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1. Introduction

Here are several groups of order 4:

Z/(4), Z/(2)× Z/(2), (Z/(5))×, (Z/(8))×, (Z/(12))×.

Here are several groups of order 6:

Z/(6), Z/(2)× Z/(3), (Z/(7))×, S3, D3, GL2(Z/(2)).

The groups of order 4 exhibit two types of structure: cyclic (Z/(4) and (Z/(5))×) or built
out of two commuting1 elements of order 2 ((1, 0) and (0, 1) in Z/(2) × Z/(2), 3 and 5 in
(Z/(8))×, 5 and 7 in (Z/(12))×). Among the groups of order 6, the abelian ones are cyclic
and the nonabelian ones can each be interpreted as the group of all permutations of a set
of size 3 (the set is {1, 2, 3} for S3, the 3 vertices of an equilateral triangle for D3, and the
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for GL2(Z/(2))).

We will show that the examples above exhibit the general situation insofar as groups
of order 4 and 6 are concerned: isomorphic to Z/(4) or Z/(2) × Z/(2) for order 4, and
isomorphic to Z/(6) or S3 for order 6. That means there are essentially only two types of
4-fold symmetries and essentially only two types of 6-fold symmetries.

2. Groups of Order 4

Theorem 2.1. Any group of order 4 is isomorphic to Z/(4) or Z/(2)× Z/(2).

Proof. Let G have order 4. Any element of G has order 1, 2, or 4. If G has an element of
order 4 then G is cyclic, so G ∼= Z/(4) since cyclic groups of the same order are isomorphic.
(Explicitly, if G = 〈g〉 then an isomorphism Z/(4)→ G is a mod 4 7→ ga.)

Assume G is not cyclic. Then every nonidentity element of G has order 2, so g2 = e for
every g ∈ G. Pick two nonidentity elements x and y in G, so x2 = e, y2 = e, and (xy)2 = e.
That implies xy = (xy)−1 = y−1x−1 = yx, so x and y commute. This argument shows that
any group in which all nonidentity elements have order 2 is abelian.

The roles of x and y in G resemble (1, 0) and (0, 1) in Z/(2) × Z/(2), suggesting the
function f : Z/(2)×Z/(2)→ G where f(a mod 2, b mod 2) = xayb. Explicitly, this function
is

(2.1) (0, 0) 7→ 1, (1, 0) 7→ x, (0, 1) 7→ y, (1, 1) 7→ xy.

To see that f is a homomorphism, we compute

f(a, b)f(c, d) = (xayb)(xcyd) = xa(ybxc)yd = xaxcybyd = xa+cyb+d = f(a + c, b + d).

The function f is a bijection by (2.1), so f is an isomorphism. �

1There is an infinite group generated by two elements of order 2 that do not commute.
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3. Groups of Order 6

To describe groups of order 6, we begin with a lemma about elements of order 2.

Lemma 3.1. If a group has even order then it contains an element of order 2.

Proof. Call the group G. Let us pair together each g ∈ G with its inverse g−1. The set
{g, g−1} has two elements unless g = g−1, meaning g2 = e. Therefore

|G| = 2|{pairs {g, g−1} : g 6= g−1}|+ |{g ∈ G : g = g−1}|.
The left side is even by hypothesis, and the first term on the right side is even from the
factor of 2. Therefore |{g ∈ G : g2 = e}| is even. This count is positive, since g = e is one
possibility where g2 = e. Since this count is even, there must be at least one more g, so
some g 6= e in G satisfies g2 = e, which implies g has order 2. �

Theorem 3.2. A group of order 6 is isomorphic to Z/(6) or to S3.

Proof. Let |G| = 6 have order 6. By Lemma 3.1, G contains an element x of order 2.
Case 1: G is abelian.
Suppose all nonidentity elements have order 2. Choose y other than x and e, so y2 = e.

Since G is abelian, {e, x, y, xy} is a subgroup of G, but this violates Lagrange’s theorem
since 4 doesn’t divide 6. Therefore some element of G has order 3 or 6.

If G has an element of order 6 then G is cyclic and G ∼= Z/(6). If some z ∈ G has order
3 then xz has order 6 since (xz)6 = e, (xz)2 = x2z2 = z2 6= e, and (xz)3 = x3z3 = x 6= e.
Thus again G is cyclic, so G ∼= Z/(6).

Case 2: G is nonabelian.
Step 1: G has an element of order 2 and an element of order 3.
No element has order 6, so orders of elements are 1, 2, or 3. If every nonidentity element

had order 2, G would be abelian (see pf. of Theorem 2.1), so G has an element of order 3.
Step 2: Make G look like S3.
By Step 1, in G there are elements x of order 2 and y of order 3. Let H = 〈x〉 = {e, x},

so H has 3 left cosets. Since y 6∈ H and y2 6∈ H, the left cosets of H are H, yH, and y2H.
For each g ∈ G, let `g : {H, yH, y2H} → {H, yH, y2H} by `g(cH) = gcH for left cosets

cH. Each `g is a permutation since it has inverse `g−1 . Labeling H, yH, and y2H as 1,2,3,

the permutations of {H, yH, y2H} are placed inside S3, and thus we can view `g in S3.
2

The function G → S3 where g 7→ `g is a homomorphism, because multiplication in G
goes over to composition of permutations: `g ◦ `g′ = `gg′ since for any left coset cH

(`g ◦ `g′)(cH) = g(g′cH) = gg′cH = (gg′)cH = `gg′(cH).

The homomorphism G → S3 by g 7→ `g is between finite groups of equal size, so to prove
it’s an isomorphism it suffices to show it’s injective or surjective. We’ll prove it’s surjective.

The permutation `y cyclically permutes H, yH, and y2H: H to yH, yH to y2H, and
y2H to y3H = H, so the image of G → S3 contains a 3-cycle. Let’s check `x transposes
yH and y2H. Since x ∈ H, `x(H) = xH = H. Since `x is a permutation, if `x(yH) 6= y2H
then `x(yH) = yH, so xyH = yH: {xy, xyx} = {y, yx}. Thus xy is y or yx. If xy = y
then x = e (false) and if xy = yx then x and y commute, so xy has order 6 (false: G is
nonabelian). Thus `x(yH) = y2H and `x(y2H) = yH: `x is a transposition in S3. The
image of G→ S3 is a subgroup of S3 containing a transposition and element of order 3, so
it has order 6 by Lagrange. Thus G ∼= S3. �

2The specific way we view `g in S3 depends on the way we label the left cosets of H as 1, 2, and 3.
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The fact that, up to isomorphism, there are two groups of order 4 and two groups of order
6, goes back to Cayley’s 1854 paper on groups [1], which was the first work on abstract
groups; previously groups had been considered only as groups of permutations. Almost 25
years later, Cayley wrote in [2] “The general problem is to find all the groups of a given
order n,”3 and then proceeded to claim there are three groups of order 6: see Figure 1.
From Cayley’s examples it appears he thought Z/(6) and Z/(2)×Z/(3) are not isomorphic,
which confused form with structure.

Figure 1. Cayley’s error in [2]: three groups of order 6.
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3In the Online Encyclopedia of Integer Sequences, the very first sequence https://oeis.org/A000001 is
the count of finite groups of each small order up to isomorphism, starting with 0 groups of order 0 and then
continuing with 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, . . .

https://oeis.org/A000001

	1. Introduction
	2. Groups of Order 4
	3. Groups of Order 6
	References

