GROUPS OF ORDER 4 AND 6

KEITH CONRAD

1. INTRODUCTION

Here are several groups of order 4:

Z/(4), 2/(2) x Z/(2), (Z/(5))",(Z/(8))", (Z/(12))".

Here are several groups of order 6:
Z/(6), 2/(2) x Z/(3), (Z/(7))*, S5, D3, GL2(Z/(2)).

The groups of order 4 exhibit two types of structure: cyclic (Z/(4) and (Z/(5))*) or built
out of two commuting® elements of order 2 ((1,0) and (0,1) in Z/(2) x Z/(2), 3 and 5 in
(Z/(8))*, 5 and 7 in (Z/(12))*). Among the groups of order 6, the abelian ones are cyclic
and the nonabelian ones can each be interpreted as the group of all permutations of a set
of size 3 (the set is {1,2,3} for S3, the 3 vertices of an equilateral triangle for D3, and the
mod 2 vectors ((1)), ((1)), and G) for GL2(Z/(2))).

We will show that the examples above exhibit the general situation insofar as groups
of order 4 and 6 are concerned: isomorphic to Z/(4) or Z/(2) x Z/(2) for order 4, and
isomorphic to Z/(6) or S3 for order 6. That means there are essentially only two types of
4-fold symmetries and essentially only two types of 6-fold symmetries.

2. GROUPS OF ORDER 4
Theorem 2.1. Any group of order 4 is isomorphic to Z/(4) or Z/(2) x Z/(2).

Proof. Let G have order 4. Any element of G has order 1, 2, or 4. If G has an element of
order 4 then G is cyclic, so G = Z/(4) since cyclic groups of the same order are isomorphic.
(Explicitly, if G = (g) then an isomorphism Z/(4) — G is a mod 4 — ¢°.)

Assume G is not cyclic. Then every nonidentity element of G has order 2, so ¢g> = e for
every g € G. Pick two nonidentity elements x and y in G, so 22 = e, y? = e, and (zy)? = e.
That implies zy = (2y) ! = y~'2~! = yx, so x and y commute. This argument shows that
any group in which all nonidentity elements have order 2 is abelian.

The roles of x and y in G resemble (1,0) and (0,1) in Z/(2) x Z/(2), suggesting the
function f: Z/(2) x Z/(2) — G where f(a mod 2,b mod 2) = x%?". Explicitly, this function
is

(2.1) (0,0) —~1, (1,0)—=z, (0,1)—y, (1,1)+— zy.
To see that f is a homomorphism, we compute

f@b) f(e,d) = (a“y") (2°y?) = 2°(yP2)y? = 2*2y"y? = 2*TY"H = f(a+ ¢, b+ d).
The function f is a bijection by (2.1), so f is an isomorphism. O

IThere is an infinite group generated by two elements of order 2 that do not commute.
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3. GROUPS OF ORDER 6
To describe groups of order 6, we begin with a lemma about elements of order 2.
Lemma 3.1. If a group has even order then it contains an element of order 2.

Proof. Call the group G. Let us pair together each ¢ € G with its inverse g~ '. The set
{9,97 '} has two elements unless g = g~!, meaning g?> = e. Therefore

|G| = 2/{pairs {g,97'}: g # g "} +{geG:g=9g"}I
The left side is even by hypothesis, and the first term on the right side is even from the
factor of 2. Therefore |[{g € G : g = e}| is even. This count is positive, since g = e is one
possibility where g2 = e. Since this count is even, there must be at least one more g, so
some g # e in G satisfies g? = e, which implies ¢ has order 2. O

Theorem 3.2. A group of order 6 is isomorphic to Z/(6) or to Ss.

Proof. Let |G| = 6 have order 6. By Lemma 3.1, G contains an element x of order 2.

Case 1: G is abelian.

Suppose all nonidentity elements have order 2. Choose y other than z and e, so y> = e.
Since G is abelian, {e,z,y,xy} is a subgroup of G, but this violates Lagrange’s theorem
since 4 doesn’t divide 6. Therefore some element of G has order 3 or 6.

If G has an element of order 6 then G is cyclic and G =2 Z/(6). If some z € G has order
3 then zz has order 6 since (22)% = e, (z2)? = 2222 = 22 # ¢, and (22)3 = 2323 =2 #£ e.
Thus again G is cyclic, so G = Z/(6).

Case 2: G is nonabelian.

Step 1: G has an element of order 2 and an element of order 3.

No element has order 6, so orders of elements are 1, 2, or 3. If every nonidentity element
had order 2, G would be abelian (see pf. of Theorem 2.1), so G has an element of order 3.

Step 2: Make G look like Ss.

By Step 1, in G there are elements = of order 2 and y of order 3. Let H = (z) = {e, z},
so H has 3 left cosets. Since y &€ H and y? ¢ H, the left cosets of H are H, yH, and y?H.

For each g € G, let {,: {H,yH,y*H} — {H,yH,y*H} by {,(cH) = gcH for left cosets
cH. Each {; is a permutation since it has inverse £,-1. Labeling H, yH, and y?H as 1,2,3,
the permutations of {H,yH,y?>H} are placed inside S3, and thus we can view {4 in Ss.2

The function G — S3 where g — /{4 is a homomorphism, because multiplication in G
goes over to composition of permutations: £, 0 £, = £44 since for any left coset cH

(€go Zg’)(CH) = g(g/cH) =gg'cH = (QQI)CH = ggg’(CH)~

The homomorphism G' — S3 by g — £, is between finite groups of equal size, so to prove
it’s an isomorphism it suffices to show it’s injective or surjective. We’ll prove it’s surjective.

The permutation ¢, cyclically permutes H, yH, and y?’H: H to yH, yH to y*H, and
y?’H to y3>H = H, so the image of G — S3 contains a 3-cycle. Let’s check ¢, transposes
yH and y?H. Since x € H, {,(H) = xH = H. Since £, is a permutation, if £,(yH) # y>H
then ¢,(yH) = yH, so xyH = yH: {zy,zyz} = {y,yx}. Thus zy is y or yz. If xy =y
then x = e (false) and if xy = yz then z and y commute, so xy has order 6 (false: G is
nonabelian). Thus £, (yH) = y*H and (,(y*H) = yH: {, is a transposition in S3. The
image of G — S3 is a subgroup of S5 containing a transposition and element of order 3, so
it has order 6 by Lagrange. Thus G = Ss. g

2The specific way we view ¢4 in S3 depends on the way we label the left cosets of H as 1, 2, and 3.
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The fact that, up to isomorphism, there are two groups of order 4 and two groups of order
6, goes back to Cayley’s 1854 paper on groups [1], which was the first work on abstract
groups; previously groups had been considered only as groups of permutations. Almost 25
years later, Cayley wrote in [2] “The general problem is to find all the groups of a given
order n,”® and then proceeded to claim there are three groups of order 6: see Figure 1.
From Cayley’s examples it appears he thought Z/(6) and Z/(2) x Z/(3) are not isomorphic,
which confused form with structure.

The general problem is to find all the groups of a given order n; thus
if » = 2, the only group is 1, @ (@’ = 1) ; » = 3, the only group is 1, «, o®
(@’ =1); n =4, the groups are 1, a, «’, &* («* = 1), and 1, a, 3, a8 («* =1,
B* =1, & = Ba);* n = 6, there are three groups, a group 1, a, &, &, a', o®

®#1fn =5, the only group is 1, a, a®, a%, a* (a* = 1). W.E. S,
(@* = 1) ; and two groups 1, 3, 8% a, a3, 03® (a* = 1. B* = 1), viz: in the first
of these @3 = [a; while in the other of them (that mentioned above) we
have a8 = %, a3 = Ba.

FIGURE 1. Cayley’s error in [2]: three groups of order 6.

REFERENCES

[1] A. Cayley, “On the Theory of Groups, as Depending on the Symbolic Equation 6™ = 1,” pp. 123-130 of
The Collected Papers of Arthur Cayley, Vol. 11, Cambridge Univ. Press, 1889.

[2] A. Cayley “Desiderata and Suggestions: No. 1. The Theory of Groups,” Amer. J. Math. 1 (1878), pp.
50-52.

3In the Online Encyclopedia of Integer Sequences, the very first sequence https://oeis.org/A000001 is
the count of finite groups of each small order up to isomorphism, starting with 0 groups of order 0 and then
continuing with 1,1,1,2,1,2,1,5,2,2,...
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