MASCHKE'S THEOREM OVER GENERAL FIELDS

KEITH CONRAD

Let G be a finite group. If V is a finite-dimensional \mathbf{C}-vector space on which there is a representation of G, then Maschke's theorem says every subrepresentation of V has a complementary subrepresentation: if W is a $\mathbf{C}[G]$-submodule of V then $V=W \oplus W^{\prime}$ for some $\mathbf{C}[G]$-submodule W^{\prime} of V (it's not just a subspace: G carries W^{\prime} back to itself). A standard proof of Maschke's theorem uses a G-invariant Hermitian inner product on V : if $\langle\cdot, \cdot\rangle$ is any Hermitian inner product on V (for example, one defined relative to a choice of basis of V) then we can create a G-invariant Hermitian inner product on V by averaging:

$$
\left\langle v, v^{\prime}\right\rangle_{G}=\frac{1}{|G|} \sum_{s \in G}\left\langle s(v), s\left(v^{\prime}\right)\right\rangle .
$$

The function $\langle\cdot, \cdot\rangle_{G}: V \times V \rightarrow \mathbf{C}$ is easily checked to be a Hermitian inner product on V. For example $\langle v, v\rangle_{G}=(1 /|G|) \sum_{s \in G}\langle s(v), s(v)\rangle \geq 0$, with equality if and only if $v=0$ since $\langle s(v), s(v)\rangle \geq 0$ with equality if and only if $s(v)=0$, which is the same as $v=0$. The function $\langle\cdot, \cdot\rangle$, by construction, is G-invariant: $\left\langle g(v), g\left(v^{\prime}\right)\right\rangle_{G}=\left\langle v, v^{\prime}\right\rangle$ for all $v, v^{\prime} \in V$ and $g \in G$. Therefore if W is a $\mathbf{C}[G]$-submodule of V, its orthogonal subspace

$$
W^{\perp}=\left\{v \in V:\langle w, v\rangle_{G}=0 \text { for all } w \in W\right\}
$$

is also a $\mathbf{C}[G]$-submodule of V because

$$
v \in W^{\perp}, w \in W, g \in G \Rightarrow\langle w, g(v)\rangle_{G}=\left\langle g^{-1}(w), v\right\rangle_{G}=0
$$

the last equality following from $g^{-1}(w)$ lying in W. Thus $g\left(W^{\perp}\right) \subset W^{\perp}$ for all $g \in G$. From the way Hermitian inner products work, $V=W \oplus W^{\perp}$.

Is Maschke's theorem still true if we replace \mathbf{C} by an arbitrary field k ? That is, if V is a finite-dimensional k-vector space on which there is a representation of G, does every subrepresentation of V have a complementary subrepresentation? The averaging technique used above would run into problems if $|G|=0$ in k (which happens if k has positive characteristic p and $|G|$ is divisible by p), so we will assume $|G| \neq 0$ in k, which is automatically true if k has characteristic 0 . Another problem with extending the proof technique above to general fields is that Hermitian inner products rely heavily on \mathbf{C} having the complex conjugation operation. Replacing the Hermitian inner product on a complex vector space by a nondegenerate bilinear form on a k-vector space (like the dot product relative to a basis) will not help us, because an orthogonal subspace relative to a nondegenerate bilinear form need not be complementary to the original subspace: necessarily $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)$, but $W \cap W^{\perp}$ might be nonzero so we might not have $V=W \oplus W^{\perp}$. For example, on k^{2} with the nondegenerate bilinear form $\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=x x^{\prime}-y y^{\prime}$, the subspace $W=k(1,1)$ has $W^{\perp}=W$.

It turns out we can prove Maschke's theorem for representations of a finite group over field other than \mathbf{C} with an averaging trick, but we need to drop the use of bilinear forms to find the complementary subrepresentation.

Theorem 1. Let V be a finite-dimensional k-vector space on which there is a representation of a finite group G. If $|G| \neq 0$ in k then each $k[G]$-submodule W of V has a complementary $k[G]$-submodule: there is a $k[G]$-submodule W^{\prime} such that $V=W \oplus W^{\prime}$.
Proof. The result is obvious if $W=V$ (use $W^{\prime}=\{0\}$) or $W=\{0\}$ (use $W^{\prime}=V$), so we can assume W is a nonzero proper subspace of V. By extending a basis of W to a basis of V, we can write $V=W \oplus \widetilde{W}$ where \widetilde{W} is the span of the part of that basis of V not lying in W. While \widetilde{W} is a subspace complement of W, it has no reason to be carried back to itself under the action of G. Still, it's going to be useful that $W+\widetilde{W}=V$ and $W \cap \widetilde{W}=\{0\}$.

Let pr: $V \rightarrow W$ be the projection from V to W using the direct sum decomposition $V=W \oplus \widetilde{W}$. This is obviously k-linear, but it is not obvious whether it preserves the G-action. The map $f: V \rightarrow V$ defined as the average

$$
\begin{equation*}
f(v)=\frac{1}{|G|} \sum_{s \in G} s\left(\operatorname{pr}\left(s^{-1}(v)\right)\right) \tag{1}
\end{equation*}
$$

is k-linear, has values in W since pr has values in W and W is a $k[G]$-submodule of V, and f preserves the G-action: $f(g(v))=g(f(v))$ for all $v \in V$ and $g \in G$. Indeed, for $g \in G$ and $v \in V$,

$$
\begin{aligned}
f(g(v)) & =\frac{1}{|G|} \sum_{s \in G} s\left(\operatorname{pr}\left(s^{-1}(g v)\right)\right) \\
& =\frac{1}{|G|} \sum_{s \in G}(g s)\left(\operatorname{pr}\left((g s)^{-1}(g v)\right)\right) \\
& =\frac{1}{|G|} \sum_{s \in G}(g s)\left(\operatorname{pr}\left(s^{-1} g^{-1}(g v)\right)\right) \\
& =g\left(\frac{1}{|G|} \sum_{s \in G} s\left(\operatorname{pr}\left(s^{-1}(v)\right)\right)\right) \\
& =g(f(v)) .
\end{aligned}
$$

For $w \in W$ we have $s^{-1}(w) \in W$ for all $s \in G$, so

$$
f(w)=\frac{1}{|G|} \sum_{s \in G} s\left(\operatorname{pr}\left(s^{-1}(w)\right)\right)=\frac{1}{|G|} \sum_{s \in G} s\left(s^{-1}(w)\right)=\frac{1}{|G|} \sum_{s \in G} w=\frac{1}{|G|}|G| w=w .
$$

Therefore $f: V \rightarrow W$ has the "projection property" $f^{2}=f$: for each $v \in V, f(v) \in W$ so $f(f(v))=f(v)$, and thus $f^{2}(v)=f(v)$.

Set $W^{\prime}=\operatorname{ker}(f)$. This subspace of V is a $k[G]$-submodule: if $f\left(w^{\prime}\right)=0$ then $f\left(g\left(w^{\prime}\right)\right)=$ $g\left(f\left(w^{\prime}\right)\right)=g(0)=0$. We will prove $V=W \oplus W^{\prime}$.

First we show $V=W+W^{\prime}$. For $v \in V$ we can write $v=f(v)+(v-f(v))$, with $f(v) \in W$. The difference $v-f(v)$ is in W^{\prime} since $f(v-f(v))=f(v)-f^{2}(v)=f(v)-f(v)=0$.

Next we show $W \cap W^{\prime}=\{0\}$. If $w \in W \cap W^{\prime}$ then $w \in W \Rightarrow f(w)=w$, while $w \in W^{\prime} \Rightarrow f(w)=0$. Thus $w=0$.

It is important in the definition of f in (1) that we have s^{-1} on the inside of the formula. The modified function $F: V \rightarrow V$ defined by

$$
F(v)=\frac{1}{|G|} \sum_{s \in G} s(\operatorname{pr}(v))
$$

has values in W but F need not preserve the G-action. Here is an example of that.
Example 2. Let $G=\{e, g\}$ have order 2 and let G act on $V=k^{2}$ (where $2 \neq 0$ in k) by having e act as the identity and g act as the coordinate swap: $g\binom{x}{y}=\binom{y}{x}$. Then $W=k\binom{1}{1}$ is a subrepresentation of V and a complementary subspace to W is $\widetilde{W}=k\binom{1}{0}$. Then $\binom{x}{y}=\binom{y}{y}+\binom{x-y}{0}$ expresses each element of V according to the decomposition $W \oplus \widetilde{W}$, so $\operatorname{pr}\binom{x}{y}=\binom{y}{y}$. Then

$$
F\binom{x}{y}=\frac{1}{2}\left(\operatorname{pr}\binom{x}{y}+g\left(\operatorname{pr}\binom{x}{y}\right)\right)=\frac{1}{2}\left(\binom{y}{y}+g\binom{y}{y}\right)=\frac{1}{2}\left(\binom{y}{y}+\binom{y}{y}\right)=\binom{y}{y},
$$

so $F\left(g\binom{x}{y}\right)=F\binom{y}{x}=\binom{x}{x}$ while $g\left(F\binom{x}{y}\right)=g\binom{y}{y}=\binom{y}{y}$. Thus when $x \neq y$ in k we have $F\left(g\binom{x}{y}\right) \neq g\left(F\binom{x}{y}\right)$.

Unlike ker f in the proof of Theorem 1 , $\operatorname{ker} F=k\binom{1}{0}$ is not a subrepresentation of k^{2}.
The condition that $|G| \neq 0$ in k in Theorem 1 is necessary for the proof to work, since the formula for f involves division by $|G|$. If $|G|=0$ in k then problems really can occur: a subrepresentation need not have a complementary subrepresentation.
Example 3. Let k be a field with prime characteristic p and $G=\mathbf{Z} /(p)$. Then there is a representation of G on $V=k^{2}$ by $a \cdot\binom{x}{y}=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\binom{x}{y}=\binom{x+a y}{y}$.

The subspace $W=k\binom{1}{0}$ is a subrepresentation of V that has no complementary subrepresentation in V : if W^{\prime} were a complementary subrepresentation of W then $\operatorname{dim}\left(W^{\prime}\right)=1$ and each element of G has W^{\prime} as an eigenspace. In particular, W^{\prime} is an eigenspace for the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Its only eigenvalue in k is 1 and its 1 -eigenspace in V is W, so we have a contradiction.
Theorem 4. Let k be a field with prime characteristic p, G be a finite group of p-power order, and V be a finite-dimensional k-vector space on which there is a nontrivial representation of G. Then some subrepresentation of V does not have a complementary subrepresentation.

This theorem is about groups with order equal to a power of p, not groups with the weaker property of having order divisible by p.
Proof. We begin by showing every representation of G on a nonzero finite-dimensional k vector space U has a one-dimensional trivial subrepresentation. Pick $u \neq 0$ in U. Then $W=\mathbf{F}_{p}[G] u$ is an \mathbf{F}_{p}-vector subspace of V that is G-stable and finite, so the action of G on W is an action of a finite p-group on a finite set. A theorem about group actions says that for an action of a finite p-group on a finite set, the number of fixed points is divisible by p. Since 0 is a fixed point, there must be a nonzero fixed point $w \in W$. Then $g(w)=w$ for all $g \in G$, so $k w$ is a one-dimensional subspace of U on which G acts trivially.

Returning to the theorem we want to prove, assume every subrepresentation of V has a complementary subrepresentation. Then forming nonzero complementary subrepresentations until we can't go any further (this will happen since $\operatorname{dim}_{k}(V)$ is finite), V is a direct sum of subrepresentations V_{i} that are irreducible: each one is nonzero and has no proper nonzero subrepresentations. From the first paragraph, each V_{i} has a one-dimensional subrepresentation on which G acts trivially, so by irreducibility V_{i} is a one-dimensional trivial representation of G. Then the direct sum V is a trivial representation of G, which is a contradiction of the hypothesis that V is not a trivial representation for G.

