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1. Introduction

The length of a vector v =
(
x
y

)
in R2 is ||

(
x
y

)
|| =

√
x2 + y2, and the distance between

two vectors v and w is the length of their difference: ||v − w||. A function h : R2 → R2

is called an isometry when it preserves distances: ||h(v)− h(w)|| = ||v −w|| for all v and

w in R2. Examples of isometries include translation by
(

1
−1/2

)
, a rotation by 40 degrees

counterclockwise around the origin, and reflection across the line y = 1− 2x. The effect of
these isometries on some line segments is illustrated in the figures below.

Isometries of R2 can be described using linear algebra [1, Chap. 6],1 and this generalizes
to isometries of Rn [2, Sect. 6.5, 6.11].2 However, we can describe isometries of R2 without
linear algebra, using complex numbers by viewing vectors

(
x
y

)
as complex numbers x+ yi.

x

yi
x+ yi =

(
x
y

)

Algebraically, adding vectors and adding the corresponding complex numbers match,
since we add vectors componentwise and add complex numbers by adding real parts and
adding imaginary parts (which is also componentwise). Geometrically, the length of a vector

is the absolute value of the corresponding complex number: ||
(
x
y

)
|| =

√
x2 + y2 = |x + yi|,

which is the length of the line segment connecting x+ yi to the origin in the figure above.

1See also https://kconrad.math.uconn.edu/blurbs/grouptheory/isometryR2.pdf.
2See also https://kconrad.math.uconn.edu/blurbs/grouptheory/isometryRn.pdf.
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The distance between two complex numbers z and w is |z−w|, so if the vectors v and w
in R2 correspond to the complex numbers z and w, then ||v −w|| = |z − w|. Therefore if
we think of R2 as C, an isometry of R2 can be viewed as a function h : C → C satisfying
|h(z)−h(w)| = |z−w| for all z and w in C. Our goal is to describe all the isometries of the
plane using algebraic operations with complex numbers. The reason that we will be able to
do this is based on four features of complex numbers.

(1) Addition by x+ yi is the translation of the plane by the vector (x, y).
(2) Multiplication by cos θ + i sin θ, a complex number of absolute value 1, is a coun-

terclockwise rotation around the origin by an angle of θ. In particular, for nonzero
γ ∈ C the pair {γ, iγ} is an orthogonal basis of C as a real vector space.

(3) Complex conjugation has the effect of reflection across the x-axis, so in particular
solutions to z = z lie on a line (in fact the real line).

(4) The absolute value on C, which is connected to the distance formula via |z − w|,
behaves nicely with respect to multiplication in C and complex conjugation:

(1.1) |zw| = |z||w| and |z| = |z|.
In Section 2, we will algebraically derive formulas for all isometries of the plane using

complex numbers. These formulas will be interpreted geometrically in Section 3.

2. Algebraic arguments

For all z ∈ C, consider the two types of functions C→ C:

(2.1) h1(z) = αz + β, h2(z) = αz + β,

where |α| = 1 and β is a complex number. These formulas are both isometries. Indeed,

h1(z)− h1(w) = α(z − w), h2(z)− h2(w) = α(z − w).

By (1.1), |h1(z)− h1(w)| = |z − w| and |h2(z)− h2(w)| = |z − w| for all z and w in C.
We will show every isometry of the plane is given by one of the formulas in (2.1).

Lemma 2.1. An isometry of the plane that fixes 0, 1, and i is the identity.

Proof. Let h be such an isometry. Since h(0) = 0, h(1) = 1, and h(i) = i, for each z ∈ C
the formula |h(z)− h(w)| = |z − w| at w = 0, 1, and i becomes

(2.2) |h(z)| = |z|, |h(z)− 1| = |z − 1|, |h(z)− i| = |z − i|.
This says h(z) and z have the same distances from the three numbers 0, 1, and i. Geo-
metrically, it is plausible that a complex number is completely determined by its distances
from 0, 1, and i: three circles centered at each of these points can’t intersect in more than
one common point. Granting this, we conclude from (2.2) that h(z) = z.

To check this algebraically, we want to show for w and z in C that

(2.3) |w| = |z|, |w − 1| = |z − 1|, |w − i| = |z − i| =⇒ w = z.

Square the three equations in (2.3) and use the formula |u|2 = uu for u ∈ C:

ww = zz, (w − 1)(w − 1) = (z − 1)(z − 1), (w − i)(w + i) = (z − i)(z + i).

Expanding the second and third equations, and feeding in the first, we obtain after simpli-
fying

w + w = z + z, w − w = z − z.
Therefore w and z have equal real parts and equal imaginary parts, so w = z. �
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Theorem 2.2. Each isometry of the plane is given by one of the formulas h1(z) = αz + β
or h2(z) = αz + β for unique α and β in C where |α| = 1.

Proof. In both formulas, β = hi(0) and α = hi(1) − hi(0) for i = 1, 2. This suggests that,
for an unknown isometry h : C→ C, we define

β = h(0), α = h(1)− h(0).

Then |α| = |h(1)− h(0)| = |1− 0| = 1. Now consider the function

(2.4) k(z) :=
h(z)− β

α
=
h(z)− h(0)

h(1)− h(0)
.

We expect this function is either z or z.
Note first of all that k(z) is an isometry:

|k(z)− k(w)| =
∣∣∣∣(h(z)− β)− (h(w)− β)

α

∣∣∣∣ = |h(z)− h(w)| = |z − w|.

With Lemma 2.1 in mind, we compute k(z) at z = 0, 1, and i. Easily k(0) = 0 and k(1) = 1.
What about k(i)?

Since k fixes 0 and 1,

|k(i)| = |k(i)− k(0)| = |i− 0| = 1, |k(i)− 1| = |k(i)− k(1)| = |i− 1| =
√

2,

so k(i) lies on both the unit circle and the circle around 1 of radius
√

2. There are only two
such points: i and −i.

10

i

−i

If k(i) = i, then k is an isometry fixing 0, 1, and i, so k(z) = z for all z by Lemma 2.1.

If k(i) = −i, then k(z) is an isometry fixing 0, 1, and i, so Lemma 2.1 tells us k(z) = z for
all z. Conjugating, k(z) = z for all z.

Since h(z) = αk(z) + β, the two possible formulas for k(z) lead to the desired possible
formulas for h(z). The uniqueness of α and β is clear from α = h(0) and β = h(1)−h(0). �

Corollary 2.3. Every isometry of the plane is an invertible function and its inverse function
is an isometry.

Proof. If h(z) = αz + β with |α| = 1, its inverse is (1/α)z − β/α with |1/α| = 1. If

h(z) = αz + β with |α| = 1, its inverse is (1/α)z − β/α with |1/α| = 1. Both inverses have
the shape of the formulas in Theorem 2.2 (e.g., the coefficient of z or z has absolute value
1), so these inverse functions are isometries. �

The composition of two isometries is an isometry, and composition of functions is asso-
ciative, so Corollary 2.3 shows the isometries of R2 are a group under composition.

Now we can generalize Lemma 2.1.
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Lemma 2.4. If an isometry of the plane fixes three points that are not collinear, then that
isometry is the identity.

We need to assume in the lemma that the isometry has at least three fixed points that
are not collinear, since an isometry fixing three collinear points need not be the identity:
it could be a reflection across the line through the two points. (Two different points are
always fixed by some non-identity isometry: the reflection across the line through them.)

Proof. We can write an isometry h(z) as αz + β or αz + β, where |α| = 1. Unless h(z) is
the identity, we will show h(z) can’t have 3 fixed points that don’t lie on a line.

Case 1: h(z) = αz + β. If α 6= 1 then there is only one solution to h(z) = z, namely
z = β/(1− α). If α = 1, so h(z) = z + β, then there are no solutions to h(z) = z if β 6= 0.
So unless α = 1 and β = 0, which means h is the identity, h(z) has at most 1 fixed point.

Case 2: h(z) = αz + β. The condition h(z) = z is the same as αz + β = z. We will show
the set of solutions to this equation, if it is not empty, lie along a line. Thus h doesn’t have
three fixed points not lying on a line. Let w and z both be fixed points of h, so αz + β = z
and αw + β = w Subtracting one equation from the other,

(2.5) α(w − z) = w − z.

If α were 1, then w − z = w − z, so t := w − z is real and w = z + t. This means all fixed
points of h are on the horizontal line through z, so three fixed points of h can’t be collinear.
What if α 6= 1? Here there is a clever trick with square roots. All complex numbers are
squares, so we can write α = γ2. Then |γ| = 1, so γ = 1/γ, which means α = γ/γ and (2.5)
becomes (

w − z
γ

)
=
w − z
γ

.

Thus t := (w − z)/γ is real, so w = z + tγ. Now w lies on the line with direction γ passing
through z, so again all fixed points of h lie on a line. �

Theorem 2.5. An isometry of the plane is determined by its values at three noncollinear
points: if two isometries h1 and h2 are equal at three noncollinear points, then h1 = h2
everywhere on the plane.

Proof. The isometry h2 is invertible and its inverse is an isometry, by Corollary 2.3. To
say h1(z) = h2(z) is the same as saying (h−12 h1)(z) = z. Therefore our hypothesis says the

composite function h−12 h1, which is an isometry (we mentioned earlier that the composition
of isometries is an isometry) fixes three noncollinear points, so by Lemma 2.4 it is the
identity: (h−12 h1)(z) = z for all z ∈ C, so h1(z) = h2(z) for all z. �

3. Geometric arguments

Now we want to understand the geometry behind the formulas in (2.1). We will see that
the isometries of the plane fall into four types: translations, rotations, reflections, and glide
reflections. A glide reflection is the composition of a reflection and a nonzero translation in
a direction parallel to the line of reflection. A picture of a glide reflection is in the figure
below, where the line of reflection is dashed and the translation is a movement to the right.
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The image above, which includes “before” and “after” states, suggests a physical inter-
pretation of a glide reflection: it is the result of turning the plane in space like a half-turn
of a screw. A more picturesque image, suggested to me by Michiel Vermeulen, is the effect
of successive steps with a left foot and then a right foot in the sand or snow (if your feet
are mirror reflections).

We will look at the functions in (2.1) and see how they are one of the four types of
isometries in terms of conditions on the parameters α and β in each case. Table 1 summarizes
the relations we will prove between the geometric description of an isometry and the formula
for the isometry. In the table, |α| = 1 and γ2 = α. (The only isometry belonging to more
than one of the four types is the identity, which is both a translation and a rotation, so we
make the identity its own row in the table.)

Isometry Formula Fixed points
Identity z C

Nonzero Translation z + β, with β 6= 0 ∅
Nonzero Rotation αz + β, with α 6= 1 β/(1− α)

Reflection αz + β, with β2/α ∈ (−∞, 0] β/2 + Rγ
Glide Reflection αz + β, with β2/α 6∈ (−∞, 0] ∅

Table 1. Isometries of R2

In this table, the only nonidentity isometries fixing more than one point are reflections,
whose fixed points lie along a line. This is a better way of understanding Lemma 2.4.

Now we turn to the justification of the information in Table 1.
Case 1: h(z) = z + β. This is a translation of the plane by β. It has no fixed points

unless β = 0, in which case h is the identity and all points are fixed.
Case 2: h(z) = αz + β, α 6= 1.
The unique fixed point of h is z0 = β/(1− α). We expect h should be a rotation around

z0. To prove this, express h(z) in terms of its fixed point z0:

(3.1) h(z) = αz + β = αz + (1− α)z0 = α(z − z0) + z0.

Since multiplication by α (of absolute value 1, and not equal to 1) is a nontrivial rotation
around 0, (3.1) tells us h is a rotation around z0: the process of subtracting z0, multiply-
ing by α, and then adding back z0 amounts to rotating around z0 by the nonzero angle
determined by α as a rotation around 0.

Case 3: h(z) = αz+ β. There may be some fixed points or there may be no fixed points.
For instance, the equation z = z has the real line as its fixed points, while the equation
z + 1 = z has no fixed points. It will turn out that h has either a whole line of fixed points
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(in which case we will show h is the reflection across that line) or it has no fixed points (in
which case we will show h is a glide reflection).

In the proof of Lemma 2.4 we studied the equation αz + β = z using a square root of α.
Let’s bring back that square root. Write α = γ2, so |γ| = 1 (since |α| = 1). From the proof
of Lemma 2.4, if w and z are both fixed points of h then(

w − z
γ

)
=
w − z
γ

,

so t := (w−z)/γ is real and w = z+ tγ. Conversely, for real number t and complex number
z such that αz + β = z, check that the number w = z + tγ satisfies αw+ β = w. Therefore
the set of fixed points of h(z) = αz + β is

(3.2) {z0 + tγ : t ∈ R} = z0 + Rγ,

where z0 is a fixed point.
The function αz + β may not have fixed points (e.g., h(z) = z + 1). A necessary and

sufficient condition on α and β in order for the isometry h(z) = αz + β to have a fixed
point is that β2/α ∈ (−∞, 0]. To see why this is necessary, suppose αz + β = z for some z.
Applying complex conjugation to this equation gives us αz + β = z, so we must have

z =
z − β
α

= αz + β.

Since α = 1/α, the terms z/α and αz in the second equation above match, and subtracting
them leaves us with −β/α = β, so β2/α = −ββ = −|β|2 ∈ (−∞, 0]. Conversely, if
β2/α ∈ (−∞, 0], write β2/α = −c2 where c ≥ 0. Taking absolute values implies |β|2 = c2

and (miracle!) the number β/2 is a fixed point of h:

h

(
β

2

)
= α · β

2
+ β = −β

2β

2c2
+ β = −β|β|

2

2c2
+ β = −β

2
+ β =

β

2
.

To summarize, h(z) = αz+β has a fixed point if and only if β2/α ∈ (−∞, 0], in which case
β/2 is a fixed point, so (3.2) tells us that the set of all fixed points of h is the line

β

2
+ Rγ,

where γ2 = α. See the figure below. We will prove h is reflection across the line β/2 + Rγ
by checking two properties:

• for all z, the average 1
2(z + h(z)) lies on the line β/2 + Rγ,

• for all z, the difference z − h(z) is perpendicular to the line β/2 + Rγ.

α

γ

iγ

β

β/2β/2 + Rγ

z

z

αz

h(z)
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For the first property,

z + h(z)

2
=

z + αz + β

2

=
β

2
+
z + γ2z

2

=
β

2
+
γz + γz

2
γ.

The number γz + γz = γz + γz is real, so this average is on the line β/2 + Rγ. For the
second property,

z − h(z) = z − (αz + β)

= γγz − γ2z − β
= (γz − γz)γ − β.

We want this to be orthogonal to the direction of γ (which is the direction of the line
β/2+Rγ). Multiplication of a complex number by i rotates it 90 degrees counterclockwise,
so the direction orthogonal to γ is the direction of iγ. The difference γz − γz = γz − γz is
purely imaginary, so the first term in the formula for z − h(z) is in Riγ. What about −β?
Since β2/α ∈ (−∞, 0], write β2 = −αc2 for real c. Then β2 = −γ2c2, so β = ±icγ ∈ Riγ.
Thus z − h(z) ∈ Riγ. That completes the proof that h is the reflection across the line
β/2 + Rγ.

The remaining type of isometry is h(z) = αz+β with no fixed points, so β2/α 6∈ (−∞, 0].
Before we show h is a glide reflection (that is, a composition of a reflection and a nonzero
translation in a direction parallel to the line of reflection), let’s look at two examples.

Example 3.1. Let h(z) = z + 1. This is a reflection across the x-axis composed with a
translation (by 1) in a direction parallel to the line of reflection.

Example 3.2. Let h(z) = z + (1 + i) = (z + i) + 1. Since i = w − w for w = i/2, the
function z 7→ z+ i is a reflection across the horizontal line i/2+R. Thus h is a composition
of a reflection across a line and a translation (by 1) in a direction parallel to that line.

To see that h(z) = αz + β describes a glide reflection when it has no fixed points, write
α = γ2. Using {γ, iγ} as an R-basis of C, we can write β = aγ + biγ with real a and b.
Then

(3.3) h(z) = αz + β = αz + (aγ + biγ) = (αz + biγ) + aγ.

Since (biγ)2/α = −b2 ≤ 0, our earlier discussion of reflections tells us that αz + biγ is a
reflection across a line parallel to Rγ. Since β2/α 6∈ (−∞, 0], we must have a 6= 0. Therefore
adding aγ in (3.3) amounts to composition of a reflection across a line parallel to Rγ with
a nonzero translation in a direction parallel to the same line. Hence h is a glide reflection.

This completes the justification of Table 1, although we should also emphasize why the
different types of isometries in Table 1 are different from each other. Looking at the set of
fixed points (empty, point, line, plane) easily distinguishes the first four types of isometries
from each other and distinguishes a glide reflection from all but a translation. To show a
glide reflection is not a translation, if h(z) = αz+ β were a translation then h(z)− z would
be constant, but h(z)− z = αz− z+ β is not constant: from h(0)− 0 = h(1)− 1 = h(i)− i
the first equation would imply α = 1 and the second would imply α = −i.

We now draw a few conclusions about plane isometries from the formulas in Table 1.
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Theorem 3.3. The composition of two reflections is a translation or a rotation, and it is
a translation precisely when the two reflections are across a pair of parallel lines.

Proof. Let s1 and s2 be two reflections, so s1(z) = α1z + β1 and s2(z) = α2z + β2, where
α1 and α2 have absolute value 1 and β21/α1 and β22/α2 are in (−∞, 0]. Then

s1(s2(z)) = α1(α2z + β2) + β1 = (α1α2)z + (α1β2 + β1).

This has the form αz + β where α = α1α2, so |α| = 1. Table 1 tells us that s1 ◦ s2 is a
translation or rotation (possibly the identity).

The composite s1 ◦ s2 is a translation precisely when α1α2 = 1, which (since α2 = 1/α2)
amounts to saying α2 = α1. Then s1(z) = α1z + β1 and s2(z) = α1z + β2. The fixed
lines of these reflections are β1/2 + Rγ and β2/2 + Rγ, where γ2 = α1, so these lines are
parallel. �

Example 3.4. Let s1(z) = −z+3, s2(z) = −z+5, and s3(z) = z+ i. Their respective lines
of reflection are 3/2 + Ri (horizontal), 5/2 + Ri (horizontal), and i/2 + R (vertical). The
composite s1(s2(z)) is z−2, which is a translation. The composite s1(s3(z)) is −z+ (3 + i),
which is a rotation around (3 + i)/2 by 180 degrees.

Theorem 3.5. If g and h are two isometries of the plane, ghg−1 is an isometry of the
same type as h.

Proof. Write g(z) = αz + β. For a translation t(z) = z + c, an explicit calculation shows
(gtg−1)(z) = z + αc. If we have z in place of z in g(z), then (gtg−1)(z) = z + αc. Thus
gtg−1 is a translation for every isometry g.

For two plane isometries g and h, h fixes z if and only if ghg−1 fixes g(z). An isometry
takes a point or a line to a point or a line, respectively, so from our knowledge of fixed
points of different kinds of isometries we see that if h is a rotation then ghg−1 is a rotation
(1 fixed point), and if h is a reflection then ghg−1 is a reflection (a line of fixed points).

(We can say something more precise in the case h(z) = αz+β is a rotation. When g is a
translation or rotation (ghg−1)(z) = αz + ∗, while when g is a reflection or glide reflection
(ghg−1)(z) = αz + ∗. Therefore ghg−1 is a rotation by the same angle as h or the opposite
angle to h, at some point in the plane.)

Suppose h is a glide reflection, so it has no fixed points. Then ghg−1 also has no fixed
points, which means ghg−1 is either a glide reflection or a translation. If ghg−1 were a
translation, say ghg−1 = t, then h = g−1tg, which is a translation by the first paragraph
(replace g with g−1 there). That is a contradiction, so ghg−1 must be a glide reflection. �

Theorem 3.6. Each isometry of R2 is a composition of at most 2 reflections, except for
glide reflections, which are compositions of 3 (and no fewer) reflections.

Proof. We check the result for the identity, nonzero translations, rotations, and glide reflec-
tions.

The identity is the composition of every reflection with itself. (For instance, z = z).
Write a nonzero translation as t(z) = z+β. Set s(z) = −(β/β)z and s′(z) = −(β/β)z+β.

Both are reflections by Table 1. (For instance, writing s′(z) = αz+β we have β2/α = −ββ =
−|β|2 ≤ 0). Check by a computation that (s′ ◦ s)(z) = z + β = t(z). (Alternatively, from
s′ = t ◦ s we get t = s′ ◦ s−1 = s′ ◦ s.)

A rotation around 0 can be written as h(z) = αz, where |α| = 1. Take k(z) = z and
`(z) = α · z. Then k and ` are reflections by Table 1 and h = k ◦ `. An arbitrary rotation of
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the plane has the form h(z) = α(z− z0) + z0, where z0 is the center of rotation and |α| = 1.
Then h = t◦r ◦ t−1, where t is translation by z0 and r(z) = αz is a rotation around 0. From
what we already said about rotations around 0, we can write r = k ◦ ` for two reflections
k and `. Then h = trt−1 = t(k`)t−1 = (tkt−1) ◦ (t`t−1), which is a composition of two
reflections by Theorem 3.5.

Lastly, a glide reflection is a composition of a reflection and a nonzero translation. Since
a (nonzero) translation is a composition of two reflections, a glide reflection is a composition
of 3 reflections. The number of reflections can’t be reduced. Indeed, a glide reflection is not
a reflection since they don’t have the same kind of fixed points (the empty set and a line),
and a glide reflection is not a composition of two reflections since the only such isometries
are translations and rotations, by Theorem 3.3. �
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