
RELATIVISTIC ADDITION AND GROUP THEORY

KEITH CONRAD

1. Introduction

For three particles P,Q,R traveling on a straight line, let vPQ be the (relative) velocity
of P as measured by Q, and define vQR, vPR similarly.

According to classical mechanics, the velocity v of a particle moving on a line can be an
arbitrary real number, and relative velocities add by the simple formula

vPR = vPQ + vQR.

On the other hand, the special theory of relativity says velocities are restricted to a
bounded range, −c < v < c, where c is the speed of light (whose value of course depends
on the choice of units, and it is convenient to choose them so c = 1, but we won’t do that.)
The relativistic addition formula for relative velocities along a line is

(1.1) vPR =
vPQ + vQR

1 + (vPQvQR/c2)
.

Example 1.1. Suppose Q moves away from R at speed (1/2)c and P moves away from Q
in the same direction at speed (1/2)c. Then vQR = (1/2)c and vPQ = (1/2)c, so (1.1) says

vPR =
vPQ + vQR

1 + (vPQvQR/c2)
=

c

1 + (1/4)
=

4

5
c < c.

Example 1.2. If P moves away from Q at speed (3/4)c and R moves away from Q in the
opposite direction at speed (1/2)c, so vPQ = (3/4)c and vRQ = −(1/2)c, then vQR = (1/2)c
and (1.1) says

vPR =
vPQ + vQR

1 + (vPQvQR/c2)
=

(5/4)c

1 + (3/8)
=

10

11
c < c.

There is an interesting algebraic similarity between the classical and relativistic velocity
addition formulas. The classical model for velocity addition is the set of real numbers,
combined under addition. Special relativity involves velocities in an interval (−c, c) for
some c > 0, combining them by the formula

(1.2) v ⊕ w =
v + w

1 + vw/c2
.

The operation ⊕ on (−c, c) has properties similar to addition on R (check these!):

• Closure, i.e., if v1, v2 ∈ (−c, c) then v1 ⊕ v2 ∈ (−c, c).
• Identity for ⊕: 0⊕ v = v ⊕ 0 = v for v ∈ (−c, c).
• Inverse of each v under ⊕ is −v: v ⊕−v = −v ⊕ v = 0.
• Associativity: (v1 ⊕ v2)⊕ v3 = v1 ⊕ (v2 ⊕ v3) for all v1, v2, v3 ∈ (−c, c).
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These say (1.2) is a group law on (−c, c). Einstein, in his first paper on special relativity,
wrote [1, §5] that “such parallel transformations – necessarily – form a group”.1

The formula for v ⊕ w in (1.2) resembles the addition formula for the tangent function:

tan(x+ y) =
tanx+ tan y

1− (tanx)(tan y)
.

However, there is a minus sign here where there is a plus sign in (1.2).
The hyperbolic tangent is better than the tangent in this regard. The hyperbolic tangent

function is given by the formula

tanhx =
ex − e−x

ex + e−x
: R→ (−1, 1)

and a graph is in Figure 1. This function is a bijection from R to (−1, 1), with inverse

tanh−1(x) =
1

2
log

(
1 + x

1− x

)
.

x

y

1

−1

Figure 1. Plot of y = tanhx.

It is a matter of algebra to check that

tanh(x+ y) =
tanhx+ tanh y

1 + (tanhx)(tanh y)
.

This is exactly like (1.2), up to some factors of c. Taking those into account, we find that
the function ϕ : R→ (−c, c) where ϕ(x) = c tanh(x) satisfies

ϕ(x+ y) = ϕ(x)⊕ ϕ(y).

Going in the other direction, let ψ : (−c, c)→ R by

ψ(v) =
1

2
log

(
1 + v/c

1− v/c

)
.

This “rescaled” velocity turns ⊕ into addition:

(1.3) ψ(v ⊕ w) = ψ(v) + ψ(w).

Thus, by a suitably clever transformation, velocities v ∈ (−c, c) turn into rescaled velocities
ψ(v) ∈ R and the nonintuitive operation ⊕ on (−c, c) turns into ordinary addition in R.

Example 1.3. If v = (1/2)c and w = (1/2)c then ψ(v) = (1/2) log 3 and ψ(w) = (1/2) log 3,
while ψ(v ⊕ w) = ψ((4/5)c) = (1/2) log 9 = log 3 = ψ(v) + ψ(w).

1Einstein wrote the speed of light in [1] as V , a notation first used in Maxwell’s work on electromagnetism.
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Example 1.4. If v = (3/4)c and w = (1/2)c then ψ(v) = (1/2) log 7 and ψ(w) = (1/2) log 3,
while ψ(v ⊕ w) = ψ((10/11)c) = (1/2) log 21 = ψ(v) + ψ(w).

Remark 1.5. Writing a velocity v ∈ (−c, c) as c tanh(x), the parameter x is called “rapid-
ity” in physics. Combining two relativistic velocities (along the same direction) corresponds
to adding their respective rapidities.

Could we have found ψ if we did not know the hyperbolic tangent? Yes! Using the ideas
in [2, Chap. 6], we will prove that every (continuously differentiable) group law on an open
interval in R can be rescaled to look like ordinary addition on R.

Remark 1.6. Instead of converting relativistic addition on (−c, c) into ordinary addition on
R, we can convert it into ordinary multiplication on (0,∞): the function f : (−c, c)→ (0,∞)
where f(v) = (1 + v/c)/(1− v/c) = (c+ v)/(c− v) is a bijection and f(v ⊕ w) = f(v)f(w)
for all v and w in (−c, c).

2. Group laws on an interval

Let I ⊂ R be an open interval with a group law ∗, so ∗ has the following properties:

• Closure. x, y ∈ I =⇒ x ∗ y ∈ I.
• Identity. There is u ∈ I such that for all x ∈ I, x ∗ u = u ∗ x = x.
• Inverses. For all x ∈ I there is some i(x) ∈ I such that x ∗ i(x) = i(x) ∗ x = u.
• Associativity. For x, y, z ∈ I, (x ∗ y) ∗ z = x ∗ (y ∗ z).

(We write the identity for ∗ as u rather than, say, e, since we’re working with real numbers
and don’t want confusion with the real number 2.71828...)

It will be useful to write the operation x∗y in the notation of a function of two variables:
F (x, y) = x ∗ y. For example, the classical and relativistic velocity addition formulas are

F (v, w) = v + w, I = R; F (v, w) =
v + w

1 + vw/c2
, I = (−c, c).

The above properties of ∗ take the following form in terms of F :

• x, y ∈ I ⇒ F (x, y) ∈ I.
• There is u ∈ I such that for all x ∈ I, F (x, u) = F (u, x) = x.
• For all x ∈ I there is some i(x) ∈ I such that F (x, i(x)) = F (i(x), x) = u.
• For x, y, z ∈ I, F (F (x, y), z) = F (x, F (y, z)).

Our goal is to prove the following theorem.

Theorem 2.1. If the group law F (x, y) = x ∗ y on an interval I has continuous partial
derivatives, then there is a differentiable bijection ` : I → R that converts ∗ on I to ordinary
addition on R. That is, ` is a differentiable bijection with `(x ∗ y) = `(x) + `(y).

We write the rescaling function as ` because we think about it as a ‘logarithm’ for ∗, just
as the usual logarithm turns multiplication on (0,∞) into addition on R.

Theorem 2.1 will be proved by giving an explicit recipe for `. To discover `, let’s assume it
exists: `(x∗y) = `(x)+`(y) for all x and y in I. Rewriting this in the functional F -notation
instead of the operator ∗-notation,

`(F (x, y)) = `(x) + `(y).

Assuming ` is differentiable, let’s differentiate both sides of this equation with respect to x:

`′(F (x, y))F1(x, y) = `′(x),
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where we write F1(x, y) for ∂F/∂x (and F2(x, y) = ∂F/∂y). Setting x = u,

`′(y)F1(u, y) = `′(u),

so we solve for `′(y) and integrate:

(2.1) `(y) =

∫ y

u

`′(u)

F1(u, t)
dt.

This is a possible formula for the rescaling function `. The constant `′(u), where u is the
∗-identity, is just an undetermined scaling factor that we will simply set equal to 1 once we
return to rigorous definitions. Incidentally, when we integrated in (2.1), we didn’t introduce
an additive constant since we want `(u) = 0 (the ∗-identity should go the additive identity)
and the integral formula (2.1) already takes care of that. Of more pressing interest is the
validity of dividing by F1(u, t) in (2.1). Why is it never zero?

Lemma 2.2. For all t ∈ I, F1(u, t) > 0.

Proof. Differentiate the associative law, F (F (x, y), z) = F (x, F (y, z)), with respect to x:

F1(F (x, y), z)F1(x, y) = F1(x, F (y, z)).

Setting x = u, the ∗-identity,

(2.2) F1(y, z)F1(u, y) = F1(u, F (y, z)) = F1(u, y ∗ z).

So if F1(u, y) = 0 for some y, then F1(u, y ∗ z) = 0 for all z. Choose z = i(y) to get
F1(u, u) = 0. But this is not true:

F (x, u) = x for all x⇒ F1(x, u) = 1⇒ F1(u, u) = 1.

So F1(u, y) is nonzero for every y. Since it equals 1 at y = u and is continuous, it must
always be positive by the Intermediate Value Theorem. �

Lemma 2.2 allows us to divide by F1(u, t) for each t ∈ I, and we will do this often without
explicitly appealing to the lemma each time.

Since 1/F1(u, t) is continuous in t, hence integrable, we are justified in making the fol-
lowing definition, for each x in the interval I:

(2.3) `(x)
def
=

∫ x

u

dt

F1(u, t)
.

By the Fundamental Theorem of Calculus, ` is differentiable and

(2.4) `′(x) =
1

F1(u, x)
.

In particular, `′(u) = 1.
Using (2.3) as our rescaling function, we now prove Theorem 2.1.

Proof. We need to check (i) `(F (x, y)) = `(x) + `(y) and (ii) ` : I → R is a bijection.
For item (i), fix y ∈ I. We consider the x-derivatives of

`(F (x, y)), `(x) + `(y).

By (2.4), the derivative of the first function is

`′(F (x, y))F1(x, y) =
F1(x, y)

F1(u, F (x, y))
.
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Does this equal the x-derivative of the second function, namely `′(x) = 1/F1(u, x)? Setting
them equal, we want to consider:

F1(x, y)F1(u, x)
?
= F1(u, F (x, y)).

This is just (2.2) with x, y, z relabelled as u, x, y. Therefore `(F (x, y)) and `(x) + `(y) have
equal x-derivatives for all x, which means they differ by an additive constant. Since they
are equal at x = u, the additive constant is 0. This verifies the first item: `(F (x, y)) =
`(x) + `(y).

For item (ii), bijectivity, since `′(y) = 1/F1(u, y) > 0 we get ` is increasing, hence
injective. To show surjectivity, note `(I) is an interval by continuity. Choose x ∈ I, x 6= u.
Since `(x) + `(i(x)) = `(x ∗ i(x)) = `(u) = 0, `(x) and `(i(x)) have opposite sign. For a
positive integer n,

`(

n times︷ ︸︸ ︷
x ∗ · · · ∗ x) = n`(x), `(

n times︷ ︸︸ ︷
i(x) ∗ · · · ∗ i(x)) = n`(i(x)),

As n → ∞, one tends to ∞, the other to −∞. Since `(I) is an interval, we must have
`(I) = R. �

Corollary 2.3. When x ∗ y = F (x, y) in Theorem 2.1 has continuous partial derivatives,
it is commutative.

Proof. Commutativity was never used in the proof of Theorem 2.1, so commutativity of
addition on R implies commutativity of ∗ on I. �

Remark 2.4. Without using differentiability, it can be shown that every continuous group
law ∗ on an open interval I has the form x∗y = f(f−1(x)+f−1(y)) for some homeomorphism
f : R→ I.2 In particular, every continuous group law on I is commutative.

3. Examples

Let’s look at some examples, to see which functions rescale various group laws on an
interval to the additive group of all real numbers.

Example 3.1. If F (x, y) = x+ y on I = R, then u = 0, F1(0, x) = 1, and

`(x) =

∫ x

0
dt = x.

Example 3.2. If F (v, w) = v⊕w =
v + w

1 + vw/c2
on (−c, c), then u = 0, F1(0, v) = 1−v2/c2,

and

`(v) =

∫ v

0

dt

F1(0, t)

= c2
∫ v

0

dt

c2 − t2

=
c

2

∫ v

0

(
1

c− t
+

1

c+ t

)
dt

=
c

2
log

(
1 + v/c

1− v/c

)
.

2This is a special case of Hilbert’s Fifth Problem.
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This is the same as the rescaling function ψ(v) we met at the beginning, up to a factor of c.
Of course if the rescaling function `(x) in Theorem 2.1 is multiplied by a nonzero constant,
it has the same relevant properties (except `′(u) 6= 1.)

The following table, where vrelPR is vPR computed according to the relativistic formula
(1.1), gives in the last column the difference between classical and relativistic formulas for
vPR. Note there is significant relative error not only in the first row, when both vPQ and vQR

are substantial fractions of the speed of light, but even in the second and third rows, when
only vPQ is near c. In the last row, the fourth column entry is about .5625vQR = (9/16)vQR.

vPQ vQR vrelPR (vPQ + vQR)− vrelPR

(3/4)c (1/2)c (10/11)c .341c
(3/4)c (1/100)c .75434c .00566c
(3/4)c (1/1000)c .750437c .000563c

For v, w ∈ (−c, c), take v to be fixed and think of v ⊕ w as a function of w. Set
h(w) = v ⊕ w = (v + w)/(1 + vw/c2). For w/c small, a Taylor expansion of h(w) at w = 0
yields

v ⊕ w ≈ h(0) + h′(0)w = v +

(
1− v2

c2

)
w.

If not just w/c is small, but also v/c is small, then the coefficient of w is about 1, so
v ⊕ w ≈ v + w. If v/c is not small, e.g., v = (3/4)c, then we see a deviation from the
classical addition formula v + w by an error of around (v/c)2w. This explains the error
≈ (9/16)vQR in the table above, where v = (3/4)c and 9/16 = (3/4)2.

Example 3.3. As a final example, consider F (x, y) = xy on I = (0,∞). This is the group
of positive real numbers under multiplication. (The multiplicative group of non-zero real
numbers, rather than just the positives, is not an interval. Where does the proof of Theorem
2.1 break down if we try to apply it to all non-zero reals?) Here u = 1 and F1(1, x) = x,
so Theorem 2.1 tells us that a rescaling function that converts multiplication on (0,∞) to
addition on R is

`(x) =

∫ x

1

dt

F1(1, t)
=

∫ x

1

dt

t
= log x.

Of course we already knew that log(xy) = log x+ log y, but it is interesting to see how we
have rediscovered the logarithm by applying calculus to algebra.

Our discussion here has been entirely one-dimensional. In three dimensions, velocities and
reference frames are no longer collinear, and the relativistic formula for velocity addition is
rather complicated. See https://en.wikipedia.org/wiki/Velocity-addition formula.

Appendix A. Technical remarks

We want to give a more conceptual perspective on the way `(x) in Theorem 2.1 is related
to the structure of the group law ∗ on I. First of all, since ` : I → R is a bijection, and thus
invertible, we can apply `−1 to both sides of `(x ∗ y) = `(x) + `(y) to see that

(A.1) x ∗ y = `−1(`(x) + `(y)).

So the group law ∗ can be reconstructed from ` and ordinary real addition.
By Corollary 2.3, F (x, y) = F (y, x), and differentiating both sides of this formula with

respect to x shows F1(x, y) = F2(y, x) for all x, y ∈ I. Since ` is determined by the function

https://en.wikipedia.org/wiki/Velocity-addition_formula
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F1(u, t) (see 2.3), and the operation x ∗ y is determined by ` (see A.1), we see the operation
∗ is encoded in the function F1(u, t) = F2(t, u).

Now we take a look at Taylor expansions. The function F1(u, x) appears in the first term
of the Taylor expansion at y = u of x ∗ y = F (x, y) for small y:

(A.2) x ∗ y = F (x, y) ≈ F (x, u) + F2(x, u)(y − u) = x+ F1(u, x)(y − u).

Since F1(u, u) = 1, for x and y near u we get from (A.2) that x ∗ y ≈ x+ y − u. Therefore

x ∗ y − u ≈ (x− u) + (y − u).

If we change variables to make 0 the ∗-identity, then this says ∗ is approximately just
addition when both variables are small. However, for y near u and x not-so-near u there
is a deviation of x ∗ y from the simple law x + y, measured by the function F1(u, x). This
deviation for all x and y near u has been used to reconstruct the operation x ∗ y for all
x and all y. That is, the local structure of ∗ near the identity completely determines the
global group law.

If you know about differential forms, then the following is of interest. Another way of
stating (2.2) is in terms of the differential form ω = dt/F1(u, t). For each z ∈ I we have the
function τz : I → I given by right translation by z: τz(x) = F (x, z). This induces a map
τ∗z on differential forms on I, and (2.2) says τ∗zω = ω. In other words, ω is a ∗-invariant
differential form, and `(x) =

∫ x
u ω is the integral of this ∗-invariant differential form along

the path from the identity element to x. This description of the function ` ties it more
closely to the group structure than (2.3) alone suggests.

Appendix B. Deriving relativistic momentum and kinetic energy

When a particle of mass m and velocity v moves along a line, its energy is entirely kinetic
energy and is given by E = 1

2mv
2. Its momentum is p = mv. These are formulas from

classical mechanics, where two fundamental laws are conservation of energy and momentum
for every closed system. The relativistic formulas for kinetic energy and momentum of a
particle with mass m moving along a line at velocity v look quite different from their classical
versions:

(B.1) E =
mc2√

1− v2/c2
−mc2, p =

mv√
1− v2/c2

.

Taking power series expansions at v = 0, the first nonzero term in each formula is 1
2mv

2 and
mv respectively, so the classical formulas are limiting versions of the relativistic formulas
when v � c. Using arguments from [3] we will derive the relativistic formulas (B.1), in the
sense that we will show these are reasonable definitions for kinetic energy and momentum
in relativity.

Assume for a particle moving along a line with velocity v that it has an “energy” E(v)
and a “momentum” p(v). How should E and p be related to each other? In classical
mechanics Newton’s second law says F = dp/dt. Also in classical mechanics, the work done
on a particle by a force F over a distance dx is equal to both F (x)dx and dE, which is the
change in the energy of the particle over the distance dx. We assume all of this remains
true relativistically, so

(B.2) dE = F (x)dx =
dp

dt
dx =

dx

dt
dp = v dp.
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We will come back to this equation after we carry out a thought experiment to find another
relation between p and E.

Suppose two particles P and Q are moving along a line with fixed velocities vP and vQ
relative to an observer, and after undergoing a collision their velocities measured by that
observer are ṽP and ṽQ. If the energy of the system of these two particles is to be the same
before and after the collision then we require

(B.3) EP (vP ) + EQ(vQ) = EP (ṽP ) + EQ(ṽQ),

where EP and EQ are the energies of P and Q.
Velocity is a relative notion. If the observer we already discussed is moving at velocity

w 6= 0 with respect to a second observer (w could be positive or negative) then the second
observer initially measures the velocities of the particles as vP ⊕ w and vQ ⊕ w and later
measures them as ṽP⊕w and ṽQ⊕w. The principle of relativity says the laws of physics, like
conservation of energy, should be the same for two observers moving at constant velocity
relative to each other, so an analogue of (B.3) should be true for the second observer:

(B.4) EP (vP ⊕ w) + EQ(vQ ⊕ w) = EP (ṽP ⊕ w) + EQ(ṽQ ⊕ w).

For our unknown energy function E, we’ll form the Taylor expansion of E(v⊕w) around
w = 0 and pay attention to the first two terms. Writing v ⊕ w = (v + w)/(1 + vw/c2) in
functional form as F (v, w),

E(v ⊕ w) = E(F (v, w)) = E(F (v, 0)) +
∂E(F (v, w))

∂w

∣∣∣∣
w=0

w +O(w2)

and the chain rule implies ∂E(F (v, w))/∂w = E′(F (v, w))(∂F/∂w) = E′(F (v, w))F2(v, w).
Therefore

E(v ⊕ w) = E(F (v, 0)) + E′(F (v, 0))F2(v, 0)w +O(w2)

= E(v) + E′(v)

(
1− v2

c2

)
w +O(w2).

Applying this to each term in (B.4), equating the constant terms gives us (B.3), which is
not new. Equating the coefficients of w gives us

(B.5) E′P (vP )

(
1−

v2P
c2

)
+E′Q(vQ)

(
1−

v2Q
c2

)
= E′P (ṽP )

(
1−

ṽ2P
c2

)
+E′Q(ṽQ)

(
1−

ṽ2Q
c2

)
.

Setting f(v) = E′(v)(1− v2/c2), equation (B.5) says

fP (vP ) + fQ(vQ) = fP (ṽP ) + fQ(ṽQ),

which is a conversation law for the system of particles P and Q. Having already introduced
a conversation of energy in (B.3), we define f(v) to be relativistic momentum so that (B.5)
can be called conversation of momentum. Having called this momentum, we should write
it as p(v) instead of f(v), so set

(B.6) p(v) = E′(v)

(
1− v2

c2

)
=
dE

dv

(
1− v2

c2

)
.

Feeding (B.2) into this,

p(v) = v
dp

dv

(
1− v2

c2

)
,
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which can be rearranged in physicist’s style to

dp

p
=

dv

v(1− v2/c2)
.

Decomposing the right side into partial fractions,

dp

p
=

(
1

v
+

1

2c

1

1− v/c
− 1

2c

1

1 + v/c

)
dv.

Forming antiderivatives,

log |p| = log |v| − 1

2
log
∣∣∣1− v

c

∣∣∣− 1

2
log
∣∣∣1 +

v

c

∣∣∣+ const. = log

∣∣∣∣∣ v√
1− v2/c2

∣∣∣∣∣+ const.,

so

p(v) =
±econst.v√
1− v2/c2

The first nonzero term in the Taylor expansion of the right side at v = 0 is ±econst.v, so for
consistency with classical mechanics the coefficient of v must be the mass of the particle.
(Thus mass arises from a constant of integration.) This is why we set relativistic momentum

to be p(v) = mv/
√

1− v2/c2, which is the second formula in (B.1).
Feeding the formula for p(v) into (B.6), we proceed to solve for E(v):

mv√
1− v2/c2

=
dE

dv

(
1− v2

c2

)
=⇒ dE

dv
=

mv

(1− v2/c2)3/2
=

d

dv

(
mc2√

1− v2/c2

)
.

Therefore

E(v) =
mc2√

1− v2/c2
+ const.

Desiring the normalization condition E(0) = 0, we need the constant to be −mc2 and we
are led to the first formula in (B.1).
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