
ORDERS OF ELEMENTS IN A GROUP

KEITH CONRAD

1. Introduction

Let G be a group and g ∈ G. We say g has finite order if gn = e for some positive integer
n. For example, −1 and i have finite order in C×, since (−1)2 = 1 and i4 = 1. In (Z/(7))×,
the number 2 has finite order since 23 ≡ mod7.

When gn = e, the powers of g repeat themselves every n turns: for all integers a and k,

ga+nk = gagnk = ga(gn)k = ga.

Thus the sequence of powers of g looks like {e, g, g2, . . . , gn−1, e, g, g2, . . . }.
The least n ≥ 1 such that gn = e is called the order of g. If there is no such n (that is,

gn 6= e for every n ≥ 1), we say g has infinite order.

Example 1.1. In the group C×, −1 has order 2, i has order 4, and 7 has infinite order since
the numbers 7, 72, 73, . . . are all different. For a positive integer n, the complex number

cos
2π

n
+ i sin

2π

n

is an example of an element of C× with order n.

Example 1.2. If we apply the permutation σ =
(
12345
35124

)
to the numbers 1, 2, 3, 4, 5 repeat-

edly, as shown in the table below, then we get a new rearrangement until the 6th time.

k 1 2 3 4 5
σ(k) 3 5 1 2 4
σ2(k) 1 4 3 5 2
σ3(k) 3 2 1 4 5
σ4(k) 1 5 3 2 4
σ5(k) 3 4 1 5 2
σ6(k) 1 2 3 4 5

This means 6 is the least n ≥ 1 such that σn is the identity permutation, so σ has order 6
in S5. This interpretation of the order of a permutation as the least number of applications
of it that brings a list of numbers back to its original ordering is how the term “order”
entered group theory, going back to Cauchy’s work on permutations.1

If G is a finite group, every g ∈ G has finite order. The proof is as follows. Since the
set of powers {ga : a ∈ Z} is a subset of G and the exponents a run over all integers, an
infinite set, there must be a repetition: ga = gb for some a < b in Z. Then gb−a = e, so g
has finite order. (Taking the contrapositive, if g has infinite order its integral powers have
no repetitions: ga = gb =⇒ a = b.)

There are three questions about elements of finite order that we want to address:

1See https://hsm.stackexchange.com/questions/13337/.
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(1) When g ∈ G has a known finite order, how can we tell when two powers gk and g`

are the same directly in terms of the exponents k and `?
(2) When g has finite order, how is the order of a power gk related to the order of g?
(3) When two elements g1 and g2 of a group have finite order, how is the order of their

product g1g2 related to the orders of g1 and g2?

We will find essentially complete answers to the first two questions, and only a partial
answer to the third question.

In the case of finite abelian groups, we will see that the order of each element divides
the size of the group.2 Then, as an application of that divisibility relation, we will derive
some classical congruences from number theory that can be used to test efficiently whether
or not a large integer is prime without having to factor it. (This is very important in
cryptography.)

The most important theorems to understand well are Theorems 3.2, 3.4, and 3.15.

2. Examples

We have already seen that −1 and i in C× have orders 2 and 4, respectively. Let’s look
at the meaning of the order of an element in the groups (Z/(m))× and Sm.

Example 2.1. An integer modulo m lies in (Z/(m))× precisely when it is relatively prime
to m, which can be effectively determined using Euclid’s algorithm. To say a mod m has
order n in (Z/(m))× means

an ≡ 1 mod m, aj 6≡ 1 mod m for 1 ≤ j < n.

There is no simple-minded formula for the order of a random element of (Z/(m))×; it
just is what it is and you have to make computations to figure it out. For instance, 2 and
22 are not 1 mod 7 and 23 ≡ 1 mod 7, so 2 has order 3 in (Z/(7))×. Since 2j 6≡ 1 mod 23
for 1 ≤ j < 11 and 211 ≡ 1 mod 23, 2 has order 11 in (Z/(23))×. For m ≥ 3, −1 has order
2 in (Z/(m))× since (−1)2 ≡ 1 mod m while −1 6≡ 1 mod m. Watch out for m = 2: since
−1 ≡ 1 mod 2, in the group (Z/(2))×, which is actually a group with only one element, −1
has order 1, not 2!

Example 2.2. In a symmetric group Sm, let

σ = (a1 a2 · · · ar)
be an r-cycle. The n-th power σn shifts each ai by n terms. (A power of a cycle need not
be a cycle, e.g., (1234)2 = (13)(24).) The least n ≥ 1 such that σn is the identity is n = r.
That is, an r-cycle has order r. For instance, every transposition has order 2.

Armed with this information about orders of cycles, we will compute the order of a
general permutation in Sm, using its disjoint cycle decomposition, in Theorem 3.7.

3. Basic Properties of Orders

Let G be a group, written multiplicatively. For g ∈ G, the subgroup generated by g is

〈g〉 = {gk : k ∈ Z}.
This is easily seen to be a subgroup: it is closed under multiplication and inversion.

Theorem 3.1. To say g has finite order in G is equivalent to saying 〈g〉 is a finite group.

2This result is also true in the non-abelian case, but not by the proof we will give here for abelian groups.
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Proof. If g has finite order, suppose gn = e for some n > 0. Consider a general power of
g, say gk with k ∈ Z. By the division theorem in Z, there are integers q and r such that
k = nq + r with 0 ≤ r < n. Then

gk = gnqgr = gr,

so
〈g〉 = {e, g, g2, . . . , gn−1},

which shows 〈g〉 is a finite group.
Conversely, suppose 〈g〉 is a finite group. Then g certainly has just a finite number of

different powers. As k runs through the integers, the powers gk must repeat: gk1 = gk2

for different integers k1 and k2. We may take k1 < k2 without loss of generality. Then
gk2−k1 = e, with k2 − k1 a positive integer, so g has finite order. �

When gn = e, n might not be as small as possible, so the repetition in the powers of g
may really occur more often than every n turns. For example, (−1)4 = 1, so Theorem 3.1
says the only powers of −1 are (−1)k for k ∈ {0, 1, 2, 3}, but we know that in fact a more
economical list is (−1)k for k ∈ {0, 1}. This is connected with the fact that (−1)2 = 1.

This observation leads to a strengthening of Theorem 3.1: the order of g is the size of
the group 〈g〉 when g has finite order.

Theorem 3.2. Let gn = e for some n ≥ 1, with n chosen as small as possible. Then
(1) 〈g〉 = {e, g, g2, . . . , gn−1}.
(2) |〈g〉| = n. That is, the powers listed in part (1) are different from each other.

Proof. First we show (1). Given an arbitrary power gk, write k = nq + r where 0 ≤ r ≤
n − 1. Then gk = gr, just as in the previous proof, so every power of g is some gr where
0 ≤ r ≤ n− 1. This means

〈g〉 = {e, g, g2, . . . , gn−1},
which establishes (1). So far we have not used the minimality of n.

Now we prove (2). We already have a list of n powers that exhaust 〈g〉, namely gr for
0 ≤ r ≤ n − 1. To prove |〈g〉| = n, we must prove these powers are all distinct. Here is
where the minimality of n is going to be used.

If our list of powers contains a repetition, then

gi = gj

where 1 ≤ i < j ≤ n− 1. (Be attentive to the inequalities here.) Then

(3.1) gj−i = e,

and 0 < j − i < n. This contradicts the definition of n, since we found a power of g equal
to e where the exponent j − i is a positive integer less than n, while n is the minimal
positive integer satisfying gn = e. Hence we have a contradiction, so the powers among
{e, g, g2, . . . , gn−1} are distinct from one another. Thus |〈g〉| = n. �

Remark 3.3. When G is a finite group, every element must have finite order. However,
the converse is false: there are infinite groups where each element has finite order. For
example, in the group of all roots of unity in C× each element has finite order.

Theorem 3.2 gives a nice combinatorial interpretation of the order of g, when it is finite:
the order of g is the size of the group 〈g〉. In fact, this even works when g has infinite order
(then 〈g〉 is an infinite group), so the order of g is always the size of 〈g〉.

The finite order of an element is linked to periodicity in its powers, as follows.



4 KEITH CONRAD

Theorem 3.4. Let g ∈ G and g have order n. Then gk = e if and only if n | k.

Theorem 3.4 is the most fundamental property of the order of an element in a group.

Proof. If n | k, say k = nm, then gk = gnm = (gn)m = e. For the converse direction, we use
the division theorem. Supposing that gk = e, write k = nq + r with integers q and r such
that 0 ≤ r < n. Then

e = gk = (gn)qgr = gr.

Since 0 ≤ r < n, the minimality built into n as the order of g forces r to be zero (why?).
Thus k = nq, so n | k. �

Be sure you really understand the ideas in that proof!

Example 3.5. In R×, −1 has order 2 and (−1)k = 1 if and only if k is even, which means
2 | k. In C×, i has order 4 and ik = 1 if and only if 4 | k. In (Z/(7))×, 2 mod 7 has order 3
and 2k ≡ 1 mod 7 if and only if 3 | k.

Corollary 3.6. Let g ∈ G have order n. For k, ` ∈ Z, gk = g` if and only if k ≡ ` mod n.

Proof. Write the condition gk = g` as gk−` = e. Now use Theorem 3.4. �

Here is a concrete application of Theorem 3.4: we find a formula for the order of a
permutation in a symmetric group. In Example 2.2, we saw that an r-cycle has order r.
Now we deal with a general permutation, which is not necessarily a cycle.

Theorem 3.7. For σ ∈ Sm, write it as a product of disjoint cycles:

σ = σ1σ2 · · ·σt,
where σi is a cycle with length ri, 1 ≤ i ≤ t. The order of σ is the least common multiple
[r1, r2, . . . , rt].

Proof. Since disjoint cycles commute,

σa = σa1σ
a
2 · · ·σat .

Because the σi’s permute elements from disjoint sets, σa is the identity if and only if each
σai is the identity. (Be sure you understand that.) As σi has order ri, σ

a
i is the identity if

and only if ri | a (by Theorem 3.4). Therefore

σa = (1)⇐⇒ each σai = (1),

⇐⇒ ri | a for all i,

⇐⇒ [r1, r2, . . . , rt] | a,
where [r1, r2, . . . , rt] denotes the least common multiple of the ri’s, which are the lengths of
the disjoint cycles σi. Therefore the order of σ is [r1, r2, . . . , rt]. �

Example 3.8. Consider
σ = (1 2 3 4)(5 6 7 8 9 10).

The cycles appearing here are disjoint. The order of σ is [4, 6] = 12.

If σ is not written as a product of disjoint cycles, determine its disjoint cycle decompo-
sition first in order to compute the order of σ.

Example 3.9. In Example 1.2 we saw σ =
(
12345
35124

)
has order 6. The disjoint cycle decom-

position of σ is (13)(254), and [2, 3] = 6.
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Example 3.10. Consider
σ = (123)(241).

The 3-cycles here each have order 3, but σ does not have order [3, 3] = 3. Note the cycles
are not disjoint. The disjoint cycle decomposition of σ is

σ = (13)(24),

so the order of σ is [2, 2] = 2.

Example 3.11. A perfect shuffle of a deck of cards produces a perfect alternation of both
halves of an even cut (26 cards each): a card from each half is followed by a card from the
other half through the whole deck. It’s easy to find videos describing perfect shuffles on
YouTube. After how many perfect shuffles does a deck return to its original state? That
is, what’s the order of a perfect shuffle as an element of S52?

Numbering the cards from top to bottom as 1, 2, 3, . . . , 51, 52, the even cut creates two
halves numbered top to bottom as 1, 2, 3, . . . , 25, 26 and 27, 28, 29, . . . , 51, 52. After the
perfect shuffle, the deck’s order is

(3.2) 1, 27, 2, 28, 3, 29, . . . , 25, 51, 26, 52.

While cards 1 and 52 are returned to their original positions, everything else has moved.3

Using the two-row notation for permutations, the perfect shuffle is(
1 2 3 4 5 6 7 8 · · · 49 50 51 52
1 27 2 28 3 29 4 30 · · · 25 51 26 52

)
.

Check that this permutation has the following disjoint cycle decomposition:
(1)(2 27 14 33 17 9 5 3)(4 28 40 46 49 25 13 7)(6 29 15 8 30 41 21 11)(10 31 16 34 43 22 37 19)
(12 32 42 47 24 38 45 23)(18 35)(20 36 44 48 50 51 26 39)(52).

These cycle lengths are 1, 8, 8, 8, 8, 8, 2, 8, 1, so a perfect shuffle has order lcm(1, 2, 8) = 8.
That 8 perfect shuffles return a deck to its initial state can be used in card magic. In

Daniel Roy’s YouTube video “The Perfect Faro Shuffle”4 during a single take starting at
2:05 he does tricks with perfect shuffles and his mastery of card cuts, culminating in nearly
all the cards being in standard order at the end. The number of perfect shuffles in the video
after 2:05 is 8 (count them yourself!), so presumably the cards were in standard order at
the start of the take.

Corollary 3.12. A permutation σ ∈ Sn has prime order p if and only if it is a product of
disjoint p-cycles.

Proof. Let the decomposition of σ into disjoint cycles be σ1σ2 · · ·σt, and we can assume
the σi’s are all nontrivial cycles. (We allow t = 1: a single cycle is a product of 1 disjoint
cycle.) Letting ri be the order of σi, ri > 1 and computing the order of this product tells
us p = [r1, . . . , rt]. Therefore each ri is a factor of p and is greater than 1, so every ri is p.
Conversely, if each ri is p then of course their least common multiple is p. So σ has order
p if and only if it is a disjoint product of p-cycles. �

This corollary is not saying an element of order p is a p-cycle. It’s a disjoint product of
p-cycles. For example, (12)(34)(56) has order 2 and (123)(456) has order 3.

3This perfect shuffle, where the top and bottom cards remain on the outside, is called an out-shuffle and
is the only perfect shuffle we consider. The other perfect shuffle, where the top card moves to position 2 and
the bottom card moves to position 51, is called an in-shuffle.

4See https://www.youtube.com/watch?v=blZEIs4Shzk.

https://www.youtube.com/watch?v=blZEIs4Shzk
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Remark 3.13. Do not confuse the parity of a permutation being even or odd with the
order of a permutation being even or odd: they are separate concepts. For example, (12) is
an odd permutation with even order 2, (123) is an even permutation with odd order 3, and
(12)(34) is an even permutation with even order 2. There is no odd permutation with odd
order: if σm = (1) and m is odd, then taking the sign of both sides shows sgn(σ)m = 1. An
odd power of −1 is −1, so we must have sgn(σ) = 1. Thus an odd permutation (such as
(12) or (12)(23)(34) = (1234)) always has even order.

Returning to general groups G, we compare the orders of g and gk when g has finite
order. Let g have order n. Since (gk)n = (gn)k = e, the order of gk divides n by Theorem
3.4. Which factor of n is it?

Example 3.14. Suppose g has order 12, so the order of each power of g is a factor of 12.
It is plausible that g2 has order 6: since g takes 12 powers until it first cycles around to the
identity, g2 takes only 6 powers to get there. Thus g2 has order 6 = 12/2. On the other
hand, it is absurd to say g8 has order 12/8, as 12/8 is not an integer. The successive powers
of g8 are

g8 6= e, (g8)2 = g16 = g4 6= e, (g8)3 = g24 = g12·3 = e,

so g8 has order 3, which we can write as 12/4. What we divide 12 by to get the order of g8

is not 8, but the largest factor that 8 has in common with 12, namely 4.

Theorem 3.15. Let g have order n in a group and k be a positive integer.

(1) If k | n then gk has order n/k.
(2) If (k, n) = 1 then gk has order n. That is, raising g to a power relatively prime to

its order doesn’t change the order.
(3) For general k ∈ Z+, gk has order n/(k, n).

The third part includes the first two parts as special cases (if k | n then n/(k, n) = n/k,
and if (k, n) = 1 then n/(k, n) = n), but we state those special cases separately because
they are worth knowing on their own and because they can be proved independently of the
general case. Understanding the proof of the first two parts of the theorem will help you
better understand the proof of the third part. Basic to everything will be Theorem 3.4.

Proof. Let t be the (unknown) order of gk, so (gk)t = e and t is the minimal positive
exponent that fits this equation. We want to show t = n/k if k | n, t = n if (k, n) = 1, and
t = n/(k, n) in general.

1) We assume k | n. The condition (gk)t = e is the same as gkt = e, so n | kt by
Theorem 3.4. Thus n ≤ kt, so n/k ≤ t. We also have the reverse inequality: since

(gk)n/k = gk(n/k) = gn = e, t ≤ n/k by the definition of what the order of an element is.
From t ≤ n/k and n/k ≤ t, we have t = n/k.

2) We assume (k, n) = 1 and want to show gk has order n. The key idea we will need is
that if a | bc and (a, b) = 1, then a | c. It would be good to review how that is proved if you
don’t recall the argument.

The equation (gk)t = e is the same as gkt = e, so n | kt by Theorem 3.4. Since n and
k are relatively prime, from n | kt we conclude that n | t, so n ≤ t. We have the reverse
inequality too: (gk)n = gkn = (gn)k = ek = e, so t ≤ n by the definition of the order of an
element. Therefore t = n.

3) In the general case, for each k, we want to show t = n/(k, n). The equation (gk)t = e
is the same as gkt = e, so n | kt by Theorem 3.4. Write kt = nm for some m ∈ Z.
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Factor (n, k) out of both n and k: n = (n, k)n′ and k = (n, k)k′, so (n′, k′) = 1. Notice
n′ = n/(n, k), so we want to show t = n′. In the equation kt = nm we can cancel (n, k)
from both sides:

kt = nm =⇒ (k, n)k′t = (k, n)n′m =⇒ k′t = n′m,

so n′ | k′t. Since n′ and k′ are relatively prime, from n′ | k′t we get n′ | t, so n′ ≤ t.
We have the reverse inequality too:

(gk)n
′

= gkn
′ !

= gnk
′

= (gn)k
′

= ek
′

= e.

Let’s explain the equality with the exclamation point. The exponents kn′ and nk′ are equal
since they are each the same as kn/(n, k).

From (gk)n
′

= e we have t ≤ n′. Earlier we saw n′ ≤ t, so t = n′ = n/(k, n) and we are
done. �

Remark 3.16. The second and third parts of Theorem 3.15 are true if k < 0, since gk and
g−k have the same order. To make the first part true while allowing k < 0, n/k should be
replaced by n/|k|.

Example 3.17. If g has order 12, here is a list of orders of the initial powers of g. The
order of gk is equal to 12/(k, 12). Compute successive powers of gk for each k to verify
directly that the values in the table are correct.

k 1 2 3 4 5 6 7 8 9 10 11 12

order of gk 12 6 4 3 12 2 12 3 4 6 12 1

Example 3.18. If g has order n, then g−1 has order n, since (n,−1) = 1. This result can
also be seen directly, since the powers of g−1 are the same as the powers of g, but simply
appear in reverse order when written out (why?).

Example 3.19. If g has order 12, gk has order 12 precisely when (k, 12) = 1. Look at the
table above and notice 12 appears under k = 1, 5, 7, 11, which are relatively prime to 12.

4. Order of products

How is the order of a product g1g2 related to the orders of the individual factors g1 and
g2? In this generality not much can be said!

Example 4.1. We saw in Example 3.10 that in S4, (123) and (241) each have order 3 while
their product (123)(241) = (13)(24) has order 2.

Example 4.2. Suppose g has order 5. Then g−1 has order 5 and g2 has order 5, but the
product gg−1 = e has order 1 while the product gg2 = g3 has order 5.

Example 4.3. Two elements can have finite order while their product has infinite order.
Consider, in GL2(R), the matrices

A =

(
−1 1
0 1

)
and B =

(
−1 0
0 1

)
.

Check yourself that A2 and B2 equal the identity matrix, so A and B both have order 2.
Meanwhile,

AB =

(
1 1
0 1

)
,
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which has infinite order: (AB)n = ( 1 n
0 1 ), which is the identity matrix only for n = 0. The

product BA = ( 1 −1
0 1 ) = (AB)−1 also has infinite order.

Example 4.4. There is a finite group containing two elements with order 2 whose product
has any desired finite order greater than 2. Pick m ≥ 3 and view the matrices A and B from
Example 4.3 as having entries that are integers mod m. Then A and B are now interpreted
in the finite group GL2(Z/(m)). Since −1 6≡ 1 mod m, both A and B have order 2 in
GL2(Z/(m)). Their product AB = ( 1 1

0 1 ) in GL2(Z/(m)) has order m.

The moral of the last two examples is that in general nothing can be said about the order
of the product of two elements of finite order: it might be anything at all. However, if the
two elements commute with each other, we can say a lot. (In the last three examples, the
pair of elements do not commute.) What is special about commuting elements is that the
product of commuting elements that each have finite order also has finite order: if gn1

1 = e,
gn2
2 = e, and g1g2 = g2g1, then (g1g2)

n1n2 = gn1n2
1 gn1n2

2 = ee = e. For example, if g61 = e
and g42 = e then (g1g2)

24 = g241 g
24
2 = e. So when g1 has order dividing 6 and g2 has order

dividing 4 and g1g2 = g2g1, g1g2 has order dividing 24.
Actually, we can bound the order of g1g2 by something a little bit better in general

than the product n1n2. The least common multiple [n1, n2] is divisible by n1 and n2, so

(g1g2)
[n1,n2] = g

[n1,n2]
1 g

[n1,n2]
2 = e. For example, if g61 = e and g42 = e then (g1g2)

12 =
g121 g

12
2 = e. So when g1 has order dividing 6 and g2 has order dividing 4 and g1g2 = g2g1,

g1g2 has order dividing 12, not just 24.
When g1 and g2 have relatively prime orders, the order of g1g2 is determined:

Theorem 4.5. Let g1 and g2 commute, where g1 has order n1 and g2 has order n2, with
(n1, n2) = 1. Then g1g2 has order n1n2.

In words, for commuting elements with relatively prime orders, the order of their product
is the product of their orders.

Proof. Since
(g1g2)

n1n2 = gn1n2
1 gn1n2

2 = (gn1
1 )n2(gn2

2 )n1 = e,

we see g1g2 has finite order, which must divide n1n2 by Theorem 3.4.
Let n be the order of g1g2. In particular, (g1g2)

n = e. From this we will show n1 | n and
n2 | n. Since g1 and g2 commute,

(4.1) gn1 g
n
2 = e.

Raising both sides of (4.1) to the power n2 (to kill off the g2 factor) gives

gnn2
1 = e.

Therefore n1 | nn2 by Theorem 3.4. Since (n1, n2) = 1, we conclude n1 | n. Now raising
both sides of (4.1) to the power n1 gives gnn1

2 = e, so n2 | nn1 by Theorem 3.4, and thus
n2 | n.

Since n1 | n, n2 | n and (n1, n2) = 1, we conclude that n1n2 | n. Since we already showed
n | n1n2 (in the first paragraph of the proof), we conclude n = n1n2. �

Example 4.6. In (Z/(21))×, −1 has order 2 and 4 has order 3. Therefore −4 = 17 has
order 6.

Example 4.7. If g1 has order 5, g2 has order 8, and g1 and g2 commute, then g1g2 has
order 40.
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Example 4.8. For noncommuting elements with relatively prime orders, Theorem 4.5 can
fail. In S5, (123) has order 3 and (15342) has order 5 while (123)(15342) = (15)(34) has
order 2, not 3 · 5 = 15.

The least common multiple is not just an upper bound on the order of a product of
commuting elements, but can be realized as the order of some product of their powers:

Corollary 4.9. Let g1 and g2 commute, where g1 has order n1 and g2 has order n2. For
some integers a1 and a2, ga11 g

a2
2 has order [n1, n2].

Proof. The basic idea is to write [n1, n2] as a product of two relatively prime factors and
then find exponents a1 and a2 such that ga11 and ga22 have orders equal to those factors.
Then the order of ga11 and ga22 will be equal to the product of the factors (Theorem 4.5),
which is [n1, n2] by design.

Here are the details. Factor n1 and n2 into primes:

n1 = pe11 · · · p
er
r , n2 = pf11 · · · p

fr
r .

We use the same list of (distinct) primes in these factorizations, and use an exponent 0 on
a prime that is not a factor of one of the integers. The least common multiple is

[n1, n2] = p
max(e1,f1)
1 · · · pmax(er,fr)

r .

Break this into a product of two factors, one being a product of the prime powers where
ei ≥ fi and the other using prime powers where ei < fi. Call these two numbers k1 and k2:

k1 =
∏
ei≥fi

peii , k2 =
∏
ei<fi

pfii .

Then [n1, n2] = k1k2 and (k1, k2) = 1 (since k1 and k2 have no common prime factors). By

construction, k1 | n1 and k2 | n2. Then g
n1/k1
1 has order k1 and g

n2/k2
2 has order k2. Since

these orders are relatively prime and the two powers of g1 and g2 commute with each other,

g
n1/k1
1 g

n2/k2
2 has order k1k2 = [n1, n2]. �

Example 4.10. Suppose g1 has order n1 = 60 = 22 · 3 · 5 and g2 has order n2 = 630 =
2 · 32 · 5 · 7. Then [n1, n2] = 22 · 32 · 5 · 7. We can write this as (22 · 5) · (32 · 7), where the first
factor appears in n1, the second in n2, and the factors are relatively prime. Then g31 has
order 22 · 5 and g102 has order 32 · 7. These orders are relatively prime, so g31g

10
2 has order

22 · 5 · 32 · 7 = [n1, n2].
Since the same power of 5 appears in both n1 and n2, there is another factorization of

[n1, n2] we can use: placing the 5 in the second factor, we have [n1, n2] = (22)(32 · 5 · 7).
Then g151 has order 22 and g22 has order 32 · 5 · 7. These orders are relatively prime, so g151 g

2
2

has order 22 · 32 · 5 · 7 = [n1, n2].

5. Finite Abelian Groups and Primality Testing

The equivalence in the next theorem will lead us to an interesting way to distinguish
prime numbers from composite numbers.

Theorem 5.1. The following conditions on a finite group G of size N are equivalent:

(a) For all g ∈ G, gN = e.
(b) For all g ∈ G, the order of g divides N .
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Proof. (a) ⇒ (b): If gN = e then the order of g divides N by Theorem 3.4.

(b) ⇒ (a): Let g have order n. If n | N , say N = nn′, then gN = (gn)n
′

= en
′

= e. �

Theorem 5.1 is not saying (a) is true or (b) is true for a group G, but only that one is
true for G if and only if the other is true for G. By a trick that depends on commutativity,
we will show (a) is true when G is abelian.

Theorem 5.2. For every finite abelian group G of size N , gN = e for all g ∈ G.

Proof. Write out the elements of G, say G = {g1, g2, . . . , gN}. Now consider the product of
each with g:

(5.1) {gg1, gg2, . . . , ggN}.
Since ggi = ggj if and only if gi = gj , the function f : G → G given by left multiplication
by g – f(x) = gx – is a one-to-one function from G to itself. As G is finite, the function f
is onto as well (one-to-one functions from a finite set to itself are onto). That means (5.1)
is just another listing of the elements of G, except perhaps in a different order:

G = {g1, g2, . . . , gN} = {gg1, gg2, . . . , ggN}.
Since G is abelian, we can multiply the elements in both lists and equate:

g1g2 · · · gN = (gg1)(gg2) · · · (ggN )

= gN (g1g2 · · · gN ).

Now cancel every gi from both sides: gN = e. �

Corollary 5.3. In a finite abelian group with size N , each element has order dividing N .

Proof. This is immediate from Theorem 5.2 and (a) ⇒ (b) in Theorem 5.1. �

Remark 5.4. For a general finite group, (a) and (b) in Theorem 5.1 are true, but to
prove this for non-abelian groups requires a different approach: prove (b) first, and then
(a) follows from Theorem 5.1. The proof of (b) uses cosets and we don’t discuss it here.

What does Theorem 5.2 say for the groups (Z/(p))×, where p is prime? Every non-zero
congruence class modulo p is invertible, so |(Z/(p))×| = p− 1. Theorem 5.2 in this case is
a result going back to Fermat in the 1600s, called Fermat’s little theorem.

Theorem 5.5 (Fermat). For prime p all integers a 6≡ 0 mod p, ap−1 ≡ 1 mod p.

Example 5.6. Let p = 7. As the following table shows, the first time an element of
(Z/(7))× has a power equal to 1 may vary, but all powers hit 1 at exponent 6 = p− 1.

k 1 2 3 4 5 6

1k mod 7 1 1 1 1 1 1
2k mod 7 2 4 1 2 4 1
3k mod 7 3 2 6 4 5 1
4k mod 7 4 2 1 4 2 1
5k mod 7 5 4 6 2 3 1
6k mod 7 6 1 6 1 6 1

What is the analogue of Fermat’s little theorem for (Z/(m))× when m is composite? It is
most definitely not that am−1 ≡ 1 mod m for every a with (a,m) = 1. Indeed, the exponent
in Theorem 5.2 is the size of the group, and (Z/(m))× does not have size m− 1 when m is
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composite (non-trivial factors of m are not relatively prime to m). The size of (Z/(m))× is
an irregularly growing function of m. It is traditionally denoted ϕ(m):

ϕ(m) = |(Z/(m))×| = |{1 ≤ a ≤ m : (a,m) = 1}|.
For instance, ϕ(p) = p− 1 when p is prime. The following table lists ϕ(m) for m ≤ 15.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Using the group (Z/(m))× in Theorem 5.2, we get a generalization of Fermat’s little
theorem, which is due to Euler.

Theorem 5.7 (Euler). For all positive integers m, aϕ(m) ≡ 1 mod m for every a that is
relatively prime to m.

Example 5.8. Taking m = 15, Euler’s theorem says every a that is relatively prime to 15
satisfies a8 ≡ 1 mod 15.

When m is composite, ϕ(m) < m− 1, so the exponent in Euler’s theorem is not m− 1.
This suggests (but does not prove) that, for composite m, am−1 6≡ 1 mod m for some a
between 1 and m− 1. In practice such a are often (but not always!) easy to find. This is a
simple but powerful way to prove an integer m is composite: find some a in {1, 2, . . . ,m−1}
such that am−1 6≡ 1 mod m. If there is even one such a, then m violates the conclusion of
Fermat’s little theorem (which is about every a from 1 to m − 1 when m is prime), so m
must be composite.

Example 5.9. Take m = 15. What is 214 mod 15? The powers of 2 mod 15 are 2, 4, 8, 1,
2, 4, 8, 1,. . . , repeating with period 4, so 214 ≡ 22 ≡ 4 mod 15. Therefore 15 is not a prime
number.

This might seem like a dumb example: you already know 15 is composite because you
know it factors as 3 × 5. The Fermat way of proving 15 is composite is different, since it
tells us 15 is composite without telling us anything about its factorization. This teaches us
something surprising: proving compositeness is not the same as finding a non-trivial factor
(even though it appears otherwise from the definition of composite numbers).

Example 5.10. Let m = 116670466859. Since

2m−1 ≡ 44351214905 6≡ 1 mod m,

m is composite. The congruence does not tell us an explicit non-trivial factor of m. It only
tells us that m does not satisfy the conclusion of Fermat’s little theorem, and that suffices
to know m is composite.

The computation of am−1 mod m can be carried out very quickly on a computer (writing
the exponent in base 2, the exponentiation reduces to repeated squaring modulo m, which
can be done rapidly, while real exponentiation explodes), so it is feasible in practice to prove
the compositeness of large numbers by finding counterexamples to Fermat’s little theorem
for modulus m. Moreover, if one choice of a doesn’t violate Fermat’s little theorem, we can
pick another a and try again. (Fermat’s little theorem is about all a from 1 to m− 1.)

Example 5.11. Let m = 341. Then 2340 ≡ 1 mod 341. This does not tell us anything; just
because it is consistent with Fermat’s little theorem (if m were prime), it does not prove m
is prime. We try another base, 3. Since 3340 ≡ 56 mod 341, Fermat’s little theorem is not
true for 341, so 341 is composite.
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Definition 5.12. If a 6≡ 0 mod m and am−1 6≡ 1 mod m, then we say a is a (Fermat)
witness to the compositeness of m.

As soon as we find one Fermat witness for m, m is provably composite. Using further
group theory, it can be shown that if there is a Fermat witness that is relatively prime to m,
then at least 50% of the numbers from 1 to m− 1 are Fermat witnesses for m. With those
kinds of percentages, we usually expect to get a Fermat witness pretty quickly if there is
one; probably no more than a handful of tests will be needed before we find a witness.

The 50% lower bound on the proportion of Fermat witnesses is based on the assumption
that m has a Fermat witness that is relatively prime to m. However, there are composite
m for which its Fermat witnesses all have a factor in common with m: if am−1 6≡ 1 mod m
and a 6≡ 0 mod m then (a,m) > 1. Such m are called Carmichael numbers, and the Fermat
test will run about as slowly as trial division for these numbers. There are infinitely many
Carmichael numbers, but in practice one doesn’t run across them too often.

The Fermat test has another advantage over trial division than just its greater speed
in practice for proving a number is composite: failures of the test are informative. If we
do 10 trial divisions and find no factors of m, we still are uncertain about whether m is
prime or composite and we haven’t learned anything since we expect most numbers less
than m aren’t factors of m anyway. But if we do 10 Fermat tests and find no example with
am−1 6≡ 1 mod m, we are morally convinced m is a prime (the “probability” it is not prime
is at most (1/2)10 ≈ .00098), although we get no proof it really is prime by this method
(maybe m is a Carmichael number).

The upshot of this discussion is that Fermat’s little theorem provides a method of proving
an integer is composite that does not search for factors. Instead, it uses algebra in the groups
(Z/(m))× to attempt to distinguish between prime m and composite m.

6. Appendix: A Converse to Theorem 4.5

While Theorem 4.5 shows that a product of commuting elements with relatively prime
orders has a predictable order, we can ask what can be said if we start with g ∈ G of order
n and write n = n1n2 where (n1, n2) = 1. Can we express g as a product of commuting
elements with orders n1 and n2? If so, are the commuting elements unique? Yes and Yes.
That is, Theorem 4.5 admits a strong kind of converse, as follows.

Theorem 6.1. Let g ∈ G have order n, where n = n1n2 with (n1, n2) = 1. Then we can
write g = g1g2 where g1 has order n1, g2 has order n2, and g1g2 = g2g1. Moreover, such g1
and g2 are unique in the group G.

Example 6.2. To concretely illustrate the construction we will give in the proof, we give
an example first. Suppose g has order 40 = 5 · 8. Then g = g1g2 where g1 = g16 and
g2 = g−15 have respective orders 5 and 8 (using Theorem 3.15). Since g1 and g2 are powers
of g, they commute!

Remark 6.3. The group in Theorem 6.1 is arbitrary, possibly non-abelian.

Proof. Since (n1, n2) = 1, n1x+ n2y = 1 for some integers x and y. Then

g = g1 = gn1xgn2y.

By Theorem 3.15, gn1 has order n/n1 = n2. From n1x + n2y = 1 we have (x, n2) = 1, so
(gn1)x = gn1x has order n2 by Theorem 3.15. Similarly, gn2y has order n1.
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Let g1 = gn2y and g2 = gn1x. These satisfy the conclusion of the theorem. In particular,
g1 and g2 commute, since they are powers of g.

Now we treat uniqueness. Suppose

g = g1g2 = g′1g
′
2,

where g1, g2 ∈ G and g′1, g
′
2 ∈ G have the relevant properties: g1 has order n1, g2 has order

n2, g1g2 = g2g1, and likewise for g′1 and g′2. We want to show g1 = g′1 and g2 = g′2.
Since g1g2 = g′1g

′
2, raising both sides to the power n1 implies gn1

2 = (g′2)
n1 (here we

need commutativity of g1 with g2 and g′1 with g′2). Raising further to the power x gives
gn1x
2 = (g′2)

n1x. Since g2 and g′2 both have order n2, the exponents in their powers only
matter modulo n2. From n1x + n2y = 1 we get n1x ≡ 1 mod n2, so we can replace the
exponent n1x with 1 to get g2 = g′2. Then the equation g1g2 = g′1g

′
2 implies g1 = g′1. �

Corollary 6.4. The unique elements g1 and g2 from Theorem 6.1 are powers of g.

Proof. In the constructive part of the proof of Theorem 6.1, we defined g1 and g2 as suitable
powers of g. Since the choice of commuting g1 and g2 is unique, we’re done. �

That g1 and g2 commute in Theorem 6.1 is essential in the proof of their uniqueness, and
without commutativity we can find additional pairs satisfying the other conditions. For
example, in S9 let

g = (123)(45)(6789).

The cycles here are disjoint, so g has order [3, 2, 4] = 12. We can write 12 as 3 · 4, and here
are two ways of writing g as a product g1g2 where g1 has order 3 and g2 has order 4:

g1 = (123), g2 = (45)(6789)

and
g1 = (124), g2 = (2345)(6789).

The first pair commutes while the second pair does not. It is the first pair that is constructed
in Theorem 6.1: (123) = g4 and (45)(6789) = g−3.
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