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For each prime p there is one group of order p up to isomorphism, namely the cyclic group
Z/(p). For groups of order p2 there are at least two possibilities: Z/(p2) and Z/(p)×Z/(p).
These are not isomorphic since the first group is cyclic and the second is not (every non-
identity element in it has order p). We will show that every group of order p2 is isomorphic
to one of those two groups. This result is due to Netto [2, pp. 148–149].1 and we will largely
follow Netto’s proof, which doesn’t involve anything other than careful work with products,
conjugates, and orders of elements. The key point is to show first that all groups of order
p2 are abelian. After that, it is not hard to classify the possible groups that can occur. At
the end we’ll revisit Netto’s argument to see how it can be simplified using cosets.

Theorem 1. For prime p, every group of order p2 is abelian.

Proof. Let G be a group of order p2. If G is cyclic then it is abelian, so we can suppose G
is not cyclic. Pick x ∈ G − {e}, and since G 6= 〈x〉 (otherwise G would be cyclic) we can
pick y ∈ G − 〈x〉. Since the order of each element of G divides p2 and no element of G
has order p2, each non-identity element of G must have order p. Thus x and y each have
order p. Since 〈x〉 and 〈y〉 are subgroups of G with prime order p and they are different
subgroups (the first does not contain y and the second does), their intersection is trivial:
〈x〉 ∩ 〈y〉 = {e}.

In the list of products {xiyj : 0 ≤ i, j ≤ p − 1} we will show there are no duplicates. If

xiyj = xi
′
yj
′

then x−i
′+i = yj

′−j , which belongs to 〈x〉 ∩ 〈y〉, so x−i
′+i = e and yj

′−j =
e. Since x and y have order p, i′ ≡ i mod p and j′ ≡ j mod p. The exponents are in
{0, 1, . . . , p − 1}, so being congruent mod p forces equality: i′ = i and j′ = j. Thus the
number of different elements of G in {xiyj : 0 ≤ i, j ≤ p − 1} is p2, which matches |G|, so
G = {xiyj : 0 ≤ i, j ≤ p− 1}.

Now consider the product yx. It has to be some xi1yj1 . Similarly, y2x, . . . , yp−1x all have
a similar form:

yx = xi1yi1 , y2x = xi2yi2 , . . . , yp−1x = xip−1yip−1 ,

where 0 ≤ ik, jk ≤ p − 1. Each ik is not 0, since otherwise ykx = yik , so x = yik−k ∈ 〈y〉,
but 〈x〉 and 〈y〉 intersect trivially.

Claim: there are m,n 6≡ 0 mod p such that xymx−1 = yn.
Case 1: Two of the products among yx, y2x, . . . , yp−1x have the same power of x when

written as xiyj .
This implies there are k 6= k′ in {1, . . . , p − 1} such that ykx = xiyjk and yk

′
x = xiyjk′

for a common i. Then jk 6= jk′ in {0, . . . , p − 1} (otherwise ykx = yk
′
x, so k ≡ k′ mod p,

but k and k′ are distinct in {1, . . . , p− 1}). Solving for xi in both equations, we get

ykxy−jk = xi = yk
′
xy−jk′ ,

1The special case p = 2 was treated earlier by Cayley [1, pp. 43-44].
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so yk−k
′
x = xyjk−jk′ , or equivalently xyjk−jk′x−1 = yk−k

′
. The exponents on y on both

sides are nonzero mod p since each is a difference of unequal numbers in {0, . . . , p− 1}.
Case 2: All of the products among yx, y2x, . . . , yp−1x have different powers of x when

written as xiyj .
This means one of these p terms has i = 1: ykx = xyj for some k in {1, . . . , p − 1} and

some j. Rewrite that equation as xyjx−1 = yk. We have j 6≡ 0 mod p, since otherwise
yk = xex−1 = e, but that is not true since y has order p and k is not divisible by p.

From the claim, raise both sides of xymx−1 = yn to the `-th power for ` ∈ Z, getting
(xymx−1)` = yn`, so xym`x−1 = yn`. Use for ` a multiplicative inverse of m mod p (this can
be done since p is prime and m 6≡ 0 mod p), so ym` = y1 = y and thus xyx−1 = yN where
N = n`. In words, this says the conjugate of y by x is yN . Let’s conjugate y by x2:

x2yx−2 = x(xyx−1)x−1 = xyNx−1 = (xyx−1)N = (yN )N = yN
2
.

By similar reasoning and induction, xryx−r = yN
r

for all r ≥ 1. Taking r = p, so xr = e,
we get y = yN

p
. Since y has order p, the exponents are congruent mod p: 1 ≡ Np mod p.

By Fermat’s little theorem we have Np ≡ N mod p, so 1 ≡ N mod p, and that means
yN = y1 = y, so xyx−1 = yN = y, or equivalently xy = yx: x and y commute.

Since every element of G has the form xiyj and x and y commute, all powers of x commute
with all powers of y and thus all elements of G commute with each other:

(1) (xiyj)(xi
′
yj
′
) = xi(yjxi

′
)yj
′

= xi(xi
′
yj)yj

′
= (xixi

′
)(yjyj

′
) = xi+i′yj+j′ .

This last expression is unchanged if we swap i with i′ and j with j′, so xiyj and xi
′
yj
′

commute. �

Theorem 2. For prime p, there are two groups of order p2 up to isomorphism: Z/(p2) and
Z/(p)× Z/(p).

Proof. All cyclic groups of the same order are isomorphic, so it suffices to show every
noncyclic group G of order p2 is isomorphic to Z/(p)× Z/(p).

By Theorem 1, G is abelian and contains elements x and y of order p such that every
element of G has a unique representation as xiyj where i, j ∈ {0, . . . , p−1}. The exponents
in xiyj only matter mod p since x and y have order p, so we can define f : Z/(p)×Z/(p)→ G
by f(i mod p, j mod p) = xiyj . By the unique representation of elements of G in the form
xiyj , f is a bijection. Since x and y commute, f is a homomorphism by (1):

f(i mod p, j mod p)f(i′ mod p, j′ mod p) = (xiyj)(xi
′
yj
′
) = xi+i′yj+j′ ,

which is f(i + i′ mod p, j + j′ mod p). A bijective homomorphism is an isomorphism: G ∼=
Z/(p)× Z/(p). �

In the proof of Theorem 1, an overarching logic to the succession of steps may be hard
to make out. We will “modernize” the claim in that proof saying xymx−1 = yn for some
integers m and n that are nonzero mod p by using cosets.

Set H = 〈y〉. Since 〈x〉 and 〈y〉 intersect trivially, no power of x is in H except for
the identity, so the left H-cosets H,xH, x2H, . . . , xp−1H are mutually disjoint (they have
different powers of x as representatives).

The right H-coset Hx is disjoint from H (x is not in H and different right H-cosets are

disjoint), so Hx ⊂
⋃p−1

i=1 xiH. Since Hx has size p and the union contains p− 1 cosets xiH,
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at least two elements from Hx have to lie in a common xiH.2 Write this as yjx ∈ xiH and
ykx ∈ xiH where j and k are different integers in {0, . . . , p− 1}. Thus

yjx = xiyj
′
, ykx = xiyk

′
,

so j′ 6≡ k′ mod p (why?) and that implies

yjxy−j
′

= xi = ykxy−k
′

=⇒ yj−kx = xyj
′−k′ =⇒ xyj

′−k′x−1 = yj−k.

Since j and k are incongruent mod p, as are j′ and k′, we get xymx−1 = yn where m =
j′ − k′ 6≡ 0 mod p and n = j − k 6≡ 0 mod p, and this completes the proof of the claim in
the proof of Theorem 1.
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