GROUPS OF ORDER 12

KEITH CONRAD

The groups of order 12, up to isomorphism, were first determined in the 1880s: Kempe [3, pp. 37-43] gave a list of 5 groups and Cayley [1] pointed out a few years later that one of Kempe's groups did not make sense and that a specific group was missed.

We will use semidirect products to describe all 5 groups of order 12 up to isomorphism. Two are abelian and the others are A_{4}, D_{6}, and a less familiar group.

Theorem 1. Every group of order 12 is a semidirect product of a group of order 3 and a group of order 4.

Proof. Let $|G|=12=2^{2} \cdot 3$. A 2-Sylow subgroup has order 4 and a 3-Sylow subgroup has order 3. We will start by showing G has a normal 2-Sylow subgroup or a normal 3-Sylow subgroup: $n_{2}=1$ or $n_{3}=1$. From the Sylow theorems,

$$
n_{2}\left|3, \quad n_{2} \equiv 1 \bmod 2, \quad n_{3}\right| 4, \quad n_{3} \equiv 1 \bmod 3
$$

Therefore $n_{2}=1$ or 3 and $n_{3}=1$ or 4 .
To show $n_{2}=1$ or $n_{3}=1$, assume $n_{3} \neq 1$. Then $n_{3}=4$. Let's count elements of order 3. Since each 3 -Sylow subgroup has order 3, different 3-Sylow subgroups intersect trivially. Each of the 3-Sylow subgroups of G contains two elements of order 3, so the number of elements in G of order 3 is $2 n_{3}=8$. This leaves us with $12-8=4$ elements in G not of order 3. A 2-Sylow subgroup has order 4 and contains no elements of order 3, so one 2-Sylow subgroup must account for the remaining 4 elements of G. Thus $n_{2}=1$ if $n_{3} \neq 1$.

Next we show G is a semidirect product of a 2-Sylow and 3-Sylow subgroup. Let P_{2} be a 2-Sylow subgroup and P_{3} be a 3-Sylow subgroup of G. Since P_{2} and P_{3} have relatively prime orders, $P_{2} \cap P_{3}=\{1\}$ and the set $P_{2} P_{3}=\left\{x y: x \in P_{2}, y \in P_{3}\right\}$ has size $\left|P_{2}\right|\left|P_{3}\right| /\left|P_{2} \cap P_{3}\right|=$ $12=|G|$, so $G=P_{2} P_{3}$. Since P_{2} or P_{3} is normal in G, G is a semidirect product of P_{2} and $P_{3}: G \cong P_{2} \rtimes P_{3}$ if $P_{2} \triangleleft G$ and $G \cong P_{3} \rtimes P_{2}$ if $P_{3} \triangleleft G$. ${ }^{1}$

Groups of order 4 are isomorphic to $\mathbf{Z} /(4)$ or $(\mathbf{Z} /(2))^{2}$, and groups of order 3 are isomorphic to $\mathbf{Z} /(3)$, so every group of order 12 is a semidirect product of the form

$$
\mathbf{Z} /(4) \rtimes \mathbf{Z} /(3), \quad(\mathbf{Z} /(2))^{2} \rtimes \mathbf{Z} /(3), \quad \mathbf{Z} /(3) \rtimes \mathbf{Z} /(4), \quad \mathbf{Z} /(3) \rtimes(\mathbf{Z} /(2))^{2} .
$$

To determine these up to isomorphism, we work out how $\mathbf{Z} /(4)$ and $(\mathbf{Z} /(2))^{2}$ act by automorphisms on $\mathbf{Z} /(3)$ and how $\mathbf{Z} /(3)$ acts by automorphisms on $\mathbf{Z} /(4)$ and $(\mathbf{Z} /(2))^{2}$.

Theorem 2. Every group of order 12 is isomorphic to one of $\mathbf{Z} /(12)$, $(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)$, A_{4}, D_{6}, or the nontrivial semidirect product $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$.

We say the nontrivial semidirect product $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$ since there is only one nontrivial homomorphism $\mathbf{Z} /(4) \rightarrow \operatorname{Aut}(\mathbf{Z} /(3))=(\mathbf{Z} /(3))^{\times}$, namely $k \bmod 4 \mapsto(-1)^{k} \bmod 3$. The

[^0]corresponding group $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$ has group law
\[

$$
\begin{equation*}
(a, b)(c, d)=\left(a+(-1)^{b} c, b+d\right) \tag{1}
\end{equation*}
$$

\]

This is generated by $x=(1,0)$ and $y=(0,1)$ with $x^{3}=1, y^{4}=1$, and $y x y^{-1}=x^{-1}$. A model for this group inside $\mathrm{SL}_{2}(\mathbf{C})$ has $x=\left(\begin{array}{c}\omega \\ 0 \\ 0\end{array}\right)$ with $\omega=e^{2 \pi i / 3}$ and $y=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$.

In the proof of Theorem 2, we will appeal to an isomorphism property of semidirect products: for each semidirect product $H \rtimes_{\varphi} K$ and automorphism $f: K \rightarrow K, H \rtimes_{\varphi} K \cong$ $H \rtimes_{\varphi \circ f} K$. This says that precomposing an action of K on H by automorphisms (that's φ) with an automorphism of K produces an isomorphic semidirect product of H and K.
Proof. Here are automorphisms of possible Sylow subgroups: $\operatorname{Aut}(\mathbf{Z} /(4)) \cong(\mathbf{Z} /(4))^{\times}=$ $\{ \pm 1 \bmod 4\}, \operatorname{Aut}\left((\mathbf{Z} /(2))^{2}\right) \cong \mathrm{GL}_{2}(\mathbf{Z} /(2))$, and $\operatorname{Aut}(\mathbf{Z} /(3)) \cong(\mathbf{Z} /(3))^{\times}=\{ \pm 1 \bmod 3\}$.

Case 1: $n_{2}=1, P_{2} \cong \mathbf{Z} /(4)$.
The 2-Sylow subgroup is normal, so the 3 -Sylow subgroup acts on it. Our group is a semidirect product $\mathbf{Z} /(4) \rtimes \mathbf{Z} /(3)$, for which the action of the second group on the first is through a homomorphism $\varphi: \mathbf{Z} /(3) \rightarrow(\mathbf{Z} /(4))^{\times}$. The domain has order 3 and the target has order 2, so this homomorphism is trivial, and thus the semidirect product must be trivial: it's the direct product

$$
\mathbf{Z} /(4) \times \mathbf{Z} /(3),
$$

which is cyclic of order 12 (generator $(1,1)$).
Case 2: $n_{2}=1, P_{2} \cong \mathbf{Z} /(2) \times \mathbf{Z} /(2)$.
We need to understand all homomorphisms $\varphi: \mathbf{Z} /(3) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} /(2))$. The trivial homomorphism leads to the direct product

$$
(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)
$$

What about nontrivial homomorphisms $\varphi: \mathbf{Z} /(3) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} /(2))$? Inside $\mathrm{GL}_{2}(\mathbf{Z} /(2))$, which has order 6 (it's isomorphic to S_{3}), there is one subgroup of order 3: $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right\}$. A nontrivial homomorphism $\varphi: \mathbf{Z} /(3) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} /(2))$ is determined by where it sends $1 \bmod 3$, which must go to a solution of $A^{3}=I_{2}$; then $\varphi(k \bmod 3)=A^{k}$ in general. For φ to be nontrivial, A needs to have order 3, and there are two choices for that. The two matrices of order 3 in $\mathrm{GL}_{2}(\mathbf{Z} /(2))$ are inverses. Call one of them A, making the other A^{-1}. The resulting homomorphisms $\mathbf{Z} /(3) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} /(2))$ are $\varphi(k \bmod 3)=A^{k}$ and $\psi(k \bmod 3)=A^{-k}$, which are related to each other by composition with inversion, but watch out: inversion is not an automorphism of $\mathrm{GL}_{2}(\mathbf{Z} /(2))$. It is an automorphism of $\mathbf{Z} /(3)$, where it's negation. So precomposing φ with negation on $\mathbf{Z} /(3)$ turns φ into $\psi: \psi=\varphi \circ f$, where $f(x)=-x$ on $\mathbf{Z} /(3)$. Therefore the two nontrivial homomorphisms $\mathbf{Z} /(3) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} /(2))$ are linked through precomposition with an automorphism of $\mathbf{Z} /(3)$, so φ and ψ define isomorphic semidirect products. Thus up to isomorphism, there is one nontrivial semidirect product

$$
(\mathbf{Z} /(2))^{2} \rtimes \mathbf{Z} /(3) .
$$

Since up to isomorphism one group of order 12 has $n_{2}=1$ and a noncyclic 2-Sylow subgroup, and A_{4} also fits this description, this semidirect product is isomorphic to A_{4}.

Now assume $n_{2} \neq 1$, so $n_{2}=3$ and $n_{3}=1$. Since $n_{2}>1$, the group is nonabelian, so it's a nontrivial semidirect product (a direct product of abelian groups is abelian).
Case 3: $n_{2}=3, n_{3}=1$, and $P_{2} \cong \mathbf{Z} /(4)$.
Our group looks like $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$, built from a nontrivial homomorphism $\varphi: \mathbf{Z} /(4) \rightarrow$ $\operatorname{Aut}(\mathbf{Z} /(3))=(\mathbf{Z} /(3))^{\times}$There is only one choice of φ : it has to send $1 \bmod 4$ to $-1 \bmod$

3, which determines everything else: $\varphi(c \bmod 4)=(-1)^{c} \bmod 3$. Therefore there is one nontrivial semidirect product $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$ and its group operation is given by (1).

Case 4: $n_{2}=3, n_{3}=1$, and $P_{2} \cong \mathbf{Z} /(2) \times \mathbf{Z} /(2)$.
The group is $\mathbf{Z} /(3) \rtimes(\mathbf{Z} /(2))^{2}$ for a nontrivial homomorphism $\varphi:(\mathbf{Z} /(2))^{2} \rightarrow(\mathbf{Z} /(3))^{\times}$. The group $(\mathbf{Z} /(2))^{2}$ has a pair of generators $(1,0)$ and $(0,1)$, and $\varphi(a, b)=\varphi(1,0)^{a} \varphi(0,1)^{b}$, where $\varphi(1,0)$ and $\varphi(0,1)$ are ± 1. Conversely, this formula for φ defines a homomorphism since a and b are in $\mathbf{Z} /(2)$ and exponents on ± 1 only matter $\bmod 2$. For φ to be nontrivial means $\varphi(1,0)$ and $\varphi(0,1)$ are not both 1 , so there are three choices of $\varphi:(\mathbf{Z} /(2))^{2} \rightarrow$ $(\mathbf{Z} /(3))^{\times}$:

$$
\varphi(a, b)=(-1)^{a}, \quad \varphi(a, b)=(-1)^{b}, \quad \varphi(a, b)=(-1)^{a}(-1)^{b}=(-1)^{a+b} .
$$

This does not mean the three corresponding semidirect products $\mathbf{Z} /(3) \rtimes_{\varphi}(\mathbf{Z} /(2))^{2}$ are nonisomorphic. In fact, the above three choices of φ lead to isomorphic semidirect products: precomposing the first φ with the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ produces the second φ, and precomposing the first φ with the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0\end{array}\right)$ produces the third φ. Therefore the three nontrivial semidirect products $\mathbf{Z} /(3) \rtimes(\mathbf{Z} /(2))^{2}$ are isomorphic, so all groups of order 12 with $n_{2}=3$ (equivalently, all nonabelian groups of order 12 with $n_{3}=1$) and 2-Sylow subgroup isomorphic to $(\mathbf{Z} /(2))^{2}$ are isomorphic. One such group is D_{6}, with normal 3-Sylow subgroup $\left\{1, r^{2}, r^{4}\right\}$.

For a group of order 12, Table 1 lists structural properties to know it up to isomorphism. (That $n_{3}=4$ implies $G \cong A_{4}$ is because G acting by conjugation on its 4 -Sylow subgroups is an isomorphism of G with A_{4}.)

Group	Abelian?	n_{2}	n_{3}	2-Sylow
$\mathbf{Z} /(12)$	Yes	1	1	cyclic
$(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)$	Yes	1	1	noncyclic
A_{4}	No	1	4	noncyclic
D_{6}	No	3	1	noncyclic
$\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$	No	3	1	cyclic

Table 1. Structural properties of groups of order 12.

For example, here are five groups of order 12 :

$$
\begin{equation*}
\mathbf{Z} /(2) \times \mathbf{Z} /(6), \quad \mathbf{Z} /(2) \times S_{3}, \quad \operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right), \quad \operatorname{Aff}(\mathbf{Z} /(6)), \quad \operatorname{Aff}\left(\mathbf{F}_{4}\right) \tag{2}
\end{equation*}
$$

The first group is abelian with noncyclic 2-Sylow subgroup, so it's isomorphic to $(\mathbf{Z} /(2))^{2} \times$ $\mathbf{Z} /(3)$ (or use the Chinese remainder theorem). The remaining groups are nonabelian. Since $\mathbf{Z} /(2) \times S_{3}$ has $n_{3}=1$ and a noncyclic 2-Sylow subgroup, $\mathbf{Z} /(2) \times S_{3} \cong D_{6}$. The group $\operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right)$ has $n_{3}>1$, so $\operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right) \cong A_{4}$. The group $\operatorname{Aff}(\mathbf{Z} /(6))$ has $n_{2}>1$ and noncyclic 2-Sylow subgroup, so $\operatorname{Aff}(\mathbf{Z} /(6)) \cong D_{6}$. Finally, $\operatorname{Aff}\left(\mathbf{F}_{4}\right)$ has $n_{3}>1$, so $\operatorname{Aff}\left(\mathbf{F}_{4}\right) \cong A_{4}$.

Another way to distinguish between groups of order 12 is by counting elements of a certain order. From Table 2 below, these groups can be distinguished by counting elements of order 2 except for $(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(4)$ and A_{4}, where one is abelian and the other isn't.

For example, among the groups in (2), $\mathbf{Z} /(2) \times \mathbf{Z} /(6)$ is abelian with three elements of order 2 , so it is isomorphic to $(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)$. Since $\mathbf{Z} /(2) \times S_{3}$ has more than 3 elements of order 2, it is isomorphic to D_{6}. Since $\mathrm{PSL}_{2}\left(\mathbf{F}_{3}\right)$ has more than 2 elements of order 3, it is isomorphic to A_{4}. Since $\operatorname{Aff}(\mathbf{Z} /(6))$ has more than 3 elements of order 2, it is isomorphic to D_{6}. Since $\operatorname{Aff}\left(\mathbf{F}_{4}\right)$ has has more than 2 elements of order 3, it is isomorphic to A_{4}.

Group	Order 1	Order 2	Order 3	Order 4	Order 6	Order 12
$\mathbf{Z} /(12)$	1	1	2	2	2	4
$(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)$	1	3	2	0	6	0
A_{4}	1	3	8	0	0	0
D_{6}	1	7	2	0	2	0
$\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$	1	1	2	6	2	0

Table 2. Counting orders of elements in groups of order 12.

In books where groups of order 12 are classified, $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$ is often written as T, but it is not given a name matching that label. ${ }^{2}$ Should it be called the "obscure group of order 12 "? Actually, this group is in a standard family of finite groups: the dicyclic groups, also called the binary dihedral groups. They are nonabelian with order $4 n(n \geq 2)$ and each contains a unique element of order $2 .^{3}$ In $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$, its unique element of order 2 is $(0,2)$. The dicyclic group of order 8 is Q_{8}, and more generally the dicyclic group of order 2^{m} is the generalized quaternion group $Q_{2^{m}}$.

We said at the start that Kempe's list of groups of order 12 has a mistake. Kempe wrote each of his 5 proposed groups in tabular form (as a list of 12 permutations in S_{12}) and called them $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5}. It turns out that $T_{1} \cong \mathbf{Z} /(12), T_{2} \cong(\mathbf{Z} /(2))^{2} \times \mathbf{Z} /(3)$, $T_{3} \cong D_{6}$, and $T_{5} \cong A_{4}$, but T_{4}, which is shown in Table 3, is not a group and Kempe's list of groups of order 12 did not include a group isomorphic to $\mathbf{Z} /(3) \rtimes \mathbf{Z} /(4)$.

a	b	c	d	e	f	g	h	i	j	k	l
b	a	d	c	j	i	l	k	f	e	h	g
c	d	b	a	g	h	f	e	k	l	j	i
d	c	a	b	l	k	i	j	h	g	e	f
e	f	g	h	i	j	k	l	a	b	c	d
f	e	h	g	b	a	d	c	j	i	l	k
g	h	f	e	k	l	j	i	c	d	b	a
h	g	e	f	d	c	a	b	l	k	i	j
i	j	k	l	a	b	c	d	e	f	g	h
j	i	l	k	f	e	h	g	b	a	d	c
k	l	j	i	c	d	b	a	g	h	f	e
l	k	i	j	h	g	e	f	d	c	a	b

Table 3. Kempe's false group of order 12.

Why are the permutations in Table 3 not a subgroup of S_{12} ? Each row is a permutation of a, b, \ldots, k, l and two of the rows are 12 -cycles (the 7 th and 11 th rows) but no row has order 6 (the square of a 12 -cycle has order 6) and most rows that have order greater than 2 do not have their inverse in the table (e.g., rows 3 and 4). Perhaps Kempe's T_{j}-notation is the origin of the notation T for the obscure group of order 12 .

[^1]
References

[1] A. Cayley, "On the Theory of Groups," Amer. J. Math. 11 (1889), 139-157. URL https://www.jstor. org/stable/pdf/2369415.pdf.
[2] T. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[3] A. Kempe, "Memoir on the Theory of Mathematical Form," Phil. Trans. 177 (1886), 1-70. URL https: //royalsocietypublishing.org/doi/pdf/10.1098/rstl.1886.0002.
[4] S. Roman, Fundamentals of Group Theory: An Advanced Approach, Birkhäuser/Springer, New York, 2012.
[5] J. Rotman, An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995.

[^0]: ${ }^{1}$ The notation $P_{2} \rtimes P_{3}$ could refer to more than one group since there could be different actions $P_{3} \rightarrow$ $\operatorname{Aut}\left(P_{2}\right)$ leading to nonisomorphic semidirect products.

[^1]: ${ }^{2}$ See [2, pp. 98-99], [4, pp. 178-179, 251-252], and [5, pp. 84-85, 171]. A tetrahedron has 12 orientationpreserving symmetries, but that group of symmetries is isomorphic to A_{4}, not to T.
 ${ }^{3}$ We can allow $n=1$, using the cyclic group of order 4 , but that is abelian.

