
MASCHKE’S THEOREM OVER GENERAL FIELDS

KEITH CONRAD

Let G be a finite group. If V is a finite-dimensional C-vector space on which there is
a representation of G, then Maschke’s theorem says every subrepresentation of V has a
complementary subrepresentation: if W is a C[G]-submodule of V then V = W ⊕W ′ for
some C[G]-submodule W ′ of V (it’s not just a subspace: G carries W ′ back to itself). A
standard proof of Maschke’s theorem uses a G-invariant Hermitian inner product on V : if
〈·, ·〉 is any Hermitian inner product on V (for example, one defined relative to a choice of
basis of V ) then we can create a G-invariant Hermitian inner product on V by averaging:

〈v, v′〉G =
1

|G|
∑
s∈G
〈s(v), s(v′)〉.

The function 〈·, ·〉G : V × V → C is easily checked to be a Hermitian inner product on V .
For example 〈v, v〉G = (1/|G|)

∑
s∈G〈s(v), s(v)〉 ≥ 0, with equality if and only if v = 0 since

〈s(v), s(v)〉 ≥ 0 with equality if and only if s(v) = 0, which is the same as v = 0. The
function 〈·, ·〉, by construction, is G-invariant: 〈g(v), g(v′)〉G = 〈v, v′〉 for all v, v′ ∈ V and
g ∈ G. Therefore if W is a C[G]-submodule of V , its orthogonal subspace

W⊥ = {v ∈ V : 〈w, v〉G = 0 for all w ∈W}

is also a C[G]-submodule of V because

v ∈W⊥, w ∈W, g ∈ G⇒ 〈w, g(v)〉G = 〈g−1(w), v〉G = 0,

the last equality following from g−1(w) lying in W . Thus g(W⊥) ⊂W⊥ for all g ∈ G. From
the way Hermitian inner products work, V = W ⊕W⊥.

Is Maschke’s theorem still true if we replace C by an arbitrary field k? That is, if V is a
finite-dimensional k-vector space on which there is a representation of G, does every subrep-
resentation of V have a complementary subrepresentation? The averaging technique used
above would run into problems if |G| = 0 in k (which happens if k has positive characteristic
p and |G| is divisible by p), so we will assume |G| 6= 0 in k, which is automatically true if k
has characteristic 0. Another problem with extending the proof technique above to general
fields is that Hermitian inner products rely heavily on C having the complex conjugation
operation. Replacing the Hermitian inner product on a complex vector space by a nonde-
generate bilinear form on a k-vector space (like the dot product relative to a basis) will not
help us, because an orthogonal subspace relative to a nondegenerate bilinear form need not
be complementary to the original subspace: necessarily dim(W )+dim(W⊥) = dim(V ), but
W ∩W⊥ might be nonzero so we might not have V = W ⊕W⊥. For example, on k2 with
the nondegenerate bilinear form 〈(x, y), (x′, y′)〉 = xx′ − yy′, the subspace W = k(1, 1) has
W⊥ = W .

It turns out we can prove Maschke’s theorem for representations of a finite group over
field other than C with an averaging trick, but we need to drop the use of bilinear forms to
find the complementary subrepresentation.
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Theorem 1. Let V be a finite-dimensional k-vector space on which there is a representation
of a finite group G. If |G| 6= 0 in k then each k[G]-submodule W of V has a complementary
k[G]-submodule: there is a k[G]-submodule W ′ such that V = W ⊕W ′.

Proof. The result is obvious if W = V (use W ′ = {0}) or W = {0} (use W ′ = V ), so we
can assume W is a nonzero proper subspace of V . By extending a basis of W to a basis of

V , we can write V = W ⊕W̃ where W̃ is the span of the part of that basis of V not lying in

W . While W̃ is a subspace complement of W , it has no reason to be carried back to itself

under the action of G. Still, it’s going to be useful that W + W̃ = V and W ∩ W̃ = {0}.
Let pr : V → W be the projection from V to W using the direct sum decomposition

V = W ⊕ W̃ . This is obviously k-linear, but it is not obvious whether it preserves the
G-action. The map f : V → V defined as the average

(1) f(v) =
1

|G|
∑
s∈G

s(pr(s−1(v)))

is k-linear, has values in W since pr has values in W and W is a k[G]-submodule of V , and
f preserves the G-action: f(g(v)) = g(f(v)) for all v ∈ V and g ∈ G. Indeed, for g ∈ G and
v ∈ V ,

f(g(v)) =
1

|G|
∑
s∈G

s(pr(s−1(gv)))

=
1

|G|
∑
s∈G

(gs)(pr((gs)−1(gv)))

=
1

|G|
∑
s∈G

(gs)(pr(s−1g−1(gv)))

= g

(
1

|G|
∑
s∈G

s(pr(s−1(v)))

)
= g(f(v)).

For w ∈W we have s−1(w) ∈W for all s ∈ G, so

f(w) =
1

|G|
∑
s∈G

s(pr(s−1(w))) =
1

|G|
∑
s∈G

s(s−1(w)) =
1

|G|
∑
s∈G

w =
1

|G|
|G|w = w.

Therefore f : V → W has the “projection property” f2 = f : for each v ∈ V , f(v) ∈ W so
f(f(v)) = f(v), and thus f2(v) = f(v).

Set W ′ = ker(f). This subspace of V is a k[G]-submodule: if f(w′) = 0 then f(g(w′)) =
g(f(w′)) = g(0) = 0. We will prove V = W ⊕W ′.

First we show V = W +W ′. For v ∈ V we can write v = f(v)+(v−f(v)), with f(v) ∈W .
The difference v − f(v) is in W ′ since f(v − f(v)) = f(v)− f2(v) = f(v)− f(v) = 0.

Next we show W ∩ W ′ = {0}. If w ∈ W ∩ W ′ then w ∈ W ⇒ f(w) = w, while
w ∈W ′ ⇒ f(w) = 0. Thus w = 0. �

It is important in the definition of f in (1) that we have s−1 on the inside of the formula.
The modified function F : V → V defined by

F (v) =
1

|G|
∑
s∈G

s(pr(v))
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has values in W but F need not preserve the G-action. Here is an example of that.

Example 2. Let G = {e, g} have order 2 and let G act on V = k2 (where 2 6= 0 in
k) by having e act as the identity and g act as the coordinate swap: g

(
x
y

)
=
(
y
x

)
. Then

W = k
(
1
1

)
is a subrepresentation of V and a complementary subspace to W is W̃ = k

(
1
0

)
.

Then
(
x
y

)
=
(
y
y

)
+
(
x−y
0

)
expresses each element of V according to the decomposition W ⊕W̃ ,

so pr
(
x
y

)
=
(
y
y

)
. Then

F

(
x

y

)
=

1

2

(
pr

(
x

y

)
+ g

(
pr

(
x

y

)))
=

1

2

((
y

y

)
+ g

(
y

y

))
=

1

2

((
y

y

)
+

(
y

y

))
=

(
y

y

)
,

so F (g
(
x
y

)
) = F

(
y
x

)
=
(
x
x

)
while g

(
F
(
x
y

))
= g

(
y
y

)
=
(
y
y

)
. Thus when x 6= y in k we have

F (g
(
x
y

)
) 6= g(F

(
x
y

)
).

Unlike ker f in the proof of Theorem 1, kerF = k
(
1
0

)
is not a subrepresentation of k2.

The condition that |G| 6= 0 in k in Theorem 1 is necessary for the proof to work, since
the formula for f involves division by |G|. If |G| = 0 in k then problems really can occur:
a subrepresentation need not have a complementary subrepresentation.

Example 3. Let k be a field with prime characteristic p and G = Z/(p). Then there is a
representation of G on V = k2 by a ·

(
x
y

)
= ( 1 a

0 1 )
(
x
y

)
=
(
x+ay
y

)
.

The subspace W = k
(
1
0

)
is a subrepresentation of V that has no complementary subrep-

resentation in V : if W ′ were a complementary subrepresentation of W then dim(W ′) = 1
and each element of G has W ′ as an eigenspace. In particular, W ′ is an eigenspace for the
matrix ( 1 1

0 1 ). Its only eigenvalue in k is 1 and its 1-eigenspace in V is W , so we have a
contradiction.

Theorem 4. Let k be a field with prime characteristic p, G be a finite group of p-power
order, and V be a finite-dimensional k-vector space on which there is a nontrivial represen-
tation of G. Then some subrepresentation of V does not have a complementary subrepre-
sentation.

This theorem is about groups with order equal to a power of p, not groups with the
weaker property of having order divisible by p.

Proof. We begin by showing every representation of G on a nonzero finite-dimensional k-
vector space U has a one-dimensional trivial subrepresentation. Pick u 6= 0 in U . Then
W = Fp[G]u is an Fp-vector subspace of V that is G-stable and finite, so the action of G
on W is an action of a finite p-group on a finite set. A theorem about group actions says
that for an action of a finite p-group on a finite set, the number of fixed points is divisible
by p. Since 0 is a fixed point, there must be a nonzero fixed point w ∈W . Then g(w) = w
for all g ∈ G, so kw is a one-dimensional subspace of U on which G acts trivially.

Returning to the theorem we want to prove, assume every subrepresentation of V has
a complementary subrepresentation. Then forming nonzero complementary subrepresenta-
tions until we can’t go any further (this will happen since dimk(V ) is finite), V is a direct
sum of subrepresentations Vi that are irreducible: each one is nonzero and has no proper
nonzero subrepresentations. From the first paragraph, each Vi has a one-dimensional sub-
representation on which G acts trivially, so by irreducibility Vi is a one-dimensional trivial
representation of G. Then the direct sum V is a trivial representation of G, which is a
contradiction of the hypothesis that V is not a trivial representation for G. �


