GROUPS OF ORDER 4 AND 6

KEITH CONRAD

1. Introduction

Here are several groups of order 4:
\[\mathbb{Z}/(4), \mathbb{Z}/(2) \times \mathbb{Z}/(2), (\mathbb{Z}/(5))^x, (\mathbb{Z}/(8))^x, (\mathbb{Z}/(12))^x. \]

Here are several groups of order 6:
\[\mathbb{Z}/(6), \mathbb{Z}/(2) \times \mathbb{Z}/(3), (\mathbb{Z}/(7))^x, S_3, D_3, \text{GL}_2(\mathbb{Z}/(2)). \]

The groups of order 4 exhibit two types of structure: cyclic \((\mathbb{Z}/(4)\text{)}\) and \((\mathbb{Z}/(5))^x\) or built out of two commuting\(^1\) elements of order 2 \((1,0)\) and \((0,1)\) in \(\mathbb{Z}/(2) \times \mathbb{Z}/(2)\), 3 and 5 in \((\mathbb{Z}/(8))^x\), 5 and 7 in \((\mathbb{Z}/(12))^x\). Among the groups of order 6, the abelian ones are cyclic and the nonabelian ones can each be interpreted as the group of all permutations of a set of size 3 (the set is \(\{1,2,3\}\) for \(S_3\), the 3 vertices of an equilateral triangle for \(D_3\), and the mod 2 vectors \((\binom{0}{1}), (\binom{1}{0})\), and \((\binom{1}{1})\) for \(\text{GL}_2(\mathbb{Z}/(2))\)).

We will show that the examples above exhibit the general situation insofar as groups of order 4 and 6 are concerned: isomorphic to \(\mathbb{Z}/(4)\) or \(\mathbb{Z}/(2) \times \mathbb{Z}/(2)\) for order 4, and isomorphic to \(\mathbb{Z}/(6)\) or \(S_3\) for order 6. That means there are essentially only two types of 4-fold symmetries and essentially only two types of 6-fold symmetries.

2. Groups of Order 4

Theorem 2.1. Any group of order 4 is isomorphic to \(\mathbb{Z}/(4)\) or \(\mathbb{Z}/(2) \times \mathbb{Z}/(2)\).

Proof. Let \(G\) have order 4. Any element of \(G\) has order 1, 2, or 4. If \(G\) has an element of order 4 then \(G\) is cyclic, so \(G \cong \mathbb{Z}/(4)\) since cyclic groups of the same order are isomorphic.

(Explicitly, if \(G = (g)\) then an isomorphism \(\mathbb{Z}/(4) \rightarrow G\) is \(a \mod 4 \mapsto g^a\).)

Assume \(G\) is not cyclic. Then every nonidentity element of \(G\) has order 2, so \(g^2 = e\) for every \(g \in G\). Pick two nonidentity elements \(x\) and \(y\) in \(G\), so \(x^2 = e\), \(y^2 = e\), and \((xy)^2 = e\). That implies \(xy = (xy)^{-1} = y^{-1}x^{-1} = yx\), so \(x\) and \(y\) commute. This argument shows that any group in which all nonidentity elements have order 2 is abelian.

The roles of \(x\) and \(y\) in \(G\) resemble \((1,0)\) and \((0,1)\) in \(\mathbb{Z}/(2) \times \mathbb{Z}/(2)\), suggesting the function \(f: \mathbb{Z}/(2) \times \mathbb{Z}/(2) \rightarrow G\) where \(f(a \mod 2, b \mod 2) = x^ay^b\). Explicitly, this function is

\begin{equation}
(2.1) \quad (0,0) \mapsto 1, \quad (1,0) \mapsto x, \quad (0,1) \mapsto y, \quad (1,1) \mapsto xy.
\end{equation}

To see that \(f\) is a homomorphism, we compute

\[f(\overline{a}, \overline{b})f(\overline{c}, \overline{d}) = (x^a y^b)(x^c y^d) = x^a y^b x^c y^d = x^{a+c} y^{b+d} = f(\overline{a+c}, \overline{b+d}). \]

The function \(f\) is a bijection by (2.1), so \(f\) is an isomorphism. \(\square\)

\(^1\)There is an infinite group generated by two elements of order 2 that do not commute.
3. Groups of Order 6

To describe groups of order 6, we begin with a lemma about elements of order 2.

Lemma 3.1. If a group has even order then it contains an element of order 2.

Proof. Call the group G. Let us pair together each $g \in G$ with its inverse g^{-1}. The set \{ g,g^{-1} \} has two elements unless $g = g^{-1}$, meaning $g^2 = e$. Therefore

$$|G| = 2|\{ \text{pairs } \{g,g^{-1}\} : g \neq g^{-1}\}| + |\{g \in G : g = g^{-1}\}|.$$

The left side is even by hypothesis, and the first term on the right side is even from the factor of 2. Therefore $|\{g \in G : g^2 = e\}|$ is even. This count is positive, since $g = e$ is one possibility where $g^2 = e$. Since this count is even, there must be at least one more g, so some $g \neq e$ in G satisfies $g^2 = e$, which implies g has order 2. \hfill \Box

Theorem 3.2. A group of order 6 is isomorphic to $\mathbb{Z}/(6)$ or to S_3.

Proof. Let $|G| = 6$ have order 6. By Lemma 3.1, G contains an element x of order 2.

Case 1: G is abelian.

Suppose all nonidentity elements have order 2. Choose y other than x and e, so $y^2 = e$. Since G is abelian, \{ e,x,y,xy \} is a subgroup of G, but this violates Lagrange’s theorem since 4 doesn’t divide 6. Therefore some element of G has order 3 or 6.

If G has an element of order 6 then G is cyclic and $G \cong \mathbb{Z}/(6)$. If some $z \in G$ has order 3 then xz has order 6 since $(xz)^6 = e$, $(xz)^2 = x^2z^2 = z^2 \neq e$, and $(xz)^3 = x^3z^3 = x \neq e$. Thus again G is cyclic, so $G \cong \mathbb{Z}/(6)$.

Case 2: G is nonabelian.

Step 1: G has an element of order 2 and an element of order 3.

No element has order 6, so orders of elements are 1, 2, or 3. If every nonidentity element had order 2, G would be abelian (see pf. of Theorem 2.1), so G has an element of order 3.

Step 2: Make G look like S_3.

By Step 1, in G there are elements x of order 2 and y of order 3. Let $H = \langle x \rangle = \{e,x\}$, so H has 3 left cosets. Since $y \notin H$ and $y^2 \notin H$, the left cosets of H are H, yH, and y^2H.

For each $g \in G$, let ℓ_g: $\{H,yH,y^2H\} \rightarrow \{H,yH,y^2H\}$ by $\ell_g(cH) = gcH$ for left cosets cH. Each ℓ_g is a permutation since it has inverse $\ell_{g^{-1}}$. Labeling H, yH, and y^2H as 1,2,3, the permutations of $\{H,yH,y^2H\}$ are placed inside S_3, and thus we can view ℓ_g in S_3.\footnote{The specific way we view ℓ_g in S_3 depends on the way we label the left cosets of H as 1, 2, and 3.}

The function $G \rightarrow S_3$ where $g \mapsto \ell_g$ is a homomorphism, because multiplication in G goes over to composition of permutations: $\ell_g \circ \ell_{g'} = \ell_{gg'}$ since for any left coset cH

$$(\ell_g \circ \ell_{g'})(cH) = g(g'H) = gg'H = (gg')cH = \ell_{gg'}(cH).$$

The homomorphism $G \rightarrow S_3$ by $g \mapsto \ell_g$ is between finite groups of equal size, so to prove it’s an isomorphism it suffices to show it’s injective or surjective. We’ll prove it’s surjective.

The permutation ℓ_y cyclically permutes H, yH, and y^2H: H to yH, yH to y^2H, and y^2H to $y^3H = H$, so the image of $G \rightarrow S_3$ contains a 3-cycle. Let’s check ℓ_x transposes yH and y^2H. Since $x \in H$, $\ell_x(H) = xH = H$. Since ℓ_x is a permutation, if $\ell_x(yH) \neq y^2H$ then $\ell_x(yH) = yH$, so $xyH = yH$: \{ xy,xyx \} = \{ y,yx \}. Thus xy is y or yx. If $xy = y$ then $x = e$ (false) and if $yx = xy$ then x and y commute, so xy has order 6 (false: G is nonabelian). Thus $\ell_x(yH) = y^2H$ and $\ell_x(y^2H) = yH$: ℓ_x is a transposition in S_3. The image of $G \rightarrow S_3$ is a subgroup of S_3 containing a transposition and element of order 3, so it has order 6 by Lagrange. Thus $G \cong S_3$. \hfill \Box
The fact that, up to isomorphism, there are two groups of order 4 and two groups of order 6, goes back to Cayley’s 1854 paper on groups [1], which was the first work on abstract groups; previously groups had been considered only as groups of permutations. Almost 25 years later, Cayley wrote in [2] “The general problem is to find all the groups of a given order \(n \),”\(^3\) and then proceeded to claim there are three groups of order 6: see Figure 1. From Cayley’s examples it appears he thought \(\mathbb{Z}/(6) \) and \(\mathbb{Z}/(2) \times \mathbb{Z}/(3) \) are not isomorphic, which confused form with structure.

The general problem is to find all the groups of a given order \(n \); thus if \(n = 2 \), the only group is 1, \(a (a^2 = 1) \); \(n = 3 \), the only group is 1, \(a, a^2 \) \((a^3 = 1) \); \(n = 4 \), the groups are 1, \(a, a^2, a^3 (a^4 = 1) \), and 1, \(a, \beta, a\beta (a^2 = 1, \beta^2 = 1, a\beta = \beta a) \); * \(n = 6 \), there are three groups, a group 1, \(a, a^2, a^3, a^4, a^5, (a^6 = 1) \); and two groups 1, \(\beta, \beta^2, a, a\beta, a\beta^2 (a^2 = 1, \beta^2 = 1) \), viz: in the first of these \(a\beta^2 = \beta a \); while in the other of them (that mentioned above) we have \(a\beta = \beta a \), \(a\beta^2 = \beta a \).

*If \(n = 5 \), the only group is 1, \(a, a^2, a^3, a^4 (a^5 = 1) \). W.E.S.

Figure 1. Cayley’s error in [2]: three groups of order 6.

References

\(^3\)In the Online Encyclopedia of Integer Sequences, the very first sequence https://oeis.org/A000001 is the count of finite groups of each small order up to isomorphism, starting with 0 groups of order 0 and then continuing with 1, 1, 2, 1, 2, 1, 5, 2, 2, …