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When N is a normal subgroup of G, can we reconstruct G from N and G/N? In general,
no. For instance, the groups Z/(p2) and Z/(p) × Z/(p) (for prime p) are nonisomorphic,
but each has a cyclic subgroup of order p and the quotient by it also has order p. As
another example, the nonisomorphic groups Z/(2p) and Dp (for odd prime p) have a normal
subgroup that is cyclic of order p, whose quotient is cyclic of order 2.

If we impose the condition that N and G/N have relatively prime order, then something
nice can be said: G is a semidirect product of N and G/N . This is the Schur-Zassenhaus
theorem, which we will discuss below. It doesn’t uniquely determine G, as there could
be several non-isomorphic semi-direct products of the abstract groups N and G/N , but
each one is a group with normal subgroup N and quotient by it isomorphic to G/N . For
instance, if N ∼= Z/(p) for odd prime p and G/N ∼= Z/(2) then G must be a semi-direct
product Z/(p) o Z/(2). The only two semidirect products are the direct product (which is
isomorphic to Z/(2p)) and the nontrivial semidirect product (which is isomorphic to Dp).

Theorem 1 (Schur-Zassenhaus). Let G be a finite group and write |G| = ab where (a, b) =
1. If G has a normal subgroup of order a then it has a subgroup of order b.

Letting N be the normal subgroup of order a and H be a subgroup of order b, the Schur-
Zassenhaus theorem implies G is a semidirect product of N and H: N ∩H is trivial since
(a, b) = 1, so G = NH ∼= N oH where H acts on N by conjugation.

Here are two cases where the Schur-Zassenhaus theorem has proofs using no hard work.

Example 2. If G/N is cyclic (for instance, if N has prime index in G) then it is simple to
prove the Schur-Zassenhaus theorem, as follows. Let |N | = a, [G : N ] = b, and G/N = 〈g〉.
Since a is relatively prime to b, which is the order of G/N , G/N = 〈ga〉 too. Since G has
order ab, in G we have

1 = gab = (ga)b.

Set x = ga, so xb = 1 and G/N = 〈x〉. Then each element of G has the form xin for some
i ∈ Z and n ∈ N . The subgroup 〈x〉 has order dividing b, which is relatively prime to
a = |N |, so 〈x〉 ∩ N = {1}. Thus G = N〈x〉 with the subgroups N and 〈x〉 having trivial
intersection. Thus ab = |G| = |N ||〈x〉| = a|〈x〉|, so |〈x〉| = b: x generates a subgroup of G
with order b.

Example 3. If G is abelian then it is also simple to prove the Schur-Zassenhaus theorem,
since power functions on abelian groups are homomorphisms. Let f : G→ G by f(g) = gb.
Since (b, |N |) = 1, f restricts to an isomorphism N → N , so N ⊂ f(G). Since (gb)a =
gab = 1 for all g ∈ G, all elements of f(G) have order dividing a, so relative primality of
a and b implies (|f(G)|, b) = 1 (Cauchy’s theorem). Since |f(G)| | |G|, we get |f(G)| | a.
Also a | |f(G)| since N = f(N) is a subgroup of f(G). Thus |f(G)| = a, so f(G) = N . Let
H = ker f , so G/H ∼= f(G) = N , so |H| = |G|/|N | = b.
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In the general case we will present two proofs of the Schur–Zassenhaus theorem that are
incomplete at the end. Each proof will reduce to the case when N is abelian, at which point
the machinery of group cohomology can be applied. While group cohomology provides a
general tool to describe the groups having a particular normal subgroup with a particular
quotient group (up to isomorphism), it requires the normal subgroup be abelian, and we
are making no such assumption. So the parts of the proof of the Schur-Zassenhaus theorem
that are presented here amount to a reduction process to the case when N is abelian.

The first proof of the theorem will use the following lemma.

Lemma 4. If N CG and P ∈ Sylp(N) then G = N ·NG(P ). In particular, if P CN then
P CG.

Proof. Pick g ∈ G. Since P ⊂ N and N C G, gPg−1 ⊂ N . Then by Sylow II for the
group N , there is an n ∈ N such that gPg−1 = nPn−1, so n−1gPg−1n = P . That means
n−1g ∈ NG(P ), so g ∈ nNG(P ). Thus G = N ·NG(P ).

If P CN then N ⊂ NG(P ), so N ·NG(P ) = NG(P ). Thus G = NG(P ), so P CG. �

Here is the first proof of the Schur–Zassenhaus theorem (incomplete at the end).

Proof. Assume the theorem is false and let G be a counterexample of minimal order. So
any group with order less than |G| satisfies the theorem. Easily a > 1 and b > 1.

Let N CG with |N | = a. We aim to get a contradiction.
Step 1: Show N is a minimal normal subgroup of G: there are no normal subgroups of

G lying strictly between {e} and N .
Suppose N ′ C G with {e} ⊂ N ′ ⊂ N and N ′ 6= {e} or N . We look at the group G/N ′

with order < |G|. Since N/N ′ C G/N ′ and |G/N ′| = |N/N ′|b with the two factors being
relatively prime, by minimality of G there is a subgroup of G/N ′ with order b. It has the
form K/N ′, so |K| = |N ′b| < ab. Since |N ′| and b are relatively prime, by minimality of G
there is a subgroup of order b in K and hence in G. This is a contradiction, so N ′ doesn’t
exist.

Step 2: Show N is an abelian p-group.
Let P be a nontrivial Sylow subgroup of N , so by Theorem 4 we have G = N NG(P ).

Then G/N ∼= NG(P )/(N∩NG(P )) and the order of NG(P ) is |N∩NG(P )|b with |N∩NG(P )|
a factor of a (hence relatively prime to b). Since N ∩NG(P ) is a normal subgroup of NG(P ),
if NG(P ) is a proper subgroup of G then by minimality of G there is a subgroup of order b in
NG(P ), and hence in G. This isn’t possible, so NG(P ) = G, which means P CG. Therefore,
by the Sylow theorems, P is a normal subgroup of N , so P = N by Step 1. Then Z(P )
is a nontrivial normal subgroup of P , so Z(P ) = P by Step 1 again, which means N is an
abelian p-group.

Step 3: Show N ∼= (Z/(p))k.
Considering the structure of finite abelian p-groups, this step is equivalent to showing

Np = {xp : x ∈ N} is trivial. Assume Np is nontrivial. It is preserved as a set by all
group automorphisms of N , so in particular gNpg−1 = Np for any g ∈ G. Thus Np C G,
so N/Np C G/Np. Since N/Np is a p-group while the index [G/Np : N/Np] = [G : N ] is
relatively prime to p, by induction G/Np has a subgroup of order [G : N ]. The subgroup is
H/Np for some H ⊂ G, so [H : Np] = [G : N ] is not divisible by p. Since Np CH, Np is a
p-group with index prime to p in H, and |H| < |G|, by induction again there is a subgroup
K of H with order [H : Np] = [G : N ]. This K is also in G, so G has a subgroup of order
[G : N ]. This is a contradiction, so Np is trivial.



THE SCHUR–ZASSENHAUS THEOREM 3

Step 4: Get a final contradiction.

Let G act on N by conjugation. Since N ∼= (Z/(p))k, automorphisms of N can be inter-
preted as elements of GLk(Z/(p)). Therefore the conjugation action of G on N is a group
homomorphism G → Aut(N) ∼= GLk(Z/(p)). Since N is abelian, it acts trivially on itself,
so our action descends to a homomorphism G/N → GLk(Z/(p)). At this point the reader
is referred to the literature for the rest of the proof. Two possible approaches are represen-
tation theory [2, p. 146] and group cohomology. The method using cohomology amounts
to showing the second cohomology group H2(G/N,N) is trivial because (|G/N |, |N |) = 1;
a cohomological neophyte can find that done without any reference to cohomology in [3,
pp. 253–255], but it is not very illuminating. �

Here is a second proof, also incomplete at the end. Again we will reduce to the case of
an abelian normal subgroup.

Proof. Let NCG with |N | and [G : N ] relatively prime. We want to prove G has a subgroup
of order [G : N ]. Of course we can assume N is a nontrivial proper subgroup of G.

We induct on |G|. Assume |G| > 1 and the theorem is verified for subgroups with smaller
order. Let p be a prime factor of |N | and P be a p-Sylow subgroup of N , so P is nontrivial.
Because [G : N ] is prime to |N |, p does not divide [G : N ] so P is also a p-Sylow subgroup
of G. Since P ⊂ N and N CG, all G-conjugates of P are in N . Therefore all the p-Sylow
subgroups of G are in N , hence by counting p-Sylows in G and in N we get

[G : NG(P )] = [N : NG(P ) ∩N ].

Writing these indices as ratios and rearranging terms,

(1) [G : N ] = [NG(P ) : NG(P ) ∩N ].

Case 1: P is not normal in G. Then NG(P ) is a proper subgroup of G. The group
NG(P ) ∩ N is normal in NG(P ) since N C G, the order of NG(P ) ∩ N divides |N |, and
the index of NG(P ) ∩ N in NG(P ) is [G : N ] by (1), so NG(P ) and its normal subgroup
NG(P )∩N satisfy the hypotheses of the theorem. Since |NG(P )| < |G|, by induction NG(P )
has a subgroup of order [NG(P ) : NG(P ) ∩ N ] = [G : N ]. This is a subgroup of G too, so
we’re done.

Case 2: P C G. Then P C N and N/P C G/P with |N/P | dividing |N | and [G/P :
N/P ] = [G : N ]. This order and index are relatively prime, and |G/P | < |G|, so by
induction the theorem holds for G/P and its subgroup N/P : there is a subgroup in G/P
of order [G/P : N/P ] = [G : N ]. Write the subgroup as H/P , so H is a subgroup of G and

(2) [H : P ] = |H/P | = [G : N ]

is not divisible by p. (If P = N then H = G.)
Since P is a nontrivial p-group, its center Z := Z(P ) is nontrivial. Also Z C H (the

center of a normal subgroup is also a normal subgroup), so P/Z CH/Z. The group P/Z is
a p-group (possibly trivial, if P is abelian) while [H/Z : P/Z] = [H : P ] = [G : N ] is prime
to p, so (since |H/Z| < |H| ≤ |G|) by induction H/Z contains a subgroup K/Z of order
[H : P ]. (If P is abelian then K = H.)

Now we have Z CK with Z a p-group and

[K : Z] = |K/Z| = [H : P ] = [G : N ]

being prime to p, so K and its normal subgroup Z satisfy the hypotheses of the theorem.
Now if |K| < |G| then we can apply induction to conclude K has a subgroup of order
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[K : Z] = [G : N ], and this is also a subgroup of G, so we’re done. What if K = G? Since
K ⊂ H ⊂ G, if K = G then H = G so [G : P ] = [G : N ] by (2). Therefore N = P since
P ⊂ N , so N is a normal Sylow subgroup of G.

If N is a normal p-Sylow in G and it is not abelian, we can use induction yet again to
finish the proof. Run through the argument two paragraphs up (with P = N , H = G,
and Z = Z(P ) = Z(N) the center of N). We get a subgroup K/Z of G/Z with order
[G : N ]. Now |K| = |Z|[G : N ]. If Z 6= N (i.e., N is non-abelian) then |Z| < |N | so
|K| < |N |[G : N ] = |G| and we are done as before.

What if N is normal in G and N is abelian? In this case we can, as in the previous proof,
consider Np = {x ∈ N : xp = 1}. This is a normal subgroup of N and in fact it is normal
in G too. Running through the previous paragraph with Np in place of Z we are done by
another induction unless Np = N , which means all the elements of N have order p. So we
are left to contemplate the same case as at the end of the first proof: N is a normal p-Sylow
subgroup of G and is isomorphic to (Z/(p))k for some k. The end of the proof is now the
same as in the first proof: use either representation theory or group cohomology. �

Remark 5. The Schur–Zassenhaus theorem actually has an important second part, which
we omitted: any two subgroups of order b in G are conjugate to each other. See [3, p. 254–
255] for the proof of that.

Let’s put the Schur–Zassenhaus theorem to work. We ask, out of idle curiosity, whether
p | |G| implies p | |Aut(G)|. The answer, of course, is no: try G = Z/(p). As we now show,
this counterexample essentially explains all the others.

Corollary 6. Fix a prime p. For a finite group G with order divisible by p, the following
are equivalent:

(1) |Aut(G)| is not divisible by p,
(2) G ∼= Z/(p)×H where |H| and |Aut(H)| are not divisible by p.

In particular, if p2 | |G| then p | |Aut(G)|.

Proof. Assume (1) holds and let P be a p-Sylow subgroup of G. We expect to show G ∼=
P ×H and P ∼= Z/(p).

For any x ∈ P there is the automorphism γx ∈ Aut(G) that is conjugation by x. Since
x has p-power order, so does γx (recall γnx = γxn for all n). By hypothesis |Aut(G)| is
not divisible by p, so the only element of p-power order in Aut(G) is the identity. Thus
γx = idG for all x ∈ P , which means P ⊂ Z(G). In particular, P C G by Sylow II and P
is abelian. Therefore the Schur-Zassenhaus theorem tells us G ∼= PH for some subgroup H
with order not divisible by p. Since P ⊂ Z(G), G ∼= P ×H. Because the groups P and H
have relatively prime order and commute in G, Aut(G) ∼= Aut(P )×Aut(H) in the natural
way. Therefore p doesn’t divide |Aut(P )| or |Aut(H)|.

Which finite abelian p-groups P have |Aut(P )| not divisible by p? Write P as a direct
product of cyclic groups, say

P = Z/(pr1)× · · · × Z/(prk).

Since Aut(Z/(pr)) ∼= (Z/(pr))× has order pr−1(p− 1), we see that if some ri > 1 then that
Z/(pri) has an automorphism of order p, so P does as well (act by the chosen automorphism
on the i-th factor and fix elements in the other factors). Thus, if |Aut(P )| is not divisible
by p we must have ri = 1 for all i, so P ∼= (Z/(p))k is a direct sum of copies of Z/(p). That
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means Aut(P ) ∼= GLk(Z/(p)), whose order is divisible by pk(k−1)/2, and thus is divisible by
p unless k = 1. So we must have P ∼= Z/(p), which concludes the proof that (1) implies (2).

To show (2) implies (1), Aut(Z/(p)×H) ∼= Aut(Z/(p))×Aut(H) ∼= (Z/(p))××Aut(H),
and this has order not divisible by p since |Aut(H)| is not divisible by p. �

Example 7. If |G| is even and |Aut(G)| is odd then G ∼= Z/(2)×H where H is a group of
odd order with Aut(H) of odd order too. The smallest such nontrivial H has order 729 = 36

with automorphism group of order 19683 = 39.

When p | |Aut(G)|, one way to search for elements of order p in Aut(G) is by looking for
an inner automorphism: if g ∈ G has order p and g is not in the center of G then conjugation
by G is an (inner) automorphism of G with order p. Since inner automorphisms are a cheap
construction, we ask: when are there non-inner automorphisms of order p, assuming that
we know p | |Aut(G)| (and p | |G|)? For p-groups there is a complete answer. When G
is a finite abelian p-group, it has an automorphism of order p as long as G 6∼= Z/(p), and
that automorphism is not inner since G is abelian. When G is a finite non-abelian p-group,
Gatschütz [1] showed that there is an automorphism of order p that is not inner, using
cohomology.
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