MASCHKE’S THEOREM OVER GENERAL FIELDS

KEITH CONRAD

Let G be a finite group. If V is a finite-dimensional C-vector space on which there is
a representation of G, then Maschke’s theorem says every subrepresentation of V has a
complementary subrepresentation: if W is a C[G]-submodule of V' then V. =W & W’ for
some C[G]-submodule W’ of V' (it’s not just a subspace: G carries W' back to itself). A
standard proof of Maschke’s theorem uses a G-invariant Hermitian inner product on V: if
(-,-) is any Hermitian inner product on V' (for example, one defined relative to a choice of
basis of V') then we can create a G-invariant Hermitian inner product on V' by averaging:
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The function (-,-)g: V x V — C is easily checked to be a Hermitian inner product on V.
For example (v,v)a = (1/|G|) > cq(s(v), s(v)) > 0, with equality if and only if v = 0 since
(s(v),s(v)) > 0 with equality if and only if s(v) = 0, which is the same as v = 0. The
function (-,-), by construction, is G-invariant: (g(v), g(v"))g = (v,v) for all v,v’ € V and
g € G. Therefore if W is a C[G]-submodule of V| its orthogonal subspace

Wt ={veV: (wuv)g=0foralweW}
is also a C[G]-submodule of V' because
veWweW,geG = (wgv)e= (9" (w),v)e=0,

the last equality following from ¢~!(w) lying in W. Thus g(W+) Cc W+ for all g € G. From
the way Hermitian inner products work, V. =W @ W+,

Is Maschke’s theorem still true if we replace C by an arbitrary field k7 That is, if V is a
finite-dimensional k-vector space on which there is a representation of G, does every subrep-
resentation of V' have a complementary subrepresentation? The averaging technique used
above would run into problems if |G| = 0 in k& (which happens if k has positive characteristic
p and |G| is divisible by p), so we will assume |G| # 0 in k, which is automatically true if k
has characteristic 0. Another problem with extending the proof technique above to general
fields is that Hermitian inner products rely heavily on C having the complex conjugation
operation. Replacing the Hermitian inner product on a complex vector space by a nonde-
generate bilinear form on a k-vector space (like the dot product relative to a basis) will not
help us, because an orthogonal subspace relative to a nondegenerate bilinear form need not
be complementary to the original subspace: necessarily dim(W) +dim (W) = dim(V'), but
W N W+ might be nonzero so we might not have V=W @ W+. For example, on k? with
the nondegenerate bilinear form ((x,y), (z/,vy')) = xz’ — yy’, the subspace W = k(1,1) has
wt=Ww.

It turns out we can prove Maschke’s theorem for representations of a finite group over
field other than C with an averaging trick, but we need to drop the use of bilinear forms to
find the complementary subrepresentation.
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Theorem 1. Let V be a finite-dimensional k-vector space on which there is a representation
of a finite group G. If |G| # 0 in k then each k[G]-submodule W of V' has a complementary
k[G]-submodule: there is a k[G]-submodule W' such that V=W & W’.

Proof. The result is obvious if W =V (use W' = {0}) or W = {0} (use W' = V), so we
can assume W is a nonzero proper subspace of V. By extending a basis of W to a basis of
V', we can write V = W @ W where W is the span of the part of that basis of V not lying in
W. While W is a subspace complement of W, it has no reason to be carried back to itself
under the action of G. Still, it’s going to be useful that W + W =V and W N W = {0}.

Let pr: V. — W be the projection from V to W using the direct sum decomposition
V = W e W. This is obviously k-linear, but it is not obvious whether it preserves the
G-action. The map f: V — V defined as the average
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is k-linear, has values in W since pr has values in W and W is a k[G]-submodule of V', and
f preserves the G-action: f(g(v)) = g(f(v)) for allv € V and g € G. Indeed, for g € G and
veV,
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For w € W we have s~!(w) € W for all s € G, so
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Therefore f: V — W has the “projection property” f? = f: for each v € V, f(v) € W so
F(f(v) = f(v), and thus f?(v) = f(v).

Set W’ = ker(f). This subspace of V is a k[G]-submodule: if f(w’) =0 then f(g(w')) =
g(f(w")) = g(0) = 0. We will prove V=W & W',

First we show V. = W+W’. For v € V we can write v = f(v)+(v— f(v)), with f(v) € W.
The difference v — f(v) is in W’ since f(v — f(v)) = f(v) — f2(v) = f(v) — f(v) = 0.

Next we show WNW' = {0}. ffw e WNW then w € W = f(w) = w, while
weW' = f(w) =0. Thus w = 0. O

It is important in the definition of f in (1) that we have s~! on the inside of the formula.
The modified function F': V — V defined by
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has values in W but F' need not preserve the G-action. Here is an example of that.

Example 2. Let G = {e,g} have order 2 and let G act on V = k? (where 2 # 0 in
k) by having e act as the identity and g act as the coordinate swap: g(Z) = (g) Then
W = k(}) is a subrepresentation of V' and a complementary subspace to W is W = k((l))

Then (i) = (Z) + (") expresses each element of V according to the decomposition W& W,
SO pr (gy”) = (Z) Then

1
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SO F(g(g)) = F(Y) = (%) while g <F(9y”)> = g(g) = (Z) Thus when z # y in k we have

T

F(g(3)) # 9(F(;))-

Unlike ker f in the proof of Theorem 1, ker F' = k((l)) is not a subrepresentation of k2.

The condition that |G| # 0 in k in Theorem 1 is necessary for the proof to work, since
the formula for f involves division by |G|. If |G| = 0 in k then problems really can occur:
a subrepresentation need not have a complementary subrepresentation.

Example 3. Let k be a field with prime characteristic p and G = Z/(p). Then there is a

representation of G on V = k% by a - (z) =(} ‘f)(z) = (Izay).

The subspace W = k((l)) is a subrepresentation of V' that has no complementary subrep-
resentation in V: if W’ were a complementary subrepresentation of W then dim(W’') =1
and each element of G has W' as an eigenspace. In particular, W' is an eigenspace for the
matrix (§1). Its only eigenvalue in k is 1 and its l-eigenspace in V is W, so we have a

contradiction.

Theorem 4. Let k be a field with prime characteristic p, G be a finite group of p-power
order, and V be a finite-dimensional k-vector space on which there is a nontrivial represen-
tation of G. Then some subrepresentation of V' does not have a complementary subrepre-
sentation.

This theorem is about groups with order equal to a power of p, not groups with the
weaker property of having order divisible by p.

Proof. We begin by showing every representation of G on a nonzero finite-dimensional k-
vector space U has a one-dimensional trivial subrepresentation. Pick u # 0 in U. Then
W = F,[G]u is an Fp-vector subspace of V' that is G-stable and finite, so the action of G
on W is an action of a finite p-group on a finite set. A theorem about group actions says
that for an action of a finite p-group on a finite set, the number of fixed points is divisible
by p. Since 0 is a fixed point, there must be a nonzero fixed point w € W. Then g(w) = w
for all g € G, so kw is a one-dimensional subspace of U on which G acts trivially.
Returning to the theorem we want to prove, assume every subrepresentation of V' has
a complementary subrepresentation. Then forming nonzero complementary subrepresenta-
tions until we can’t go any further (this will happen since dimg (V) is finite), V' is a direct
sum of subrepresentations V; that are irreducible: each one is nonzero and has no proper
nonzero subrepresentations. From the first paragraph, each V; has a one-dimensional sub-
representation on which G acts trivially, so by irreducibility V; is a one-dimensional trivial
representation of G. Then the direct sum V is a trivial representation of G, which is a
contradiction of the hypothesis that V is not a trivial representation for G. O



