1 = (k−1h−1k)k−1 ∈ HK

since kh′k−1 ∈ H and k−1hk ∈ H. This includes Examples 2.2, 2.3, and 2.4. (Note that in
H ×K, the standard copies of H and K are both normal subgroups of H ×K, e.g., H and
K are the kernels of the projection homomorphisms from H×K to K and H, respectively.)

The formulas in (3.1) are going to be the motivation for our definition of the group law
in a semidirect product of two groups. Specifically, the product in (3.1) involves kh′k−1, so
K is acting on H by conjugation, which is an action by automorphisms of H.

Consider now two arbitrary groups H and K, not initially inside a common group, and
suppose we have an action of K on H by automorphisms: this means we are given a
homomorphism ϕ : K → Aut(H). Write the automorphism on H associated to k as ϕk,
so ϕk : H → H is a bijection and ϕk(hh

′) = ϕk(h)ϕk(h
′) for all h, h′ ∈ H. That ϕ is a

homomorphism from K to Aut(H) means

ϕk1 ◦ ϕk2 = ϕk1k2 and ϕ1 = idH

for all k1, k2 ∈ K. In particular, ϕk ◦ ϕk−1 = ϕ1 = idH , so

(3.2) ϕ−1k = ϕk−1 .

That is, the inverse of ϕk ∈ Aut(H) is ϕk−1 . As an example, we could let K act trivially on
H: ϕk(h) = h for all k ∈ K and h ∈ H. We’re more interested in nontrivial actions of K
on H by automorphisms, but sometimes the only choice is the trivial action, for instance
if H and K are finite with |K| and |Aut(H)| being relatively prime. In Examples 2.2, 2.3,
and 2.4, K can act on H by conjugation since H is a normal subgroup of G.

Definition 3.1. For two groups H and K and an action ϕ : K → Aut(H) of K on H by
automorphisms, the corresponding semidirect product HoϕK is defined as follows: as a set
it is H ×K = {(h, k) : h ∈ H, k ∈ K}. The group law on H oϕ K is

(h, k)(h′, k′) = (hϕk(h
′), kk′).

This group operation is inspired by the first formula in (3.1), with ϕk(h
′) being an

abstracted version of kh′k−1, where the latter notation makes no sense when H and K are
not initially inside a common group. The notation o in HoϕK has a small C: think of the
slanted lines in the small C as “pointing” to the normal subgroup H: we’ll see in Theorem
3.7 that {(h, 1) : h ∈ H} in H oϕ K is isomorphic to H and is a normal subgroup of the
semidirect product. (Also {(1, k) : k ∈ K} is a subgroup isomorphic to K, but this need
not be normal in H oϕ K.) In our semidirect product notation, the group being acted on
always goes first in H oϕ K, and the group doing the acting goes second. If we reversed
this then the notation could be K nϕ H so the arrow still points to the normal subgroup.

Of course one has to check Definition 3.1 is valid: HoϕK really is a group. The element
(1, 1) is the identity:

(h, k)(1, 1) = (hϕk(1), k1) = (h, k), (1, 1)(h, k) = (1ϕ1(h), 1k) = (h, k)
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where ϕk(1) = 1 and ϕ1 = idH since homomorphisms preserve the identity elements. To find
an inverse for (h, k) in H oϕ K, we want to find a pair (h′, k′) that makes (h, k)(h′, k′) =
(1, 1), or equivalently (hϕk(h

′), kk′) = (1, 1). From the second coordinates being equal,
k′ = k−1. Then in the first coordinates,

hϕk(h
′) = 1⇒ ϕk(h

′) = h−1.

Apply the inverse automorphsm ϕ−1k = ϕk−1 (see (3.2)) and we get h′ = ϕ−1k (h−1) =
ϕk−1(h−1) = (ϕk−1(h))−1. We have solved for both h′ and k′: if (h, k) has an inverse, it
must be

(3.3) (ϕk−1(h−1), k−1) = ((ϕk−1(h))−1, k−1).

The reader should check that this formula really is a 2-sided inverse for (h, k) in H oϕ K.
Note the similarity of this formula for (h, k)−1 to the second formula in (3.1) for an inverse
of hk when H and K are subgroups of a group with H being a normal subgroup:

(hk)−1 = (k−1h−1k)k−1 = (k−1hk)−1k−1.

This is the (conjugation) action of k−1 on h−1 that is then multiplied by k−1.
Associativity of the operation on H oϕ K is left as an exercise.

Example 3.2. If ϕ : K → Aut(H) is the trivial homomorphism, so ϕk = idH for all k ∈ K,
then the group law on H oϕ K is the direct product: (h, k)(h′, k′) = (hϕk(h

′), kk′) =
(hh′, kk′). We’ll see in Theorem 3.7 that a semidirect product is a direct product (in a
natural way) only when ϕ is the trivial action of K on H.

Example 3.3. In H oϕ K, (h, k)2 = (h, k)(h, k) = (hϕk(h), k2), so (h, k)2 = (1, 1) if and
only if ϕk(h) = h−1 and k2 = 1.

Example 3.4. Take H = R, K = R×, and ϕ : R× → Aut(R) where ϕx : R → R by
ϕx(y) = xy. Note ϕx is an automorphism of R as an additive group and ϕx ◦ ϕx′ = ϕxx′
since x(x′y) = (xx′)y for all y ∈ R.

The group R oϕ R× has the operation

(3.4) (a, b)(a′, b′) = (a+ ϕb(a
′), bb′) = (a+ ba′, bb′).

This resembles the multiplication in Aff(R), where
(
b a
0 1

) (
b′ a′
0 1

)
=
(
bb′ ba′+a
0 1

)
. In the affine

matrices we multiply in the upper left, while in R oϕ R×, components multiply in the
second coordinate. That suggests turning (a, b) ∈ R×ϕ R× into

(
b a
0 1

)
: R×ϕ R× ∼= Aff(R)

by (a, b) 7→
(
b a
0 1

)
= ( 1 a

0 1 )
(
b 0
0 1

)
.

In the group Aff(R) you have to be careful about how you decompose a matrix:(
x y
0 1

)
=

(
1 y
0 1

)(
x 0
0 1

)
6=
(
x 0
0 1

)(
1 y
0 1

)
for x 6= 1, y 6= 0.

The nice decomposition puts the matrix associated to y first, before that associated to x.

Example 3.5. In the previous example, replace R with Z/(m) and R× with (Z/(m))×. We
have Aut(Z/(m)) ∼= (Z/(m))× since automorphisms of the additive group Z/(m) are the
mappings ϕa : x mod m 7→ ax mod m for a ∈ (Z/(m))×. Let ϕ : (Z/(m))× → Aut(Z/(m))
by making ϕa : Z/(m)→ Z/(m) for each a be multiplication by a. The semidirect product
Z/(m) oϕ (Z/(m))× has operation

(a, b)(a′, b′) = (a+ ba′, b+ b′).

and is isomorphic to Aff(Z/(m)) by (a, b) mod m 7→
(
b a
0 1

)
mod m.
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Example 3.6. Since ±1 acts as additive automorphisms on Z, we have a semidirect product
Z o {±1} where (a, ε)(a′, ε′) = (a + εa′, εε′). The homomorphism Z → {±1} given by
n 7→ (−1)n leads to a semidirect product Z o Z by (m,n)(m′, n′) = (m+ (−1)nm′, n+ n′).

The next theorem says how H and K fit in H oϕ K. It is similar to the direct product,
except elements of H and of K may not commute with each other, and they do all commute
with each other only if ϕ : K → Aut(H) is trivial (each ϕk is the identity mapping on H).

Theorem 3.7. Inside H oϕ K, we have

H ∼= {(h, 1) : h ∈ H} by h 7→ (h, 1), K ∼= {(1, k) : k ∈ K} by k 7→ (1, k),

and (h, k) = (h, 1)(1, k) = (1, k)(ϕ−1k (h), 1). The copy of H in HoϕK is a normal subgroup
with conjugation by k being described with ϕk:

(3.5) (1, k)(h, 1)(1, k)−1 = (ϕk(h), 1).

In particular, (1, k) commutes with each (h, 1) if and only if k ∈ kerϕ, and every (1, k) and
(h, 1) commute if and only if ϕ : K → Aut(H) is trivial on K: ϕk = idH for all k ∈ K.

The formula (h, k) = (1, k)(ϕ−1k (h), 1) in the theorem looks less strange if H and K are
in a common group, where we could write hk = k(k−1hk). The term k−1hk in parentheses
is the (conjugation) action of k−1 on h and corresponds to (ϕk−1(h), 1) = (ϕ−1k (h), 1).

Proof. In H oϕ K, the mappings h 7→ (h, 1) and k 7→ (1, k) are obviously injective from H
and K into H oϕ K. These multiply together like elements of H and K do:

(h, 1)(h′, 1) = (hϕ1(h
′), 1 · 1) = (hh′, 1) since ϕ1 = idH ,

(1, k)(1, k′) = (1ϕk(1), kk′) = (1, kk′) since ϕk(1) = 1,

Therefore we have copies of H and K inside H oϕ K in a natural way. For instance,
(h, 1)−1 = (h−1, 1) and (1, k)−1 = (1, k−1). We will call write subgroups as H × 1 and
1×K. The use a direct product symbol is okay since elements of H × 1 multiply just like
a direct product of H with the trivial subgroup, and similarly for 1×K.

For a single pair (h, k) in H oϕ K,

(h, 1)(1, k) = (hϕ1(1), 1 · k) = (h, k)

and
(1, k)(ϕ−1k (h), 1) = (1 · ϕk(ϕ−1k (h)), k · 1) = (h, k).

To show H × 1 is a normal subgroup of H oϕ K, it suffices to show 1 × K in H oϕ K
conjugates H × 1 back to itself, since H × 1 does and each element of H oϕK is built from
H × 1 and 1×K (that is, (h, k) = (h, 1)(1, k)):

(1, k)(h, 1)(1, k)−1 = (1, k)(h, 1)(1, k−1)

= (1 · ϕk(h), k · 1)(1, k−1)

= (ϕk(h), k)(1, k−1)

= (ϕk(h) · ϕk(1), kk−1)

= (ϕk(h), 1).

This tells us that H × 1 is normal in H oϕ K, and also shows the action ϕ : K → Aut(H)
of K on H looks like conjugation of 1×K on H × 1 inside H oϕ K.
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For h ∈ H and k ∈ K,

(h, 1)(1, k) = (1, k)(h, 1)⇐⇒ (h, k) = (1 · ϕk(h), k · 1)⇐⇒ (h, k) = (ϕk(h), k).

Therefore (1, k) commutes with all (h, 1) if and only if ϕk(h) = h for all h ∈ H, which
means k ∈ kerϕ. That all (1, k) and (h, 1) commute means kerϕ = K, which is another
way of saying the action ϕ : H → Aut(K) is trivial. �

Thus HoϕK is nonabelian whenever ϕ is not trivial. Even if H and K are both abelian,
if ϕ : K → Aut(H) is nontrivial then H oϕ K is a nonabelian group.

Example 3.8. Let H = R, K = R×, and ϕ : R× → R by ϕx(y) = xy. We saw in Example
3.4 that Aff(R) ∼= R×ϕ R× by ( x y0 1 ) 7→ (y, x).

Equation (3.5) says the effect of ϕx on R looks like conjugation in Roϕ R×, and this is
related to the affine group conjugation formula:(

x 0
0 1

)(
1 y
0 1

)(
x 0
0 1

)−1
=

(
1 xy
0 1

)
=

(
1 ϕx(y)
0 1

)
.

Example 3.9. In Example 3.6 we met the nontrivial semidirect product Z o Z where
(m,n)(m′, n′) = (m+ (−1)nm′, n+ n′). In this group,

(m,n) = (m, 0)(0, n) = (1, 0)m(0, 1)n,

so Z o Z is generated by (1, 0) and (0, 1) where

(0, 1)(1, 0)(0, 1)−1 = (−1, 0) = (1, 0)−1.

Setting x = (1, 0) and y = (0, 1), the group Z o Z is generated by x and y subject to the
relation yxy−1 = x−1. (Check as an exercise that when a group contains two elements x and

y such that yxy−1 = x−1, then yxmy−1 = x−m for all m ∈ Z and then ynxmy−n = x(−1)
nm

for all n ∈ Z.)

Example 3.10. Let H be an abelian group written additively, so negation neg : h 7→ −h
is an automorphism of order 2. Let ϕ : Z/(2)→ Aut(H) by ϕ0 = idH and ϕ1 = [h 7→ −h].
Then ϕ is a homomorphism (tip: when a group G contains an element g of order m, we
always get a homomorphism Z/(m) → G by a mod m 7→ ga, and here we’re using the
special case G = Aut(H) and g is inversion on H). The group H oϕ Z/(2) has operation

(3.6) (h, a mod 2)(h′, a′ mod 2) = (h+nega(h′), a+a′ mod 2) = (h+(−1)ah′, a+a′ mod 2).

Then
(h, 0)(0, 1) = (h, 1) and (0, 1)(h, 0) = (0 + neg(h), 1 + 0) = (−h, 1).

Thus (h, 0) and (0, 1) commute in HoϕZ/(2) if and only if h = −h. If all nonzero elements
of H have order 2 (so negation on H is the identity) then HoϕZ/(2) = H×Z/(2). If some
nonzero element of H does not have order 2 then H oϕ Z/(2) is nonabelian.

Consider the case H = Z/(n) where n ≥ 3. The group Z/(n)oϕ Z/(2) has order 2n and
the group law (3.6) in this special case is

(3.7) (j, k)(j′, k′) = (j + (−1)kj′, k + k′).

This may look like a weird group of order 2n, but in fact it is isomorphic to Dn. If we
identify (1, 0) with r and (0, 1) with s in Dn then Z/(n) oϕ Z/(2) ∼= Dn by (1, 0) 7→
r and (0, 1) 7→ s. For example, (3.7) says (0, 1)(1, 0) = (−1, 1) = (−1, 0)(0, 1), which
matches the familiar dihedral relation sr = r−1s. (The general multiplication rule in Dn is

(rjsk)(rj
′
sk
′
) = rj+(−1)kj′sk+k

′
, where the exponents on r and s look like (3.7).)
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Theorem 3.11. In a semidirect product HoϕK, the subgroup 1×K is normal if and only
if ϕ : K → Aut(H) is trivial, which makes H oϕ K = H ×K.

Proof. Since H ×ϕ K is generated by the subgroups H × 1 and 1 ×K, 1 ×K is a normal
subgroup if and only if (h, 1)(1, k)(h, 1)−1 ∈ 1×K for all h ∈ H and k ∈ K. We have

(h, 1)(1, k)(h, 1)−1 = (h, k)(h−1, 1) = (hϕk(h
−1), k · 1) = (hϕk(h)−1, k),

which is in 1 ×K if and only if ϕk(h) = h. Therefore 1 ×K is normal in H oϕ K if and
only if every ϕk is the identity mapping on H, which means ϕ is trivial. �

4. Recognizing semidirect products

Theorem 2.1 tells us when a group is isomorphic to the direct product of two subgroups.
When is a group isomorphic to a semidirect product of two subgroups?

In H oϕ K, the subgroups H × 1 and 1×K have the following properties:

• they generate H oϕ K: (h, k) = (h, 1)(1, k),
• they intersect trivially: (h, 1) = (1, k) =⇒ h = 1, k = 1,
• elements of 1×K conjugate H × 1 by ϕ: (1, k)(h, 1)(1, k)−1 = (ϕk(h), 1).

These properties can be abstracted to a “recognition theorem” for semidirect products.

Theorem 4.1. Let G be a group with subgroups H and K such that

(1) G = HK,
(2) H ∩K = {1},
(3) H CG.

Let ϕ : K → Aut(H) be conjugation: ϕk(h) = khk−1. Then ϕ is a homomorphism and the
map f : H oϕ K → G where f(h, k) = hk is an isomorphism.

Proof. That ϕ makes sense at all is due to (3). That it is a homomorphism means ϕk ◦ϕk′ =
ϕkk′ , and this is left to the reader to check. The function

f : H oϕ K → G

where f(h, k) = hk is surjective by (1), and f is injective by (2) using the same argument
for injectivity as in the proof of Theorem 2.1. To show f is a homomorphism, calculate

f((h, k)(h′, k′)) = f(hϕk(h
′), kk′)

= hϕk(h
′)kk′

= hkh′k−1kk′

= hkh′k′

= f(h, k)f(h′, k′).

Hence f is an isomorphism. �

Example 4.2. For a transposition τ in Sn, Theorem 4.1 implies Sn ∼= An o {1, τ} where
the semidirect product of subgroups of Sn is a conjugation action. We also have Dn

∼=
〈r〉 o {1, s} and SL2(Z/(3)) ∼= P o 〈( 1 1

0 1 )〉 where P is the (normal) 2-Sylow subgroup.
Lastly, GL2(R) ∼= SL2(R) oK where K is the set of diagonal matrices, ( a 0

0 1 ) for a ∈ R×.
We met this decomposition for GL2(R) earlier in Example 2.3.
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Internally within a semidirect product group H oK, the action of K on H is always a
conjugation: (ϕk(h), 1) = (1, k)(h, 1)(1, k)−1. Externally, if we create a semi-direct product
from scratch using two groups H and K where K acts by automorphisms on H then only
after we have built H oK can we interpret the action of K on H (really, the action of the
(1, k)’s on the (h, 1)’s, being the standard copies of K and H inside HoK) as a conjugation
action.

A group G can have G = HK = HK ′ where K and K ′ are different isomorphic subgroups
that both intersect the normal subgroup H trivially. If K and K ′ conjugate H in genuinely
different ways then we get isomorphic semidirect products using different ϕ’s for the same
two abstract groups.

Example 4.3. We will show for odd n > 1 that the direct product SLn(R) × R× is
isomorphic to a nontrivial semidirect product SLn(R) o R×.

Inside the group G = GLn(R), let H = SLn(R) and K be the subgroup of diagonal
matrices diag(a, 1, 1, . . . , 1) for a ∈ R×, so K ∼= R×. Then G = HK with H C G and
H ∩ K = {In} (Example 2.3 is the special case n = 2). When n > 1, the conjugation
action of K on H is nontrivial, so GLn(R) is isomorphic to a nontrivial semidirect product
SLn(R)×H ∼= SLn(R) o R×.

The center of G is Z = {cIn : c ∈ R×}, which is isomorphic to R× and H ∩Z = {In} if n
is odd (for even n, H ∩ Z = {±In}). For odd n we have G = HZ: if g ∈ G and ∆ = det g,

then g = hz where h = g( n
√

∆In)−1 and z = n
√

∆In The conjugation action of Z on H is
trivial, so GLn(R) is isomorphic to the direct product SLn(R)× Z ∼= SLn(R)×R×.

We have met several examples of groups that are isomorphic to a semidirect product of
two groups:

(1) Aff(R) ∼= R o R×

(2) Sn ∼= An o Z/(2);
(3) Dn

∼= Z/(n) o Z/(2);
(4) GL2(R) ∼= SL2(R) o R×;

In these respective groups,

(1) R× acts on R by multiplication maps ϕx : y 7→ xy for x ∈ R×;
(2) Z/(2) is identified with {1, τ} for any transposition τ in Sn;
(3) Z/(n) is identified with 〈r〉 and Z/(2) is identified with {1, s} in Dn;
(4) R× is identified with the group of matrices ( a 0

0 1 ) (not with the matrices ( a 0
0 a ));

The way to “understand” semidirect products is to see in all these examples how a group
breaks up into a set-product HK of two subgroups H and K with trivial intersection and
K acts by conjugation on H. If you can see how all these examples work (even just Aff(R),
as something concrete but nontrivial to keep in mind) then you can get an idea of what a
semidirect product “is”. In the case of Sn ∼= An o Z/(2) and Dn

∼= Z/(n) oϕ Z/(2), the
Z/(2) factor in the semidirect product corresponds to a special type of element of order
2, either a transposition in Sn or reflection in Dn. Not all elements of order 2 in Sn (for
n ≥ 4) are transpositions and not all elements of order 2 in Dn are reflections: consider
(12)(34) ∈ S4 or r2 ∈ D4.

Part of the point of the semidirect product construction is to abstract the idea that a
group G can have the form HK where H and K are subgroups that intersect trivially with
one of them (say H) being a normal subgroup. Since the elements of H and the elements
of K don’t commute in general, a semidirect product is a kind of “twisted” product, whose
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simplest manifestation is the multiplication in the affine group Aff(R), where the upper-
right entry in a product isn’t the sum of the two upper right entries in the factors but has
a twist: scale one factor by the upper-left entry of the other. This aspect of affine group
multiplication is the computational idea behind semi-direct products.

5. Building semidirect products

So far we have not used semidirect products to create new groups we didn’t already know
in another way. To build new groups, starting with two groups H and K, we want to find
some homomorphisms ϕ : K → Aut(H) and then we can construct HoϕK. The interesting
cases are nontrivial ϕ, since trivial ϕ always lead to a direct product.

The case when H and K are finite with (|K|, |Aut(H)|) = 1 is boring, since ϕ has a
trivial image and thus the only semidirect product H oK is the direct product H ×K.

Example 5.1. A semidirect product Z/(5) o Z/(3) has order 15 and it must be a direct
product: Aut(Z/(5)) = (Z/(5))× has order 4 and that is relatively prime to 3. In fact, all
groups of order 15 are cyclic; groups of order pq will be studied below.

Example 5.2. Is there a nontrivial Z/(25) o Z/(15)? Since Aut(Z/(25)) = (Z/(25))×

has size 20 and (20, 15) 6= 1, there might be nontrivial examples. We seek a nontrivial
homomorphism

ϕ : Z/(15)→ (Z/(25))×.

It is necessary that ϕ(1) goes1 to a g such that g15 = 1. If g15 ≡ 1 mod 25, then g15 ≡
1 mod 5, so (by testing mod 5) g ≡ 1 mod 5. Then

g ∈ {1, 6, 11, 16, 21} .
Choose g = 6. Check 615 ≡ 1 mod 25 (in fact, if a ≡ 1 mod 5 then a5 ≡ 1 mod 25, so a15 ≡
1 mod 25). Let ϕ : Z/(15) → (Z/(25))× by ϕ(1) = 6, so ϕ(k mod 15) = 6k mod 25 (e.g.,
ϕ(2) = ϕ(1+1) = ϕ(1)ϕ(1) = 62). We get a nontrivial semidirect product Z/(25)oϕZ/(15)
with the group law

(a, b)(c, d) = (a+ ϕb(c), b+ d) = (a+ 6bc, b+ d).

This is a nonabelian group of order 15 · 25 = 375 built from two cyclic groups of order 15
and 25.

Example 5.3. Is there a nontrivial Z/(4) oϕ Z/(2)? Since

Aut(Z/(4)) = {x 7→ x, x 7→ −x} ∼= {±1 mod 4} = (Z/(4))×,

there is one nontrivial ϕ : Z/(2) → Aut(Z/(4)), namely the one where ϕ(k mod 2) ={
x 7→ (−1)kx

}
. In Z/(4) oϕ Z/(2),

(a, b)(c, d) = (a+ (−1)bc, b+ d).

This is a group of order 8 built from two subgroups H ∼= Z/(4) and K ∼= Z/(2). It is
isomorphic to D4, with an isomorphism

f : Z/(4) oϕ Z/(2) −→ D4 = 〈r, s〉

being given by f(a, b) = rasb. This is a special case of Example 3.10.

1To choose a group homomorphism ϕ : Z/(n) → G is tantamount to finding g ∈ G such that gn = 1.
Then ϕ(a mod n) = ga is the unique homomorphism where ϕ(1) = g. Different g’s give different ϕ’s.
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Example 5.4. For a group H (written multiplicatively) that has an automorphism f of
order 2, we get the group H oϕ Z/(2) where

(h, k)(h′, k′) = (h · fk(h′), k + k′).

Here ϕ : Z/(2)→ Aut(H) by ϕk = fk, i.e.,

ϕk(h) = f(f(· · · (f(h))))︸ ︷︷ ︸
k times

, k > 0.

The case where H is abelian and f : H → H is inversion on H is in Example 3.10. An
example with nonabelian H is H = GL2(R) and f(A) = (A>)−1 (the inverse transpose
mapping).

If a group H has an automorphism f such that fn = idH , then we get a semidirect
product H oϕ Z/(n) with group law

(h, k)(h′, k′) = (h · fk(h′), k + k′).

Example 5.5. A semidirect product Z/(8) oϕ Z/(2) has order 16 and comes from a ho-
momorphism ϕ : Z/(2) → Aut(Z/(8)). There are four automorphisms of Z/(8): x 7→ x,
x 7→ 3x, x 7→ 5x, and x 7→ 7x. This gives us four semidirect products Z/(8)oϕ Z/(2), with
the following different group laws:

(a, b)(c, d) = (a+ c, b+ d),

(a, b)(c, d) = (a+ 3bc, b+ d),(5.1)

(a, b)(c, d) = (a+ 5bc, b+ d),(5.2)

(a, b)(c, d) = (a+ 7bc, b+ d).(5.3)

Just because formulas for two group laws look different does not mean the groups are
nonisomorphic, although it turns out all of these groups of order 16 are nonisomorhic. The
first one is abelian and the rest are nonabelian (nontrivial semidirect products). One way
to distinguish the nonabelian examples is that they have different numbers of elements that
square to the identity (this counts the identity and all elements of order 2).

Case 1: The group (5.1). Here (a, b)2 = (a(1 + 3b), 0), so we want to count all (a, b)
with a ∈ Z/(8) and b ∈ Z/(2) such that a(1 + 3b) ≡ 0 mod 8. If b = 0 in Z/(2) then
(2a, 0) = (0, 0), so a = 0, 4 in Z/(8). If instead b = 1 in Z/(2) then 4a ≡ 0 mod 8, so a is
even. There are 4 such values of a, so the number of solutions of (a, b)2 = (0, 0) is 2+4 = 6.

Case 2: The group (5.2). Here (a, b)2 = (a(1 + 5b), 0), so we will determine all (a, b)
where a(1 + 5b) ≡ 0 mod 8. If b = 0 then (2a, 0) = (0, 0), so a = 0, 4 in Z/(8) (this is the
same as in the previous case). If b = 1 then 6a ≡ 0 mod 8, so 2a ≡ 0 mod 8. There are 2
values of a, so the number of solutions of (a, b)2 = (0, 0) is 2 + 2 = 4.

Case 3: The group (5.3). Here (a, b)2 = (a(1 + 7b), 0). When b = 0 there are 2 values of
a (as in the other cases), while when b = 1 we have a(1 + 7b) = 0 in Z/(8) for all a, so there
are 8 values of a. Therefore the number of solutions of (a, b)2 = (0, 0) is 2 + 8 = 10.

6. Groups of order pq

Let p and q be primes such that p < q. We’ll use the Sylow theorems and semidirect
products to find all groups of order pq up to isomorphism. The point of this application
is to see how different semidirect products can be isomorphic to each other. We’ll see that
there are two different cases, depending on whether or not q ≡ 1 mod p.
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Theorem 6.1. If primes p < q satisfy q 6≡ 1 mod p then all groups of order pq are cyclic.

Proof. Let |G| = pq, P be a subgroup of order p and Q be a subgroup of order q (by the
Sylow theorems or by Cauchy’s theorem). Let np and nq be the number of p-Sylow and
q-Sylow subgroups of G. From the third Sylow theorem np ≡ 1 mod p with np | q, and
nq ≡ 1 mod q with nq | p. For the q-Sylow subgroups, nq = 1 or nq = p, but nq = p is
impossible since p < q, so we can’t have p ≡ 1 mod q. Thus nq = 1, so Q C G. For the
p-Sylow subgroups, np = 1 or q.

Since q 6≡ 1 mod p, we must have np = 1, so P C G. Thus xy = yx for all x ∈ P and
y ∈ Q, since xyx−1y−1 ∈ P ∩ Q = {1}. Letting x be nontrivial in P and y be nontrivial
in Q, x has order p and y has order q, and x and y commute, so xy has order pq. Thus
〈xy〉 = G, so G is cyclic. �

Lemma 6.2. A semidirect product H oϕ K is unchanged up to isomorphism if the action
ϕ : K → Aut(H) is composed with an automorphism of K: for automorphisms f : K → K,
H oϕ◦f K ∼= H oϕ K.

K
f //

ϕ◦f

88
K

ϕ // Aut(H)

Proof. Exercise. �

Theorem 6.3. If primes p < q satisfy q ≡ 1 mod p then there are two groups of order pq
up to isomorphism: one is cyclic and one is nonabelian.

Proof. Using the notation from the previous proof, the argument there that nq = 1 still
works since it made no use of knowledge of q mod p. Thus QCG.

For the p-Sylow count, np ≡ 1 mod p and np | q, so np = 1 or np = q. Both choices are
consistent with the congruence condition np ≡ 1 mod p, so we consider each one.

Case 1: np = 1. Here the group G is cyclic by the same argument as in the proof of the
previous theorem.

Case 2: np = q. Now G can’t be cyclic, since cyclic groups have all Sylow counts equal to
1 (all Sylow subgroups are nornal). Since QCG and Q ∩ P = {1}, QP is a subgroup of G
with order qp = |G|, so G = QP = PQ. The recognition theorem for semidirect products
(Theorem 4.1) tells us that G ∼= Q oϕ P where ϕ : P → Aut(Q) is the conjugation action
of P on Q.

Semidirect product constructions are unchanged up to isomorphism if we replace the
groups involved with isomorphic groups (see Theorem 10.2 below), so we may suppose
P = Z/(p) and Q = Z/(q). Then every noncyclic group of order pq when q ≡ 1 mod p is
Z/(q) oϕ Z/(p) for a nontrivial homomorphism

ϕ : Z/(p) −→ Aut(Z/(q)) ∼= (Z/(q))×.

We will show there are p−1 such homomorphisms and they all lead to isomorphic semidirect
products. (Contrast this with Example 5.5, where the three nontrivial semidirect products
Z/(8) oϕ Z/(2) are mutually nonisomorphic.)

The different homomorphisms ϕ : Z/(p) → Aut(Z/(q)) ∼= (Z/(q))× are determined by
where they send the generator 1, which has to go to a solution in (Z/(q))× to zp ≡ 1 mod q,
with z = 1 being the trivial homomorphism that does not interest us. Since (Z/(q))× has
order q− 1 and p | (q− 1) by hypothesis (that is, q ≡ 1 mod p), there are elements of order
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p in (Z/(q))× by Cauchy’s theorem. For each solution of zp ≡ 1 mod q with z 6≡ 1 mod p,
we get a semidirect product

Z/(q) oϕ Z/(p)

by

(6.1) (a, b)(c, d) = (a+ ϕb(c), b+ d) = (a+ zbc, b+ d).

(Note if z = 1 this is the direct product.)
The set {z ∈ (Z/(q))× : zp ≡ 1 mod q} is a nontrivial subgroup of (Z/(q))×. Each z 6= 1

in here generates a subgroup 〈z〉 of order p, all of whose elements have pth power 1. For
all prime q, the group (Z/(q))× is cyclic, so it has only one subgroup of order p. Thus
{z ∈ (Z/(q))× : zp ≡ 1 mod p} has order p, so the number of ϕ’s is p and the number of
nontrivial ϕ’s is p− 1.

Two nontrivial ϕ’s are associated (by (6.1)) to two elements z of order p in (Z/(q))×, call
them z1 and z2. They generate the same subgroup, so z2 = zr1 for some r ∈ Z (necessarily
(r, p) = 1). We will show from the relation z2 = zr1 that the semidirect products in (6.1)
using z1 and z2 are isomorphic groups.

Let ϕ1, ϕ2 : Z/(p)→ (Z/(q))× be the homomorphisms associated to z1 and z2: ϕ1(b) = zb1
and ϕ2(b) = zb2 = zbr1 . The group laws (6.1) using z = z1 and z = z2 are

(a, b)(c, d) = (a+ zb1c, b+ d) and (a, b)(c, d) = (a+ zb2c, b+ d) = (a+ zrb1 c, b+ d).

The formula for ϕ2 shows it is a composition: ϕ2 = ϕ1 ◦ f where f : Z/(p) → Z/(p) by
f(x) = rx. This f is an automorphism of Z/(p), so Z/(q) oϕ2 Z/(p) ∼= Z/(q) oϕ1 Z/(p) by
Lemma 6.2. So when p < q and q ≡ 1 mod p, there are (up to isomorphism) two groups of
order pq. �

Explicitly, for q ≡ 1 mod p, a nonabelian matrix group of order pq is{(
x y
0 1

)
: x ∈ (Z/(q))×, y ∈ Z/(q), xp ≡ 1 mod q

}
⊂ Aff(Z/(q)).

Remark 6.4. The classification of groups of order pq up to isomorphism (one group when
q 6≡ 1 mod p and two groups when q ≡ 1 mod p) can be done using only Cauchy’s theorem;
there is no logical need for the Sylow theorems or semidirect products.2 Some people prefer
proofs using more mathematical machinery rather than less.

7. Groups of order 1881

The number 1881 factors as 32 · 11 · 19 = 9 · 209. We will use semidirect products to
describe all groups of this order.

Theorem 7.1. Up to isomorphism there are five groups of order 1881: three semidirect
products Z/(209) o Z/(9) and two semidirect products Z/(209) o (Z/(3))2.

Proof. Let G be a group of order 1881.
Step 1: G ∼= Z/(209) oK where K is a group of order 9.

2See Section 3 of https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchyapp.pdf
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For a prime p, let np the number of p-Sylow subgroups of G of order 1881. By the third
Sylow theorem,

n3 ≡ 1 mod 3, n3 | 11 · 19 =⇒ n3 = 1 or 19,

n11 ≡ 1 mod 11, n11 | 32 · 19 =⇒ n11 = 1,

n19 ≡ 1 mod 19, n19 | 32 · 11 =⇒ n19 = 1.

Therefore G has normal subgroups P of order 11 and Q of order 19, so the set PQ is a
normal subgroup of order 11 · 19 = 209. This in fact is the only subgroup of G with order
209: a subgroup of that order has subgroups of order 11 and 19, which can only be P and
Q, so the subgroup must contain PQ, which has order 209.

Since (|P |, |Q|) = 1, elements of P commute with elements of Q (a commutator of such
elements is in P ∩Q = {1}). Both P and Q are cyclic since they have prime order. Letting
x generate P and y generate Q, their orders are relatively prime and they commute, so xy
has order 11 · 19 = 209 and thus PQ = 〈xy〉: PQ is a cyclic normal subgroup of G with
order 209.

Set H = PQ and let K be a 3-Sylow subgroup of G. Since H C G and |K| = 9, HK
is a subgroup of G of order |H||K|/|H ∩ K| = 1881, so G = HK and the recognition
theorem for semidirect products (Theorem 4.1) tells us G is isomorphic to a semidirect
product H oϕK. The group K is isomorphic to Z/(9) or (Z/(3))2, so by Theorem 10.2 we
can take H = Z/(209) and K = Z/(9) or (Z/(3))2. Isomorphic groups have isomorphic 3-
Sylow subgroups, so semidirect products where K = Z/(9) are not isomorphic to semidirect
products where K = (Z/(3))2.

Step 2: Classify all semidirect products Z/(209) o Z/(9).

Let ϕ : Z/(9) → (Z/(209))× be a homomorphism. It is determined by ϕ(1), which is a
solution of a9 ≡ 1 mod 209. Since 209 = 11 · 19,

(Z/(209))× ∼= (Z/(11))× × (Z/(19))× ∼= C10 × C18
∼= C10 × C2 × C9.

Therefore (Z/(209))× has one subgroup of order 9 and it is cyclic.
To find an element of order 9 in (Z/(209))×, in (Z/(11))× × (Z/(19))× an element of

order 9 is (1, 4). The solution of x ≡ 1 mod 11 and x ≡ 4 mod 19 is 23 mod 209. Thus
23 mod 209 generates the subgroup of (Z/(209))× with order 9, so ϕ(1) = 23r mod 209
for some r ∈ {0, 1, . . . , 8}. To be explicit, when ϕ(1) = 23r mod 209 the group law on
Z/(209) oϕ Z/(9) is

(7.1) (a, b)(c, d) = (a+ ϕb(c), b+ d) = (a+ 23rbc, b+ d).

Depending on gcd(r, 9), we’ll see the group law (7.1) can be rescaled to three cases: r = 1,
r = 3, and r = 0.

Case 1: gcd(r, 9) = 1, so r = 1, 2, 4, 5, 7, or 8.
In Z/(9), r generates the (additive) group. Let rr′ ≡ 1 mod 9 and f : Z/(9) → Z/(9)

by f(x) = r′x. This is an automorphism of Z/(9) and ϕ ◦ f : Z/(9) → (Z/(209))× is a

homomorphism where (ϕ ◦ f)(1 mod 9) = 23rr
′ ≡ 23 mod 209, so in Z/(209) oϕ◦f Z/(9),

(7.2) (a, b)(c, d) = (a+ 23bc, b+ d).

By Lemma 6.2, Z/(209) oϕ◦f Z/(9) ∼= Z/(209) oϕ Z/(9), so the group given by (7.1) is
isomorphic to the group given by (7.2).

Case 2: gcd(r, 9) = 3, so r = 3 or 6.
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If r = 3 then the group law in Z/(209) oϕ Z/(9) is

(7.3) (a, b)(c, d) = (a+ ϕb(c), b+ d) = (a+ 233bc, b+ d).

If r = 6 then r ≡ −3 mod 9, so composing ϕ : Z/(9) → (Z/(209))× with multiplication by
−1 on Z/(9) turns the group law (7.1) with r = 6 into the one with r = 3 in (7.3), and the
two groups are isomorphic by Lemma 6.2.

Case 3: r = 0. Here (7.1) is the direct product Z/(209)× Z/(9), which is cyclic of order
1881.

The group in Case 3 is not isomorphic to those in Cases 1 or 2 since the first two cases are
nonabelian (a nontrivial semidirect product of two abelian groups is nonabelian). To show
the groups (7.2) and (7.3) are not isomorphic, consider the conjugation action in both cases
of G on its unique (normal) subgroup H of order 209. In (7.2), (a, b)(c, 0)(a, b)−1 = (23bc, 0),
while in (7.3), (a, b)(c, 0)(a, b)−1 = (233bc, 0). Since 23 mod 209 has order 9 and 233 mod 209
has order 3, conjugation by (0, 1) on H in (7.2) is an automorphism of H with order 9, while
in (7.3) conjugation by every element of G on H is an automorphism with order 1 or 3.

Put differently, groups in the three different cases above are not isomorphic since the
conjugation action of G on its unique subgroup H of order 209 is a homomorphism G →
Aut(H) whose image has order 9 in Case 1, order 3 in Case 2, and order 1 in Case 3.

Summing up, there are three nonisomorphic semidirect products Z/(209) o Z/(9).
Step 3: Classify all semidirect products Z/(209) o (Z/(3))2.
The trivial semidirect product is the direct product, which is abelian, and every non-

trivial semidirect product is nonabelian, so those cases behave differently. We will show
the nontrivial semidirect products are all isomorphic, so there are two semidirect products
Z/(209) o (Z/(3))2 up to isomorphism: one is trivial and one is nontrivial. The automor-
phism group of (Z/(3))2 is GL2(Z/(3)), so GL2(Z/(3)) will play a role in this step that
(Z/(9))× = Aut(Z/(9)) did in the previous step.

The unique subgroup of (Z/(209))× of order 3 is 〈233〉 = 〈45〉 = {1, 45, 144 mod 209}.
Let ϕ : (Z/(3))2 → (Z/(209))× be the homomorphism determined by ϕ

(
1
0

)
= 45 mod 209

and ϕ
(
0
1

)
= 1 mod 209, i.e., ϕ

(
x
y

)
= 45x mod 209. The group law in Z/(209) oϕ (Z/(3))2 is

(7.4)

(
a,

(
x

y

))(
a′,

(
x′

y′

))
=

(
a+ 45xa′,

(
x+ x′

y + y′

))
.

We’ll show all nontrivial semidirect products Z/(209)o(Z/(3))2 are isomorphic to the group
(7.4) by using matrices in GL2(Z/(3)) to convert other semidirect product group structures
into the one in (7.4)

The nonzero elements of (Z/(3))2 all have order 3 and 〈45 mod 209〉 is the only subgroup
of (Z/(209))× with order 3, so each nontrivial homomorphism ϕ : (Z/(3))2 → (Z/(209))×

has image 〈45 mod 209〉. Thus for some v ∈ (Z/(3))2, ϕ(v) = 45 mod 209. The kernel of
ϕ is nontrivial, so ϕ(w) = 1 mod 209 for some nonzero w ∈ (Z/(3))2. Clearly v is not a
multiple of w in (Z/(3))2, so {v, w} is a basis of (Z/(3))2 and ϕ(xv + yw) = ϕ(v)xϕ(w)y =
45x mod 209 for x, y ∈ Z/(3).

The matrix A = [v w] with columns v and w in (Z/(3))2 is invertible (it has linearly

independent columns) and it sends
(
1
0

)
to v and

(
0
1

)
to w. Therefore the composite ho-

momorphism ϕ ◦ A : (Z/(3))2 → (Z/(209))× has the effect
(
1
0

)
7→ v 7→ 45 mod 209 and(

0
1

)
7→ w 7→ 1 mod 209, which makes the semidirect product Z/(209) oϕ◦A (Z/(3))2 have

the group structure in (7.4). By Lemma 6.2, Z/(209)oϕ◦A (Z/(3))2 ∼= Z/(209)oϕ (Z/(3))2,
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so every nontrivial semidirect product Z/(209) oϕ◦A (Z/(3))2 is isomorphic to the group
given by (7.4). �

8. Groups of order p3

When p is an odd prime, we will show the nonabelian groups of order p3 are semidirect
products. First we’ll describe these groups concretely and then show the examples we found
are the only ones possible up to isomorphism.3

Two nonabelian groups of order p3 are the mod p Heisenberg group

Heis(Z/(p)) =


1 a b

0 1 c
0 0 1

 : a, b, c ∈ Z/(p)


and a mod p2 matrix group with no standard name:

Gp =

{(
a b
0 1

)
: a, b ∈ Z/(p2), a ≡ 1 mod p

}
=

{(
1 + pm b

0 1

)
: m, b ∈ Z/(p2)

}
,

In Heis(Z/(p)),

(8.1)

1 a b
0 1 c
0 0 1

1 a′ b′

0 1 c′

0 0 1

 =

1 a+ a′ b+ b′ + ac′

0 1 c+ c′

0 0 1


and in Gp

(8.2)

(
1 + pm b

0 1

)(
1 + pm′ b′

0 1

)
=

(
1 + p(m+m′) b+ b′ + pmb′

0 1

)
.

It is left to you to show Heis(Z/(p)) and Gp are nonabelian. To see they’re nonisomorphic,1 a b
0 1 c
0 0 1

n

=

1 na nb+ n(n−1)
2 ac

0 1 nc
0 0 1


for n ∈ Z, so the right side is the identity matrix mod p when n = p (here we use p(p−1)/2 ≡
0 mod p when p 6= 2), so all non-identity elements of Heis(Z/(p)) have order p. In Gp the
matrix ( 1 1

0 1 ) mod p2 has order p2, so Heis(Z/(p)) 6∼= Gp.
4

Now let’s see Heis(Z/(p)) and Gp are semidirect products. In Heis(Z/(p)) are subgroups

H =


1 0 b

0 1 c
0 0 1

 : b, c ∈ Z/(p)

 and K =


1 a 0

0 1 0
0 0 1

 : a ∈ Z/(p)

 ,

with H ∼= (Z/(p))2, K ∼= Z/(p), and HCHeis(Z/(p)) since H = ker f for the homomorphism
f : Heis(Z/(p))→ Z/(p)) defined by

f

1 a b
0 1 c
0 0 1

 = a.

3For p = 2, the two groups of order 8 up to isomorphism are D4 and Q8, and we’ll see Q8 is not a
semidirect product in Example 9.2.

4It turns out that Heis(Z/(2)) ∼= G2
∼= D4.
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Since H ∩K is trivial we have Heis(Z/(p)) = HK. The conjugation action of K on H is
based on the mod p matrix ( 1 1

0 1 ):

K =


1 1 0

0 1 0
0 0 1

a

: a ∈ Z/(p)

 ,

1 1 0
0 1 0
0 0 1

1 0 b
0 1 c
0 0 1

1 1 0
0 1 0
0 0 1

−1=
1 0 b+ c

0 1 c
0 0 1

 ,

and
(
b+c
c

)
= ( 1 1

0 1 )
(
b
c

)
. Thus

Heis(Z/(p)) ∼= (Z/(p))2 oϕ Z/(p)

where ϕ : Z/(p) → Aut((Z/(p))2) = GL2(Z/(p)) is defined by ϕ(1 mod p) = ( 1 1
0 1 ). The

center of Heis(Z/(p)) is
1 0 b

0 1 0
0 0 1

 : b ∈ Z/(p)

 =

〈1 0 1
0 1 0
0 0 1

 mod p

〉
,

so H contains the center of Heis(Z/(p)).
Turning next to the group Gp, it has subgroups

H =

{(
1 b
0 1

)
: b ∈ Z/(p2)

}
and K =

{(
a 0
0 1

)
: a ∈ Z/(p2), a ≡ 1 mod p

}
,

with H = 〈( 1 1
0 1 ) mod p2〉 ∼= Z/(p2), K = 〈( 1+p 1

0 1 ) mod p2〉 ∼= Z/(p), and H C Gp since

H = ker f for the homomorphism f : Gp → Aut(Z/(p2)) = (Z/(p2))× defined by

f

(
a b
0 1

)
= a.

Since H ∩K is trivial, Gp = HK. The conjugation action of K on H is described by(
1 + pm 0

0 1

)(
1 b
0 1

)(
1 + pm 0

0 1

)−1
=

(
1 (1 + pm)b
0 1

)
=

(
1 b
0 1

)1+pm

.

Thus

Gp ∼= Z/(p2) oψ Z/(p)

where ψ : Z/(p)→ Aut(Z/(p2)) = (Z/(p2))× is defined by ψ(1 mod p) = 1 + p.
The center of Gp is{(

1 b
0 1

)
: b ∈ Z/(p2), b ≡ 0 mod p

}
=

〈(
1 p
0 1

)
mod p2

〉
,

so H contains the center of Gp.
Now we’ll start over and show a nonabelian group of order p3 for odd prime p is isomorphic

to one of the semidirect products we just constructed.5

Theorem 8.1. For prime p > 2, a nonabelian group of order p3 is isomorphic to one
of the semidirect products (Z/(p))2 oϕ Z/(p) or Z/(p2) oψ Z/(p) for the homomorphisms
ϕ : Z/(p) → GL2(Z/(p)) where ϕ(1) = ( 1 1

0 1 ) and ψ : Z/(p) → (Z/(p2))× where ψ(1) =
1 + p mod p2, and these two semidirect products are not isomorphic.

5 That such a group is isomorphic to Heis(Z/(p)) or Gp, without using semidirect products, is in https://

kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
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Proof. Step 1: If G is nonabelian of order p3 then its center Z has order p.
Since G is a nontrivial group of p-power order, its center is nontrivial. Therefore |Z| =

p, p2, or p3. Since G is nonabelian, |Z| 6= p3. For a group G, if G/Z is cyclic then G
is abelian. So G being nonabelian forces G/Z to be noncyclic. Therefore |G/Z| 6= p, so
|Z| 6= p2. Thus |Z| = p.

Step 2: For each subgroup H of G with order p2, Z ⊂ H.

The subgroup H is abelian since it has order p2. If Z 6⊂ H then H ∩ Z is trivial by Step
1, so G = HZ, which is abelian, and that’s a contradiction. (This step confirms abstractly
what we observed above in Heis(Z/(p)) and Gp: the subgroup H we defined in each of them
with order p2 contains the center of the group.)

Step 3: If each non-identity element of G has order p, then G ∼= (Z/(p))2oϕZ/(p) where

ϕ : Z/(p)→ GL2(Z/(p)) is the homomorphism such that ϕ(1) = ( 1 1
0 1 )

Pick z ∈ Z − {1} and x ∈ G − Z. Then Z = 〈z〉 by Step 1, xz = zx, and z 6∈ 〈x〉, so
H := 〈z, x〉 ∼= (Z/(p))2 because x and z have order p.6 In a p-group, every subgroup of
index p is normal,7 so H CG.

Pick y ∈ G − H and set K = 〈y〉, so K has order p and H ∩ K is trivial. Thus
|HK| = |H||K|/|H ∩ K| = p3, so G = HK. Thus G = H o K where K acts on H by
conjugation.

Claim: yxy−1 = zix for some i 6≡ 0 mod p.
To prove the claim, since H CG we have

(8.3) yxy−1 = zixj

for some i, j ∈ Z/(p). Conjugating both sides by y,

y2xy−2 = y(zixj)y−1 = ziyxjy−1 = zi(yxy−1)j = zi(zixj)j = zi+ijxj
2

= zi(1+j)zj
2
.

By induction,

(8.4) ymxy−m = zi(1+j+j
2+···+jm−1)xj

m

for all m ≥ 1. Since yp = 1, setting m = p turns (8.4) into

(8.5) x = zi(1+j+j
2+···+jp−1)xj

p
= zi(1+j+j

2+···+jp−1)xj

since x has order p and jp ≡ j mod p.
Assume j 6≡ 1 mod p. Then in the exponent of z in (8.5) we have 1+ j+ j2 + · · ·+ jp−1 =

(jp − 1)/(j − 1) ≡ (j − 1)/(j − 1) ≡ 1 mod p, so (8.5) turns into x = zixj . Thus x1−j = zi.
The intersection 〈x〉 ∩ 〈z〉 is trivial, so x1−j = 1, which implies j ≡ 1 mod p. That’s a
contradiction, so j ≡ 1 mod p. Now (8.3) says yxy−1 = zix. If i ≡ 0 mod p then yxy−1 = x,
so y commutes with x. Then since H = 〈z, x〉 and z ∈ Z, y commutes with all of H, which
implies G = HK is abelian: contradiction! Thus i 6≡ 0 mod p, which proves the claim.

Since H = 〈z, x〉 = 〈zi, x〉, rename zi as z. Then K = 〈y〉,
(8.6) yzy−1 = z, and yxy−1 = zx

by the claim (and the new meaning of z). Using the isomorphisms H → (Z/(p))2 where

zbxc 7→
(
b
c

)
and K → Z/(p) where ya 7→ a together with the formulas in (8.6), the conju-

gation action K → Aut(H) turns into the homomorphism ϕ : Z/(p) → GL2(Z/(p)) where
ϕ(1) = ( 1 1

0 1 ), so G ∼= (Z/(p))2 oϕ Z/(p).

6Step 2 explains why it is reasonable to define H to contain a generator of Z.
7See Corollary 6.4 in https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf
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Step 4: If some non-identity element of G has order p2, then G ∼= Z/(p2)oψ Z/(p) where

ψ : Z/(p)→ (Z/(p2))× is the homomorphism such that ψ(1) = 1 + p.
Let x be an element of G with order p2 and set H = 〈x〉. We have Z ⊂ H by Step 2.

Since H is cyclic of order p2 and |Z| = p by Step 1, Z = 〈xp〉.
Claim: There is an element of G−H with order p.
Pick y ∈ G − H. Its order is p or p2. If its order is p then we’re done. Assume y has

order p2. We will find an element of the coset Hy = {xmy : m ∈ Z/(p2)} with order p.
As in Step 3, H CG and G/H has order p, so yp = 1 in G/H. Since y has order p2, yp

has order p in H = 〈x〉, so yp = (xp)r = xpr for some r ∈ (Z/(p))×. Since [G : H] = p and
y 6∈ H, G = 〈x, y〉. Summarizing,

G = 〈x, y〉, H = 〈x〉, Z = 〈xp〉, yp = (xr)p .

The group G/Z has order p2, so it is abelian. Thus y x y−1 = x in G/Z, which means
yxy−1 = xxpk = x1+pk in G for some k ∈ Z. Write this as yxy−1 = xj where j = 1 + pk.
Check G = 〈x, y〉, so G being nonabelian means x and y don’t commute. Thus k 6≡ 0 mod p.

For m ∈ Z, raise both sides of yxy−1 = xj to the mth power: yxmy−1 = xmj . Then

(xmy)2 = (xmy)(xmy) = xm(yxm)y = xmxmjyy = xm(1+j)y2,

and by induction

(xmy)n = xm(1+j+···+jn−1)yn

for all n ≥ 1. Setting n = p, (xmy)p = xm(1+j+···+jp−1)yp. Since j = 1 + pk,

1 + j + · · ·+ jp−1 =

p−1∑
`=0

(1 + pk)` ≡
p−1∑
`=0

(1 + `pk) ≡ p+
p(p+ 1)

2
pk ≡ p mod p2,

so
(xmy)p = xmpyp = xmpxrp.

Use m = −r: (x−ry)p = 1 and x−ry 6= 1 since y 6∈ H, so x−ry has order p in G−H. That
proves the claim.

Now rename y, if needed, so it is an element of order p in G −H. Reasoning as above,
G = 〈x, y〉. Since G is nonabelian, x and y don’t commute.

Since G/Z is abelian with Z = 〈xp〉, as before we can write yxy−1 = xj where j = 1 + pk
for some k 6≡ 0 mod p. Conjugating by y again,

y2xy−2 = y(yxy−1)y−1 = yxjy−1 = (yxy−1)j = (xj)j = xj
2
.

Similarly, ynxy−n = xj
n

for all n ≥ 1. Then jn = (1 + pk)n ≡ 1 + npk mod p2, so

ynxy−n = x1+npk.

Because k 6≡ 0 mod p, we can choose n ≥ 1 so that nk ≡ 1 mod p. For this n we have
ynxy−n = x1+p.

Since p - n, G = 〈x, y〉 = 〈x, yn〉. Now rename yn as y, so G = 〈x, y〉 where x has order
p2, y has order p, and yxy−1 = x1+p. By isomorphisms H → (Z/(p2)) where xb 7→ b mod p2

and K → Z/(p) where ya 7→ a mod p, the conjugation action K → Aut(H) turns into the
homomorphism ψ : Z/(p)→ (Z/(p2))× where ψ(1) = 1 + p, so G ∼= Z/(p2) oψ Z/(p).

Step 5: The semidirect products (Z/(p))2 oϕ Z/(p) and Z/(p2) oψ Z/(p) from Steps 3
and 4 are nonisomorphic.

The second semidirect product Z/(p2) oψ Z/(p) has elements with order p2. Check a
converse to Step 3: in (Z/(p))2 oϕ Z/(p) all nonidentity elements have order p. �
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9. Complementary subgroups

If a group G contains subgroups H and K such that G = HK and H ∩K = {1}, then
H and K are called complementary subgroups.8 For a normal subgroup H C G, is there
always a complementary subgroup K ⊂ G? If so, we’d then have G ∼= H oϕ K

The answer is no!

Example 9.1. Suppose G is a cyclic p-group with |G| > p. Every subgroup of G is normal.
Pick a subgroup H ⊂ G with 1 < |H| < |G|. Suppose G = HK, so |K| > 1. Then H and K
have subgroups of order p by Cauchy’s theorem (or check this directly in cyclic p-groups).
The cyclic group G has at most one subgroup per size, so the subgroups of order p in H
and K are the same, and thus H ∩K 6= {1}. This contradiction shows G is not a semidirect
product of two proper subgroups.

Example 9.2. Let G = Q8 = {±1,±i,±j,±k}. There is only one subgroup of order 2,
namely {±1}. All subgroups of Q8 are normal. Pick HCQ8 with 1 < |H| < 8. If Q8 = HK,
then K 6= {1} and by the same argument as in the previous example we have H ∩K 6= {1}.
In particular, Q8 is not a semidirect product of two proper subgroups.

When G = HK with HCG and H ∩K = {1} such subgroups K can be far from unique.

Example 9.3. For n ≥ 3, Sn = An · {1, τ} for every transposition τ .

Example 9.4. For n ≥ 3, Dn = 〈r〉 ·
{

1, ris
}

for every reflection ris where 0 ≤ i ≤ n− 1.

When does a normal subgroup have a complement? We state without proof a sufficient
(but far from necessary!) condition for the existence of a complementary subgroup to a
normal subgroup of a finite group. We will not be using it here.

Theorem 9.5 (Schur–Zassenhaus). If H CG and (|H|, |G/H|) = 1, then H has a comple-
mentary subgroup in G and all complementary subgroups to H in G are conjugate.

When (|H|, |G/H|) > 1, a complementary subgroup to H in G might not exist (e.g., G
is a cyclic p-group and 1 < |H| < |G|) or more than one might exist but they may not be
conjugate (e.g., G = Z/(2)× Z/(2) and H = 〈3〉, with complements 〈5〉 or 〈7〉).

If G = HK with H CG and H ∩K = {1}, then the mapping G → K given by hk 7→ k
is well-defined and a homomorphism (check!) with image K and kernel H, so K ∼= G/H:
every complementary subgroup to H in G is a subgroup of G that is isomorphic to G/H. So
as abstract groups, all complementary subgroups of H in G (if there are any complements
to H in G at all) have a structure determined by H as a normal subgroup of G.

Example 9.6. Let G = Z/(4) = {0, 1, 2, 3} and H = {0, 2}. Then H is the unique subgroup
of order 2 in G, and |G/H| = 2, so there is no complementary subgroup to H in G.

Note when G = HK, H C G, and H ∩ K = {1} that K is a group of representatives
in G for G/H. The composite K ↪→ G → G/H fills up the cosets. For G = Z/(4) and
H = {0, 2}, some representatives in G for G/H are {0, 1}, {2, 1}, and {0, 3}, but there is
no group of representatives in G for G/H.

For a normal subgroup HCG, we will formulate the property of H having a complemen-
tary subgroup in G using the notion of a special type of map called a section.

8Note that complementary subgroups are not complementary as subsets, e.g., in R2 the subgroups R×{0}
and {0} ×R are complementary but they certainly are not complementary subsets of R2.
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Definition 9.7. For a surjective function ϕ : X → Y , a section of ϕ is a choice for each
y ∈ Y of an element x ∈ X such that ϕ(x) = y. Equivalently, it is a function ψ : Y → X
such that ϕ(ψ(y)) = y for all y ∈ Y , i.e., ψ(y) is an inverse image of y.

(Do not confuse ϕ(ψ(y)) = y for all y ∈ Y with ψ(ϕ(x)) = x for all x ∈ X; in the second
condition, the existence of such ψ forces ϕ to be injective, but this is not desirable.)

Example 9.8. Let f : R× → R>0 by f(x) = x2. A section of f is a choice for each y > 0
of a solution x to x2 = y, i.e. it is a square root function. There are two standard sections,
g(y) =

√
y for all y > 0 and g(y) = −√y for all y > 0. These are the only continuous

sections of f .

Example 9.9. Let f : C× → C× by f(z) = z2. One section of f is g(reiθ) =
√
reiθ/2,

0 6 θ < 2π, but g is not continuous on (0,∞). (Consider θ → 0+ and θ → 2π− for fixed
r > 0.) It is a theorem that no continuous section exists: there is no choice of square roots
in C× that is continuous everywhere. This creates problems in complex analysis.

Example 9.10. Consider the 2-sphere S2. Let Tp be the tangent plane at the point p ∈ S2.
Then there is a natural map ⋃

p∈S2

Tp −→ S2

defined by v 7→ p, where p is the point at which v is tangent to S2. A section to this map
is a vector field on S2. In practice, we care about vector fields that vary nicely from point
to point (continuously or smoothly, say) which can be reformulated as saying the section to⋃
p∈S2 Tp → S2 is nice (continuous or smooth) when we give

⋃
Tp a suitable topology. This

shows that sections occur naturally in geometry.

Theorem 9.11. If H CG, then the following are equivalent:

(1) H has a complement in G; i.e., for a subgroup K of G, G = HK and H ∩K = {1}.
(2) G/H has coset representatives in G that form a subgroup of G.
(3) The reduction homomorphism π : G → G/H, where π(g) = g, has a section that is

a homomorphism.

Proof. (1) ⇒ (2). The set K is a group of coset representatives for G/H: hk ≡ k mod H,
and k1 ≡ k2 mod H implies that k1 = k2 since H ∩K = {1}.

(2) ⇒ (1). Let K be a group of coset representatives for G/H in G. For each g ∈ G,
g = k in G/H for some k ∈ K. Then g = h · k for some h ∈ H. This implies that G = HK.
To show H ∩K = {1}, suppose that in G, hk = 1 for an h ∈ H and k ∈ K. Then in G/H,
k = 1, and 1 ∈ K, so k = 1 by the definition of coset representatives, which implies that
h = 1 too.

(1) ⇒ (3). By (1), G = HK. We seek a homomorphism s : G/H → G such that
π(s(g)) = g for each g ∈ G. Write g = hk, so g = k. Define s(g) = k. This is well-defined
since the representation of g as hk is unique, and by definition π(s(g)) = k = g, so s is a
section to π. For k ∈ K, s(k) = k. Then s(k1k2) = s(k1k2) = k1k2 = s(k1)s(k2), so s is a
group homomorphism.

(3) ⇒ (1) We’re given a homomorphism s : G/H → G such that π(s(g)) = g for all
g ∈ G/H. If (1) were true then each g ∈ G/H would have a unique representative from K
because (1)⇒ (2). So one section G/H → G to π would be g 7→ k ∈ K where k = g. With
this in mind, define K = s(G/H), which is a subgroup of G. For each g ∈ G, in G/H

g = π(s(g)).
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Set k = s(g), so g = π(k) = k in G/H. Hence g = hk for some h ∈ H, so G = HK.
To show H ∩K = {1}, suppose k ∈ K ∩H. Since k ∈ K, k = s(g) for some g ∈ G. Since

k ∈ H, π(k) = e. Also

π(k) = π(s(g)) = g,

so g = e. Thus

k = s(g) = s(e) = e

since s : G/H → G is a homomorphism. �

Example 9.12. Let G = GL2(R) and H = SL2(R). Note that

H = ker(GL2(R)
det−−→ R×),

so G/H ∼= R×. Is there a section to G
π−→ G/H?

GL2(R) // GL2(R)/SL2(R) ∼= R×

s

ww

That is, can we find a homomorphism s : R× → GL2(R) such that det(s(c)) = c for all
c ∈ R×? Yes, let s(c) = ( c 0

0 1 ) (or let s(c) = ( 1 0
0 c )). This is related to the fact that

GL2(R) = SL2(R) ·
{(

c 0
0 1

)}
by

A =

(
A ·
(

1/d 0
0 1

))
·
(
d 0
0 1

)
,

where d = detA.

For a group G, let H = Z(G) = Z. Does the center Z have a complementary subgroup?
That is, does G = ZK where Z ∩K = {1}? If so, then K ∼= G/Z and since elements of Z
commute with all elements of G, we get

G = ZK ∼= Z ×K ∼= Z × (G/Z).

Conversely, if G ∼= Z×G/Z (any isomorphism at all) then Z has a complementary subgroup
in G. So the center Z of G has a complementary subgroup in G if and only if G ∼= Z×(G/Z).

Example 9.13. Let G = Q8 so Z = {±1} and G/Z ∼= (Z/(2))2. Then Z × (G/Z) is
abelian, but Q8 is not, so Z has no complementary subgroup in Q8. This is consistent with
what we saw in Example 9.2: Q8 is not a semidirect product of nontrivial groups.

Example 9.14. Let G = GL2(R), so

Z =

{(
c 0
0 c

)
: c ∈ R×

}
= R×I2.

The center R×I2 has a complementary subgroup in GL2(R) if and only if

(9.1) GL2(R) ∼= (R×I2)× PGL2(R).

If the groups in both sides of (9.1) were isomorphic then their commutator subgroups would
be isomorphic, but it can be shown that the commutator subgroups are not isomorphic.
Therefore the center of GL2(R) does not have a complementary subgroup in GL2(R).
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Example 9.15. Let G = Dn = 〈r, s〉 for even n ≥ 6. Then Z =
{

1, rn/2
}

. When n/2

is odd, the subgroup K = 〈r2, s〉 of Dn has order n and trivial intersection with Z, so
Dn = ZK ∼= Z ×K ∼= Z/(2)×Dn/2. When n/2 is even, Dn 6∼= Z/(2)×Dn/2 since Dn has
a center of order 2 and Z/(2)×Dn/2 has a center of order 4.

For all even n ≥ 6, 〈r2, s〉 and 〈rs〉 are complementary subgroups, so Dn = 〈r2, s〉〈rs〉 ∼=
Dn/2 o Z/(2).

10. Semidirect products of isomorphic groups

The construction of a direct product, and more generally a semidirect product, behaves
as well as could be hoped under isomorphisms.

Theorem 10.1. Let f : H1 → H2 and f ′ : K1 → K2 be group isomorphisms. Then the
mapping F : H1 ×K1

∼= H2 ×K2 given by F (h, k) = (f(h), f ′(k)) is a group isomorphism.

Proof. Since f and f ′ are bijections, so is F . To check F is a homomorphism,

F ((h, k)(h′, k′)) = F (hh′, kk′)

= (f(hh′), f ′(kk′))

= (f(h)f(h′), f ′(k)f ′(k′))

= (f(h), f(k))(f ′(h′), f ′(k′))

= F (h, k)F (h′, k′). �

Theorem 10.2. Let f : H1 → H2 and f ′ : K1 → K2 be isomorphisms. For each homomor-
phism ϕ : K1 → Aut(H1) there is a corresponding homomorphism ϕ′ : K2 → Aut(H2) such
that H1 oϕ K1

∼= H2 oϕ′ K2.

Proof. The isomorphism f : H1 → H2 can turn each automorphism ψ of H1 into an auto-
morphism of H2 by filling in the right arrow of the diagram below so that it commutes.

H1
f //

ψ
��

H2

?
��

H1
f // H2

The long way around from H2 to H2 is the mapping f ◦ ψ ◦ f−1, which we can put on
the right side. Define cf : Aut(H1) → Aut(H2) by cf (ψ) = f ◦ ψ ◦ f−1 and check this is a
group isomorphism (its inverse is the same type of formula with f replaced by f−1). Using
cf and the given isomorphism f ′ : K1 → K2, each action ϕ : K1 → Aut(H1) becomes an
action ϕ′ : K2 → Aut(H2) by making the diagram below commute: set ϕ′ := cf ◦ϕ ◦ (f ′)−1.

K1
ϕ //

f ′

��

Aut(H1)

cf

��
K2

ϕ′ // Aut(H2)

The mapping ϕ′ is a homomorphism since (f ′)−1, ϕ, and cf all are. (If ϕ is trivial then
ϕ′ is trivial and we are in the case of Theorem 10.1.) For each k ∈ K2, ϕ

′
k = cf (ϕ(f ′)−1(k)).
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Let F : H1oϕK1 → H2oϕ′K2 by F (h, k) = (f(h), f ′(k)). This is a bijection since f and
f ′ are bijections. To show F is a homomorphism,

F ((h, k)(h′, k′)) = F (hϕk(h
′), kk′)

= (f(hϕk(h
′)), f ′(kk′))

= (f(h)f(ϕk(h
′)), f ′(k)f ′(k′))

and

F (h, k)F (h′, k′) = (f(h), f ′(k))(f(h′), f ′(k′))

= (f(h)ϕ′f ′(k)(f(h′)), f ′(k)f ′(k′)),

so we need to show f(ϕk(h
′)) = ϕ′f ′(k)(f(h′)). Using the definition of ϕ′,

ϕ′f ′(k) = cf (ϕ(f ′)−1(f ′(k))) = cf (ϕk) = f ◦ ϕk ◦ f−1,
so

ϕ′f ′(k)(f(h′)) = (f ◦ ϕk ◦ f−1)(f(h′)) = f(ϕk(h
′)). �
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