THE SCHUR-ZASSENHAUS THEOREM

KEITH CONRAD

When N is a normal subgroup of G, can we reconstruct G from N and G/N? In general, no. For instance, the groups $\mathbf{Z}/(p^2)$ and $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ (for prime p) are nonisomorphic, but each has a cyclic subgroup of order p and the quotient by it also has order p. As another example, the nonisomorphic groups $\mathbf{Z}/(2p)$ and D_p (for odd prime p) have a normal subgroup that is cyclic of order p, whose quotient is cyclic of order 2.

If we impose the condition that N and G/N have relatively prime order, then something nice can be said: G is a semidirect product of N and G/N. This is the Schur-Zassenhaus theorem, which we will discuss below. It doesn't uniquely determine G, as there could be several non-isomorphic semi-direct products of the abstract groups N and G/N, but each one is a group with normal subgroup N and quotient by it isomorphic to G/N. For instance, if $N \cong \mathbf{Z}/(p)$ for odd prime p and $G/N \cong \mathbf{Z}/(2)$ then G must be a semi-direct product $\mathbf{Z}/(p) \rtimes \mathbf{Z}/(2)$. The only two semidirect products are the direct product (which is isomorphic to $\mathbf{Z}/(2p)$) and the nontrivial semidirect product (which is isomorphic to D_p).

Theorem 1 (Schur-Zassenhaus). Let G be a finite group and write |G| = ab where (a, b) = 1. If G has a normal subgroup of order a then it has a subgroup of order b.

Letting N be the normal subgroup of order a and H be a subgroup of order b, the Schur-Zassenhaus theorem implies G is a semidirect product of N and H: $N \cap H$ is trivial since (a,b)=1, so $G=NH\cong N\rtimes H$ where H acts on N by conjugation.

Here are two cases where the Schur-Zassenhaus theorem has proofs using no hard work.

Example 2. If G/N is cyclic (for instance, if N has prime index in G) then it is simple to prove the Schur-Zassenhaus theorem, as follows. Let |N| = a, [G:N] = b, and $G/N = \langle \overline{g} \rangle$. Since a is relatively prime to b, which is the order of G/N, $G/N = \langle \overline{g}^a \rangle$ too. Since G has order ab, in G we have

$$1 = g^{ab} = (g^a)^b.$$

Set $x = g^a$, so $x^b = 1$ and $G/N = \langle \overline{x} \rangle$. Then each element of G has the form $x^i n$ for some $i \in \mathbf{Z}$ and $n \in N$. The subgroup $\langle x \rangle$ has order dividing b, which is relatively prime to a = |N|, so $\langle x \rangle \cap N = \{1\}$. Thus $G = N\langle x \rangle$ with the subgroups N and $\langle x \rangle$ having trivial intersection. Thus $ab = |G| = |N| |\langle x \rangle| = a |\langle x \rangle|$, so $|\langle x \rangle| = b$: x generates a subgroup of G with order b.

Example 3. If G is abelian then it is also simple to prove the Schur-Zassenhaus theorem, since power functions on abelian groups are homomorphisms. Let $f: G \to G$ by $f(g) = g^b$. Since (b, |N|) = 1, f restricts to an isomorphism $N \to N$, so $N \subset f(G)$. Since $(g^b)^a = g^{ab} = 1$ for all $g \in G$, all elements of f(G) have order dividing a, so relative primality of a and b implies (|f(G)|, b) = 1 (Cauchy's theorem). Since $|f(G)| \mid |G|$, we get $|f(G)| \mid a$. Also $a \mid |f(G)|$ since N = f(N) is a subgroup of f(G). Thus |f(G)| = a, so f(G) = N. Let $H = \ker f$, so $G/H \cong f(G) = N$, so |H| = |G|/|N| = b.

In the general case we will present two proofs of the Schur–Zassenhaus theorem that are incomplete at the end. Each proof will reduce to the case when N is abelian, at which point the machinery of group cohomology can be applied. While group cohomology provides a general tool to describe the groups having a particular normal subgroup with a particular quotient group (up to isomorphism), it requires the normal subgroup be abelian, and we are making no such assumption. So the parts of the proof of the Schur-Zassenhaus theorem that are presented here amount to a reduction process to the case when N is abelian.

The first proof of the theorem will use the following lemma.

Lemma 4. If $N \triangleleft G$ and $P \in \operatorname{Syl}_p(N)$ then $G = N \cdot \operatorname{N}_G(P)$. In particular, if $P \triangleleft N$ then $P \triangleleft G$.

Proof. Pick $g \in G$. Since $P \subset N$ and $N \triangleleft G$, $gPg^{-1} \subset N$. Then by Sylow II for the group N, there is an $n \in N$ such that $gPg^{-1} = nPn^{-1}$, so $n^{-1}gPg^{-1}n = P$. That means $n^{-1}g \in \mathcal{N}_G(P)$, so $g \in n \mathcal{N}_G(P)$. Thus $G = N \cdot \mathcal{N}_G(P)$.

If
$$P \triangleleft N$$
 then $N \subset N_G(P)$, so $N \cdot N_G(P) = N_G(P)$. Thus $G = N_G(P)$, so $P \triangleleft G$.

Here is the first proof of the Schur–Zassenhaus theorem (incomplete at the end).

Proof. Assume the theorem is false and let G be a counterexample of minimal order. So any group with order less than |G| satisfies the theorem. Easily a > 1 and b > 1.

Let $N \triangleleft G$ with |N| = a. We aim to get a contradiction.

Step 1: Show N is a minimal normal subgroup of G: there are no normal subgroups of G lying strictly between $\{e\}$ and N.

Suppose $N' \triangleleft G$ with $\{e\} \subset N' \subset N$ and $N' \neq \{e\}$ or N. We look at the group G/N' with order $\langle |G|$. Since $N/N' \triangleleft G/N'$ and |G/N'| = |N/N'|b with the two factors being relatively prime, by minimality of G there is a subgroup of G/N' with order G. It has the form G/N', so |G| = |G/N'| = |G/N'| and G/N' and G/N' are relatively prime, by minimality of G/N' there is a subgroup of order G/N' and hence in G/N' are relatively prime, by minimality of G/N' doesn't exist.

Step 2: Show N is an abelian p-group.

Let P be a nontrivial Sylow subgroup of N, so by Theorem 4 we have $G = N \operatorname{N}_G(P)$. Then $G/N \cong \operatorname{N}_G(P)/(N \cap \operatorname{N}_G(P))$ and the order of $\operatorname{N}_G(P)$ is $|N \cap \operatorname{N}_G(P)|b$ with $|N \cap \operatorname{N}_G(P)|$ a factor of a (hence relatively prime to b). Since $N \cap \operatorname{N}_G(P)$ is a normal subgroup of $\operatorname{N}_G(P)$, if $\operatorname{N}_G(P)$ is a proper subgroup of G then by minimality of G there is a subgroup of order b in $\operatorname{N}_G(P)$, and hence in G. This isn't possible, so $\operatorname{N}_G(P) = G$, which means $P \triangleleft G$. Therefore, by the Sylow theorems, P is a normal subgroup of N, so P = N by Step 1. Then Z(P) is a nontrivial normal subgroup of P, so Z(P) = P by Step 1 again, which means N is an abelian p-group.

Step 3: Show $N \cong (\mathbf{Z}/(p))^k$.

Considering the structure of finite abelian p-groups, this step is equivalent to showing $N^p = \{x^p : x \in N\}$ is trivial. Assume N^p is nontrivial. It is preserved as a set by all group automorphisms of N, so in particular $gN^pg^{-1} = N^p$ for any $g \in G$. Thus $N^p \triangleleft G$, so $N/N^p \triangleleft G/N^p$. Since N/N^p is a p-group while the index $[G/N^p : N/N^p] = [G : N]$ is relatively prime to p, by induction G/N^p has a subgroup of order [G : N]. The subgroup is H/N^p for some $H \subset G$, so $[H : N^p] = [G : N]$ is not divisible by p. Since $N^p \triangleleft H$, N^p is a p-group with index prime to p in H, and $|H| \triangleleft G|$, by induction again there is a subgroup K of H with order $[H : N^p] = [G : N]$. This K is also in G, so G has a subgroup of order [G : N]. This is a contradiction, so N^p is trivial.

Step 4: Get a final contradiction.

Let G act on N by conjugation. Since $N \cong (\mathbf{Z}/(p))^k$, automorphisms of N can be interpreted as elements of $\mathrm{GL}_k(\mathbf{Z}/(p))$. Therefore the conjugation action of G on N is a group homomorphism $G \to \mathrm{Aut}(N) \cong \mathrm{GL}_k(\mathbf{Z}/(p))$. Since N is abelian, it acts trivially on itself, so our action descends to a homomorphism $G/N \to \mathrm{GL}_k(\mathbf{Z}/(p))$. At this point the reader is referred to the literature for the rest of the proof. Two possible approaches are representation theory [2, p. 146] and group cohomology. The method using cohomology amounts to showing the second cohomology group $\mathrm{H}^2(G/N,N)$ is trivial because (|G/N|,|N|)=1; a cohomological neophyte can find that done without any reference to cohomology in [3, pp. 253-255], but it is not very illuminating.

Here is a second proof, also incomplete at the end. Again we will reduce to the case of an abelian normal subgroup.

Proof. Let $N \triangleleft G$ with |N| and [G:N] relatively prime. We want to prove G has a subgroup of order [G:N]. Of course we can assume N is a nontrivial proper subgroup of G.

We induct on |G|. Assume |G| > 1 and the theorem is verified for subgroups with smaller order. Let p be a prime factor of |N| and P be a p-Sylow subgroup of N, so P is nontrivial. Because [G:N] is prime to |N|, p does not divide [G:N] so P is also a p-Sylow subgroup of G. Since $P \subset N$ and $N \triangleleft G$, all G-conjugates of P are in N. Therefore all the p-Sylow subgroups of G are in G0, hence by counting G1, G2, and in G3 and in G3 and in G4.

$$[G: N_G(P)] = [N: N_G(P) \cap N].$$

Writing these indices as ratios and rearranging terms,

$$[G:N] = [N_G(P):N_G(P) \cap N].$$

<u>Case 1</u>: P is not normal in G. Then $N_G(P)$ is a proper subgroup of G. The group $N_G(P) \cap N$ is normal in $N_G(P)$ since $N \triangleleft G$, the order of $N_G(P) \cap N$ divides |N|, and the index of $N_G(P) \cap N$ in $N_G(P)$ is [G:N] by (1), so $N_G(P)$ and its normal subgroup $N_G(P) \cap N$ satisfy the hypotheses of the theorem. Since $|N_G(P)| < |G|$, by induction $N_G(P)$ has a subgroup of order $[N_G(P):N_G(P) \cap N] = [G:N]$. This is a subgroup of G too, so we're done.

<u>Case 2</u>: $P \triangleleft G$. Then $P \triangleleft N$ and $N/P \triangleleft G/P$ with |N/P| dividing |N| and |G/P|: N/P| = [G:N]. This order and index are relatively prime, and |G/P| < |G|, so by induction the theorem holds for G/P and its subgroup N/P: there is a subgroup in G/P of order [G/P:N/P] = [G:N]. Write the subgroup as H/P, so H is a subgroup of G and

(2)
$$[H:P] = |H/P| = [G:N]$$

is not divisible by p. (If P = N then H = G.)

Since P is a nontrivial p-group, its center Z := Z(P) is nontrivial. Also $Z \triangleleft H$ (the center of a normal subgroup is also a normal subgroup), so $P/Z \triangleleft H/Z$. The group P/Z is a p-group (possibly trivial, if P is abelian) while [H/Z:P/Z] = [H:P] = [G:N] is prime to p, so (since $|H/Z| < |H| \le |G|$) by induction H/Z contains a subgroup K/Z of order [H:P]. (If P is abelian then K=H.)

Now we have $Z \triangleleft K$ with Z a p-group and

$$[K:Z] = |K/Z| = [H:P] = [G:N]$$

being prime to p, so K and its normal subgroup Z satisfy the hypotheses of the theorem. Now if |K| < |G| then we can apply induction to conclude K has a subgroup of order [K:Z]=[G:N], and this is also a subgroup of G, so we're done. What if K=G? Since $K\subset H\subset G$, if K=G then H=G so [G:P]=[G:N] by (2). Therefore N=P since $P\subset N$, so N is a normal Sylow subgroup of G.

If N is a normal p-Sylow in G and it is not abelian, we can use induction yet again to finish the proof. Run through the argument two paragraphs up (with P = N, H = G, and Z = Z(P) = Z(N) the center of N). We get a subgroup K/Z of G/Z with order [G:N]. Now |K| = |Z|[G:N]. If $Z \neq N$ (i.e., N is non-abelian) then |Z| < |N| so |K| < |N|[G:N] = |G| and we are done as before.

What if N is normal in G and N is abelian? In this case we can, as in the previous proof, consider $N^p = \{x \in N : x^p = 1\}$. This is a normal subgroup of N and in fact it is normal in G too. Running through the previous paragraph with N^p in place of Z we are done by another induction unless $N^p = N$, which means all the elements of N have order p. So we are left to contemplate the same case as at the end of the first proof: N is a normal p-Sylow subgroup of G and is isomorphic to $(\mathbf{Z}/(p))^k$ for some k. The end of the proof is now the same as in the first proof: use either representation theory or group cohomology.

Remark 5. The Schur–Zassenhaus theorem actually has an important second part, which we omitted: any two subgroups of order b in G are conjugate to each other. See [3, p. 254–255] for the proof of that.

Let's put the Schur–Zassenhaus theorem to work. We ask, out of idle curiosity, whether $p \mid |G|$ implies $p \mid |\operatorname{Aut}(G)|$. The answer, of course, is no: try $G = \mathbf{Z}/(p)$. As we now show, this counterexample essentially explains all the others.

Corollary 6. Fix a prime p. For a finite group G with order divisible by p, the following are equivalent:

- (1) $|\operatorname{Aut}(G)|$ is not divisible by p,
- (2) $G \cong \mathbf{Z}/(p) \times H$ where |H| and $|\operatorname{Aut}(H)|$ are not divisible by p.

In particular, if $p^2 \mid |G|$ then $p \mid |\operatorname{Aut}(G)|$.

Proof. Assume (1) holds and let P be a p-Sylow subgroup of G. We expect to show $G \cong P \times H$ and $P \cong \mathbb{Z}/(p)$.

For any $x \in P$ there is the automorphism $\gamma_x \in \operatorname{Aut}(G)$ that is conjugation by x. Since x has p-power order, so does γ_x (recall $\gamma_x^n = \gamma_{x^n}$ for all n). By hypothesis $|\operatorname{Aut}(G)|$ is not divisible by p, so the only element of p-power order in $\operatorname{Aut}(G)$ is the identity. Thus $\gamma_x = \operatorname{id}_G$ for all $x \in P$, which means $P \subset Z(G)$. In particular, $P \triangleleft G$ by Sylow II and P is abelian. Therefore the Schur-Zassenhaus theorem tells us $G \cong PH$ for some subgroup H with order not divisible by p. Since $P \subset Z(G)$, $G \cong P \times H$. Because the groups P and H have relatively prime order and commute in G, $\operatorname{Aut}(G) \cong \operatorname{Aut}(P) \times \operatorname{Aut}(H)$ in the natural way. Therefore p doesn't divide $|\operatorname{Aut}(P)|$ or $|\operatorname{Aut}(H)|$.

Which finite abelian p-groups P have $|\operatorname{Aut}(P)|$ not divisible by p? Write P as a direct product of cyclic groups, say

$$P = \mathbf{Z}/(p^{r_1}) \times \cdots \times \mathbf{Z}/(p^{r_k}).$$

Since $\operatorname{Aut}(\mathbf{Z}/(p^r)) \cong (\mathbf{Z}/(p^r))^{\times}$ has order $p^{r-1}(p-1)$, we see that if some $r_i > 1$ then that $\mathbf{Z}/(p^{r_i})$ has an automorphism of order p, so P does as well (act by the chosen automorphism on the i-th factor and fix elements in the other factors). Thus, if $|\operatorname{Aut}(P)|$ is not divisible by p we must have $r_i = 1$ for all i, so $P \cong (\mathbf{Z}/(p))^k$ is a direct sum of copies of $\mathbf{Z}/(p)$. That

means $\operatorname{Aut}(P) \cong \operatorname{GL}_k(\mathbf{Z}/(p))$, whose order is divisible by $p^{k(k-1)/2}$, and thus is divisible by p unless k=1. So we must have $P \cong \mathbf{Z}/(p)$, which concludes the proof that (1) implies (2). To show (2) implies (1), $\operatorname{Aut}(\mathbf{Z}/(p) \times H) \cong \operatorname{Aut}(\mathbf{Z}/(p)) \times \operatorname{Aut}(H) \cong (\mathbf{Z}/(p))^{\times} \times \operatorname{Aut}(H)$, and this has order not divisible by p since $|\operatorname{Aut}(H)|$ is not divisible by p.

Example 7. If |G| is even and $|\operatorname{Aut}(G)|$ is odd then $G \cong \mathbf{Z}/(2) \times H$ where H is a group of odd order with $\operatorname{Aut}(H)$ of odd order too. The smallest such nontrivial H has order $729 = 3^6$ with automorphism group of order $19683 = 3^9$.

When $p \mid |\operatorname{Aut}(G)|$, one way to search for elements of order p in $\operatorname{Aut}(G)$ is by looking for an inner automorphism: if $g \in G$ has order p and g is not in the center of G then conjugation by G is an (inner) automorphism of G with order p. Since inner automorphisms are a cheap construction, we ask: when are there non-inner automorphisms of order p, assuming that we know $p \mid |\operatorname{Aut}(G)|$ (and $p \mid |G|$)? For p-groups there is a complete answer. When G is a finite abelian p-group, it has an automorphism of order p as long as $G \not\cong \mathbf{Z}/(p)$, and that automorphism is not inner since G is abelian. When G is a finite non-abelian p-group, Gatschütz [1] showed that there is an automorphism of order p that is not inner, using cohomology.

References

- [1] W. Gatschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra 4 (1966), 1–2.
- [2] M. I. Kargapolov and Y. I. Merzlyakov, "Fundamentals of the Theory of Groups," Springer-Verlag, New York, 1979.
- [3] D. J. S. Robinson, "A Course in the Theory of Groups," 2nd ed., Springer-Verlag, New York, 1996.