GROUPS OF ORDER 12

KEITH CONRAD

The groups of order 12, up to isomorphism, were first determined in the 1880s: Kempe [3, pp. 37–43] gave a list of 5 groups and Cayley [1] pointed out a few years later that one of Kempe's groups did not make sense and that a specific group was missed.

We will use semidirect products to describe all 5 groups of order 12 up to isomorphism. Two are abelian and the others are A_4 , D_6 , and a less familiar group.

Theorem 1. Every group of order 12 is a semidirect product of a group of order 3 and a group of order 4.

Proof. Let $|G| = 12 = 2^2 \cdot 3$. A 2-Sylow subgroup has order 4 and a 3-Sylow subgroup has order 3. We will start by showing G has a normal 2-Sylow subgroup or a normal 3-Sylow subgroup: $n_2 = 1$ or $n_3 = 1$. From the Sylow theorems,

$$n_2 \mid 3, \quad n_2 \equiv 1 \mod 2, \quad n_3 \mid 4, \quad n_3 \equiv 1 \mod 3.$$

Therefore $n_2 = 1$ or 3 and $n_3 = 1$ or 4.

To show $n_2 = 1$ or $n_3 = 1$, assume $n_3 \neq 1$. Then $n_3 = 4$. Let's count elements of order 3. Since each 3-Sylow subgroup has order 3, different 3-Sylow subgroups intersect trivially. Each of the 3-Sylow subgroups of G contains two elements of order 3, so the number of elements in G of order 3 is $2n_3 = 8$. This leaves us with 12 - 8 = 4 elements in G not of order 3. A 2-Sylow subgroup has order 4 and contains no elements of order 3, so one 2-Sylow subgroup must account for the remaining 4 elements of G. Thus $n_2 = 1$ if $n_3 \neq 1$.

Next we show G is a semidirect product of a 2-Sylow and 3-Sylow subgroup. Let P_2 be a 2-Sylow subgroup and P_3 be a 3-Sylow subgroup of G. Since P_2 and P_3 have relatively prime orders, $P_2 \cap P_3 = \{1\}$ and the set $P_2P_3 = \{xy : x \in P_2, y \in P_3\}$ has size $|P_2||P_3|/|P_2 \cap P_3| = 12 = |G|$, so $G = P_2P_3$. Since P_2 or P_3 is normal in G, G is a semidirect product of P_2 and P_3 : $G \cong P_2 \rtimes P_3$ if $P_2 \triangleleft G$ and $G \cong P_3 \rtimes P_2$ if $P_3 \triangleleft G$.

Groups of order 4 are isomorphic to $\mathbb{Z}/(4)$ or $(\mathbb{Z}/(2))^2$, and groups of order 3 are isomorphic to $\mathbb{Z}/(3)$, so every group of order 12 is a semidirect product of the form

$${\bf Z}/(4) \rtimes {\bf Z}/(3), \quad ({\bf Z}/(2))^2 \rtimes {\bf Z}/(3), \quad {\bf Z}/(3) \rtimes {\bf Z}/(4), \quad {\bf Z}/(3) \rtimes ({\bf Z}/(2))^2.$$

To determine these up to isomorphism, we work out how $\mathbf{Z}/(4)$ and $(\mathbf{Z}/(2))^2$ act by automorphisms on $\mathbf{Z}/(3)$ and how $\mathbf{Z}/(3)$ acts by automorphisms on $\mathbf{Z}/(4)$ and $(\mathbf{Z}/(2))^2$.

Theorem 2. Every group of order 12 is isomorphic to one of $\mathbb{Z}/(12)$, $(\mathbb{Z}/(2))^2 \times \mathbb{Z}/(3)$, A_4 , D_6 , or the nontrivial semidirect product $\mathbb{Z}/(3) \rtimes \mathbb{Z}/(4)$.

We say the nontrivial semidirect product $\mathbf{Z}/(3) \rtimes \mathbf{Z}/(4)$ since there is only one nontrivial homomorphism $\mathbf{Z}/(4) \to \operatorname{Aut}(\mathbf{Z}/(3)) = (\mathbf{Z}/(3))^{\times}$, namely $k \mod 4 \mapsto (-1)^k \mod 3$. The

¹The notation $P_2 \rtimes P_3$ could refer to more than one group since there could be different actions $P_3 \to \operatorname{Aut}(P_2)$ leading to nonisomorphic semidirect products.

corresponding group $\mathbb{Z}/(3) \rtimes \mathbb{Z}/(4)$ has group law

(1)
$$(a,b)(c,d) = (a+(-1)^b c, b+d).$$

This is generated by x=(1,0) and y=(0,1) with $x^3=1, y^4=1$, and $yxy^{-1}=x^{-1}$. A model for this group inside $\mathrm{SL}_2(\mathbf{C})$ has $x=\begin{pmatrix}\omega&0\\0&\overline{\omega}\end{pmatrix}$ with $\omega=e^{2\pi i/3}$ and $y=\begin{pmatrix}0&i\\i&0\end{pmatrix}$.

In the proof of Theorem 2, we will appeal to an isomorphism property of semidirect products: for each semidirect product $H \rtimes_{\varphi} K$ and automorphism $f \colon K \to K$, $H \rtimes_{\varphi} K \cong H \rtimes_{\varphi \circ f} K$. This says that precomposing an action of K on H by automorphisms (that's φ) with an automorphism of K produces an isomorphic semidirect product of H and K.

Proof. Here are automorphisms of possible Sylow subgroups: $\operatorname{Aut}(\mathbf{Z}/(4)) \cong (\mathbf{Z}/(4))^{\times} = \{\pm 1 \mod 4\}, \operatorname{Aut}((\mathbf{Z}/(2))^2) \cong \operatorname{GL}_2(\mathbf{Z}/(2)), \text{ and } \operatorname{Aut}(\mathbf{Z}/(3)) \cong (\mathbf{Z}/(3))^{\times} = \{\pm 1 \mod 3\}.$ Case 1: $n_2 = 1$, $P_2 \cong \mathbf{Z}/(4)$.

The 2-Sylow subgroup is normal, so the 3-Sylow subgroup acts on it. Our group is a semidirect product $\mathbf{Z}/(4) \rtimes \mathbf{Z}/(3)$, for which the action of the second group on the first is through a homomorphism $\varphi \colon \mathbf{Z}/(3) \to (\mathbf{Z}/(4))^{\times}$. The domain has order 3 and the target has order 2, so this homomorphism is trivial, and thus the semidirect product must be trivial: it's the direct product

$$\mathbf{Z}/(4) \times \mathbf{Z}/(3),$$

which is cyclic of order 12 (generator (1,1)).

Case 2:
$$n_2 = 1$$
, $P_2 \cong \mathbf{Z}/(2) \times \mathbf{Z}/(2)$.

We need to understand all homomorphisms $\varphi \colon \mathbf{Z}/(3) \to \mathrm{GL}_2(\mathbf{Z}/(2))$. The trivial homomorphism leads to the direct product

$$({\bf Z}/(2))^2 \times {\bf Z}/(3)$$
.

What about nontrivial homomorphisms $\varphi \colon \mathbf{Z}/(3) \to \operatorname{GL}_2(\mathbf{Z}/(2))$? Inside $\operatorname{GL}_2(\mathbf{Z}/(2))$, which has order 6 (it's isomorphic to S_3), there is one subgroup of order 3: $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\}$. A nontrivial homomorphism $\varphi \colon \mathbf{Z}/(3) \to \operatorname{GL}_2(\mathbf{Z}/(2))$ is determined by where it sends 1 mod 3, which must go to a solution of $A^3 = I_2$; then $\varphi(k \mod 3) = A^k$ in general. For φ to be nontrivial, A needs to have order 3, and there are two choices for that. The two matrices of order 3 in $\operatorname{GL}_2(\mathbf{Z}/(2))$ are inverses. Call one of them A, making the other A^{-1} . The resulting homomorphisms $\mathbf{Z}/(3) \to \operatorname{GL}_2(\mathbf{Z}/(2))$ are $\varphi(k \mod 3) = A^k$ and $\psi(k \mod 3) = A^{-k}$, which are related to each other by composition with inversion, but watch out: inversion is not an automorphism of $\operatorname{GL}_2(\mathbf{Z}/(2))$. It is an automorphism of $\mathbf{Z}/(3)$, where it's negation. So precomposing φ with negation on $\mathbf{Z}/(3)$ turns φ into $\psi \colon \psi = \varphi \circ f$, where f(x) = -x on $\mathbf{Z}/(3)$. Therefore the two nontrivial homomorphisms $\mathbf{Z}/(3) \to \operatorname{GL}_2(\mathbf{Z}/(2))$ are linked through precomposition with an automorphism of $\mathbf{Z}/(3)$, so φ and ψ define isomorphic semidirect products. Thus up to isomorphism, there is one nontrivial semidirect product

$$(\mathbf{Z}/(2))^2 \rtimes \mathbf{Z}/(3).$$

Since up to isomorphism one group of order 12 has $n_2 = 1$ and a noncyclic 2-Sylow subgroup, and A_4 also fits this description, this semidirect product is isomorphic to A_4 .

Now assume $n_2 \neq 1$, so $n_2 = 3$ and $n_3 = 1$. Since $n_2 > 1$, the group is nonabelian, so it's a nontrivial semidirect product (a direct product of abelian groups is abelian).

Case 3:
$$n_2 = 3$$
, $n_3 = 1$, and $P_2 \cong \mathbb{Z}/(4)$.

Our group looks like $\mathbb{Z}/(3) \rtimes \mathbb{Z}/(4)$, built from a nontrivial homomorphism $\varphi \colon \mathbb{Z}/(4) \to \operatorname{Aut}(\mathbb{Z}/(3)) = (\mathbb{Z}/(3))^{\times}$ There is only one choice of φ : it has to send 1 mod 4 to -1 mod

3, which determines everything else: $\varphi(c \mod 4) = (-1)^c \mod 3$. Therefore there is one nontrivial semidirect product $\mathbf{Z}/(3) \rtimes \mathbf{Z}/(4)$ and its group operation is given by (1).

Case 4:
$$n_2 = 3$$
, $n_3 = 1$, and $P_2 \cong \mathbf{Z}/(2) \times \mathbf{Z}/(2)$.

Case 4: $n_2 = 3$, $n_3 = 1$, and $P_2 \cong \mathbf{Z}/(2) \times \mathbf{Z}/(2)$. The group is $\mathbf{Z}/(3) \times (\mathbf{Z}/(2))^2$ for a nontrivial homomorphism $\varphi \colon (\mathbf{Z}/(2))^2 \to (\mathbf{Z}/(3))^{\times}$. The group $(\mathbf{Z}/(2))^2$ has a pair of generators (1,0) and (0,1), and $\varphi(a,b) = \varphi(1,0)^a \varphi(0,1)^b$. where $\varphi(1,0)$ and $\varphi(0,1)$ are ± 1 . Conversely, this formula for φ defines a homomorphism since a and b are in $\mathbb{Z}/(2)$ and exponents on ± 1 only matter mod 2. For φ to be nontrivial means $\varphi(1,0)$ and $\varphi(0,1)$ are not both 1, so there are three choices of $\varphi: (\mathbf{Z}/(2))^2 \to$ $({\bf Z}/(3))^{\times}$:

$$\varphi(a,b) = (-1)^a$$
, $\varphi(a,b) = (-1)^b$, $\varphi(a,b) = (-1)^a (-1)^b = (-1)^{a+b}$.

This does not mean the three corresponding semidirect products $\mathbb{Z}/(3) \rtimes_{\varphi} (\mathbb{Z}/(2))^2$ are nonisomorphic. In fact, the above three choices of φ lead to isomorphic semidirect products: precomposing the first φ with the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ produces the second φ , and precomposing the first φ with the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ produces the third φ . Therefore the three nontrivial semidirect products $\mathbb{Z}/(3) \times (\mathbb{Z}/(2))^2$ are isomorphic, so all groups of order 12 with $n_2 = 3$ (equivalently, all nonabelian groups of order 12 with $n_3 = 1$) and 2-Sylow subgroup isomorphic to $(\mathbf{Z}/(2))^2$ are isomorphic. One such group is D_6 , with normal 3-Sylow subgroup $\{1, r^2, r^4\}$.

For a group of order 12, Table 1 lists structural properties to know it up to isomorphism. (That $n_3 = 4$ implies $G \cong A_4$ is because G acting by conjugation on its 4 3-Sylow subgroups is an isomorphism of G with A_4 .)

Group	Abelian?	n_2	n_3	2-Sylow
${\bf Z}/(12)$	Yes	1	1	cyclic
$({\bf Z}/(2))^2 \times {\bf Z}/(3)$	Yes	1	1	noncyclic
A_4	No	1	4	noncyclic
D_6	No	3	1	noncyclic
$\mathbf{Z}/(3) \rtimes \mathbf{Z}/(4)$	No	3	1	cyclic

Table 1. Structural properties of groups of order 12.

For example, here are five groups of order 12:

(2)
$$\mathbf{Z}/(2) \times \mathbf{Z}/(6)$$
, $\mathbf{Z}/(2) \times S_3$, $\mathrm{PSL}_2(\mathbf{F}_3)$, $\mathrm{Aff}(\mathbf{Z}/(6))$, $\mathrm{Aff}(\mathbf{F}_4)$.

The first group is abelian with noncyclic 2-Sylow subgroup, so it's isomorphic to $(\mathbf{Z}/(2))^2 \times$ $\mathbf{Z}/(3)$ (or use the Chinese remainder theorem). The remaining groups are nonabelian. Since $\mathbb{Z}/(2) \times S_3$ has $n_3 = 1$ and a noncyclic 2-Sylow subgroup, $\mathbb{Z}/(2) \times S_3 \cong D_6$. The group $PSL_2(\mathbf{F}_3)$ has $n_3 > 1$, so $PSL_2(\mathbf{F}_3) \cong A_4$. The group $Aff(\mathbf{Z}/(6))$ has $n_2 > 1$ and noncyclic 2-Sylow subgroup, so $Aff(\mathbf{Z}/(6)) \cong D_6$. Finally, $Aff(\mathbf{F}_4)$ has $n_3 > 1$, so $Aff(\mathbf{F}_4) \cong A_4$.

Another way to distinguish between groups of order 12 is by counting elements of a certain order. From Table 2 below, these groups can be distinguished by counting elements of order 2 except for $(\mathbf{Z}/(2))^2 \times \mathbf{Z}/(4)$ and A_4 , where one is abelian and the other isn't.

For example, among the groups in (2), $\mathbf{Z}/(2) \times \mathbf{Z}/(6)$ is abelian with three elements of order 2, so it is isomorphic to $(\mathbf{Z}/(2))^2 \times \mathbf{Z}/(3)$. Since $\mathbf{Z}/(2) \times S_3$ has more than 3 elements of order 2, it is isomorphic to D_6 . Since $PSL_2(\mathbf{F}_3)$ has more than 2 elements of order 3, it is isomorphic to A_4 . Since Aff($\mathbb{Z}/(6)$) has more than 3 elements of order 2, it is isomorphic to D_6 . Since Aff(\mathbf{F}_4) has has more than 2 elements of order 3, it is isomorphic to A_4 .

Group	Order 1	Order 2	Order 3	Order 4	Order 6	Order 12
${\bf Z}/(12)$	1	1	2	2	2	4
$({\bf Z}/(2))^2 \times {\bf Z}/(3)$	1	3	2	0	6	0
A_4	1	3	8	0	0	0
D_6	1	7	2	0	2	0
$\mathbf{Z}/(3) \rtimes \mathbf{Z}/(4)$	1	1	2	6	2	0

Table 2. Counting orders of elements in groups of order 12.

In books where groups of order 12 are classified, $\mathbf{Z}/(3) \times \mathbf{Z}/(4)$ is often written as T, but it is not given a name matching that label.² Should it be called the "obscure group of order 12"? Actually, this group is in a standard family of finite groups: the dicyclic groups, also called the binary dihedral groups. They are nonabelian with order 4n $(n \geq 2)$ and each contains a unique element of order 2.³ In $\mathbf{Z}/(3) \times \mathbf{Z}/(4)$, its unique element of order 2 is (0,2). The dicyclic group of order 8 is Q_8 , and more generally the dicyclic group of order 2^m is the generalized quaternion group Q_{2^m} .

We said at the start that Kempe's list of groups of order 12 has a mistake. Kempe wrote each of his 5 proposed groups in tabular form (as a list of 12 permutations in S_{12}) and called them T_1 , T_2 , T_3 , T_4 , and T_5 . It turns out that $T_1 \cong \mathbf{Z}/(12)$, $T_2 \cong (\mathbf{Z}/(2))^2 \times \mathbf{Z}/(3)$, $T_3 \cong D_6$, and $T_5 \cong A_4$, but T_4 , which is shown in Table 3, is not a group and Kempe's list of groups of order 12 did not include a group isomorphic to $\mathbf{Z}/(3) \rtimes \mathbf{Z}/(4)$.

a	b	c	d	e	f	g	h	i	j	k	l
b	a	d	c	j	i	l	k	f	e	h	g
c	d	b	a	g	h	f	e	k	l	j	i
d	c	a	b	l	k	i	j	h	g	e	f
e	f	g	h	i	j	k	l	a	b	c	d
f	e	h	g	b	a	d	c	j	i	l	k
g	h	f	e	k	l	j	i	c	d	b	a
h	g	e	f	d	c	a	b	l	k	i	j
i	j	k	l	a	b	c	d	e	f	g	h
j	i	l	k	f	e	h	g	b	a	d	c
k	l	j	i	c	d	b	a	g	h	f	e
l	k	i	j	h	g	e	f	d	c	a	b
Тав	LE	3. l	Ken	npe	's fa	lse	gro	up (of o	rde	r 12.

Why are the permutations in Table 3 not a subgroup of S_{12} ? Each row is a permutation of a, b, \ldots, k, l and two of the rows are 12-cycles (the 7th and 11th rows) but no row has order 6 (the square of a 12-cycle has order 6) and most rows that have order greater than 2 do not have their inverse in the table (e.g., rows 3 and 4). Perhaps Kempe's T_j -notation is the origin of the notation T for the obscure group of order 12.

²See [2, pp. 98–99], [4, pp. 178–179, 251-252], and [5, pp. 84–85, 171]. A tetrahedron has 12 orientation-preserving symmetries, but that group of symmetries is isomorphic to A_4 , not to T.

³We can allow n=1, using the cyclic group of order 4, but that is abelian.

References

- [1] A. Cayley, "On the Theory of Groups," Amer. J. Math. 11 (1889), 139-157. URL https://www.jstor.org/stable/pdf/2369415.pdf.
- $[2]\,$ T. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- [3] A. Kempe, "Memoir on the Theory of Mathematical Form," *Phil. Trans.* 177 (1886), 1–70. URL https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1886.0002.
- [4] S. Roman, Fundamentals of Group Theory: An Advanced Approach, Birkhäuser/Springer, New York, 2012.
- [5] J. Rotman, An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995.