
GROUPS OF ORDER 12
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The groups of order 12, up to isomorphism, were first determined in the 1880s: Kempe
[3, pp. 37–43] gave a list of 5 groups and Cayley [1] pointed out a few years later that one
of Kempe’s groups did not make sense and that a specific group was missed.

We will use semidirect products to describe all 5 groups of order 12 up to isomorphism.
Two are abelian and the others are A4, D6, and a less familiar group.

Theorem 1. Every group of order 12 is a semidirect product of a group of order 3 and a
group of order 4.

Proof. Let |G| = 12 = 22 · 3. A 2-Sylow subgroup has order 4 and a 3-Sylow subgroup has
order 3. We will start by showing G has a normal 2-Sylow subgroup or a normal 3-Sylow
subgroup: n2 = 1 or n3 = 1. From the Sylow theorems,

n2 | 3, n2 ≡ 1 mod 2, n3 | 4, n3 ≡ 1 mod 3.

Therefore n2 = 1 or 3 and n3 = 1 or 4.
To show n2 = 1 or n3 = 1, assume n3 6= 1. Then n3 = 4. Let’s count elements of order

3. Since each 3-Sylow subgroup has order 3, different 3-Sylow subgroups intersect trivially.
Each of the 3-Sylow subgroups of G contains two elements of order 3, so the number of
elements in G of order 3 is 2n3 = 8. This leaves us with 12 − 8 = 4 elements in G not
of order 3. A 2-Sylow subgroup has order 4 and contains no elements of order 3, so one
2-Sylow subgroup must account for the remaining 4 elements of G. Thus n2 = 1 if n3 6= 1.

Next we show G is a semidirect product of a 2-Sylow and 3-Sylow subgroup. Let P2 be a
2-Sylow subgroup and P3 be a 3-Sylow subgroup of G. Since P2 and P3 have relatively prime
orders, P2∩P3 = {1} and the set P2P3 = {xy : x ∈ P2, y ∈ P3} has size |P2||P3|/|P2∩P3| =
12 = |G|, so G = P2P3. Since P2 or P3 is normal in G, G is a semidirect product of P2 and
P3: G ∼= P2 o P3 if P2 CG and G ∼= P3 o P2 if P3 CG.1 �

Groups of order 4 are isomorphic to Z/(4) or (Z/(2))2, and groups of order 3 are isomor-
phic to Z/(3), so every group of order 12 is a semidirect product of the form

Z/(4) o Z/(3), (Z/(2))2 o Z/(3), Z/(3) o Z/(4), Z/(3) o (Z/(2))2.

To determine these up to isomorphism, we work out how Z/(4) and (Z/(2))2 act by auto-
morphisms on Z/(3) and how Z/(3) acts by automorphisms on Z/(4) and (Z/(2))2.

Theorem 2. Every group of order 12 is isomorphic to one of Z/(12), (Z/(2))2 × Z/(3),
A4, D6, or the nontrivial semidirect product Z/(3) o Z/(4).

We say the nontrivial semidirect product Z/(3)oZ/(4) since there is only one nontrivial
homomorphism Z/(4) → Aut(Z/(3)) = (Z/(3))×, namely k mod 4 7→ (−1)k mod 3. The

1The notation P2 o P3 could refer to more than one group since there could be different actions P3 →
Aut(P2) leading to nonisomorphic semidirect products.
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corresponding group Z/(3) o Z/(4) has group law

(1) (a, b)(c, d) = (a+ (−1)bc, b+ d).

This is generated by x = (1, 0) and y = (0, 1) with x3 = 1, y4 = 1, and yxy−1 = x−1. A

model for this group inside SL2(C) has x = ( ω 0
0 ω ) with ω = e2πi/3 and y = ( 0 i

i 0 ).
In the proof of Theorem 2, we will appeal to an isomorphism property of semidirect

products: for each semidirect product H oϕ K and automorphism f : K → K, H oϕ K ∼=
H oϕ◦f K. This says that precomposing an action of K on H by automorphisms (that’s ϕ)
with an automorphism of K produces an isomorphic semidirect product of H and K.

Proof. Here are automorphisms of possible Sylow subgroups: Aut(Z/(4)) ∼= (Z/(4))× =
{±1 mod 4}, Aut((Z/(2))2) ∼= GL2(Z/(2)), and Aut(Z/(3)) ∼= (Z/(3))× = {±1 mod 3}.

Case 1: n2 = 1, P2
∼= Z/(4).

The 2-Sylow subgroup is normal, so the 3-Sylow subgroup acts on it. Our group is a
semidirect product Z/(4) o Z/(3), for which the action of the second group on the first is
through a homomorphism ϕ : Z/(3) → (Z/(4))×. The domain has order 3 and the target
has order 2, so this homomorphism is trivial, and thus the semidirect product must be
trivial: it’s the direct product

Z/(4)× Z/(3),

which is cyclic of order 12 (generator (1, 1)).

Case 2: n2 = 1, P2
∼= Z/(2)× Z/(2).

We need to understand all homomorphisms ϕ : Z/(3)→ GL2(Z/(2)). The trivial homo-
morphism leads to the direct product

(Z/(2))2 × Z/(3).

What about nontrivial homomorphisms ϕ : Z/(3)→ GL2(Z/(2))? Inside GL2(Z/(2)), which
has order 6 (it’s isomorphic to S3), there is one subgroup of order 3: {( 1 0

0 1 ), ( 0 1
1 1 ), ( 1 1

1 0 )}. A
nontrivial homomorphism ϕ : Z/(3)→ GL2(Z/(2)) is determined by where it sends 1 mod 3,
which must go to a solution of A3 = I2; then ϕ(k mod 3) = Ak in general. For ϕ to be
nontrivial, A needs to have order 3, and there are two choices for that. The two matrices of
order 3 in GL2(Z/(2)) are inverses. Call one of them A, making the other A−1. The resulting
homomorphisms Z/(3)→ GL2(Z/(2)) are ϕ(k mod 3) = Ak and ψ(k mod 3) = A−k, which
are related to each other by composition with inversion, but watch out: inversion is not
an automorphism of GL2(Z/(2)). It is an automorphism of Z/(3), where it’s negation. So
precomposing ϕ with negation on Z/(3) turns ϕ into ψ: ψ = ϕ ◦ f , where f(x) = −x
on Z/(3). Therefore the two nontrivial homomorphisms Z/(3) → GL2(Z/(2)) are linked
through precomposition with an automorphism of Z/(3), so ϕ and ψ define isomorphic
semidirect products. Thus up to isomorphism, there is one nontrivial semidirect product

(Z/(2))2 o Z/(3).

Since up to isomorphism one group of order 12 has n2 = 1 and a noncyclic 2-Sylow subgroup,
and A4 also fits this description, this semidirect product is isomorphic to A4.

Now assume n2 6= 1, so n2 = 3 and n3 = 1. Since n2 > 1, the group is nonabelian, so it’s
a nontrivial semidirect product (a direct product of abelian groups is abelian).

Case 3: n2 = 3, n3 = 1, and P2
∼= Z/(4).

Our group looks like Z/(3) o Z/(4), built from a nontrivial homomorphism ϕ : Z/(4)→
Aut(Z/(3)) = (Z/(3))× There is only one choice of ϕ: it has to send 1 mod 4 to −1 mod
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3, which determines everything else: ϕ(c mod 4) = (−1)c mod 3. Therefore there is one
nontrivial semidirect product Z/(3) o Z/(4) and its group operation is given by (1).

Case 4: n2 = 3, n3 = 1, and P2
∼= Z/(2)× Z/(2).

The group is Z/(3) o (Z/(2))2 for a nontrivial homomorphism ϕ : (Z/(2))2 → (Z/(3))×.
The group (Z/(2))2 has a pair of generators (1, 0) and (0, 1), and ϕ(a, b) = ϕ(1, 0)aϕ(0, 1)b,
where ϕ(1, 0) and ϕ(0, 1) are ±1. Conversely, this formula for ϕ defines a homomorphism
since a and b are in Z/(2) and exponents on ±1 only matter mod 2. For ϕ to be nontrivial
means ϕ(1, 0) and ϕ(0, 1) are not both 1, so there are three choices of ϕ : (Z/(2))2 →
(Z/(3))×:

ϕ(a, b) = (−1)a, ϕ(a, b) = (−1)b, ϕ(a, b) = (−1)a(−1)b = (−1)a+b.

This does not mean the three corresponding semidirect products Z/(3) oϕ (Z/(2))2 are
nonisomorphic. In fact, the above three choices of ϕ lead to isomorphic semidirect products:
precomposing the first ϕ with the matrix ( 0 1

1 0 ) produces the second ϕ, and precomposing the
first ϕ with the matrix ( 1 1

0 1 ) produces the third ϕ. Therefore the three nontrivial semidirect
products Z/(3)o(Z/(2))2 are isomorphic, so all groups of order 12 with n2 = 3 (equivalently,
all nonabelian groups of order 12 with n3 = 1) and 2-Sylow subgroup isomorphic to (Z/(2))2

are isomorphic. One such group is D6, with normal 3-Sylow subgroup {1, r2, r4}. �

For a group of order 12, Table 1 lists structural properties to know it up to isomorphism.
(That n3 = 4 implies G ∼= A4 is because G acting by conjugation on its 4 3-Sylow subgroups
is an isomorphism of G with A4.)

Group Abelian? n2 n3 2-Sylow
Z/(12) Yes 1 1 cyclic

(Z/(2))2 × Z/(3) Yes 1 1 noncyclic
A4 No 1 4 noncyclic
D6 No 3 1 noncyclic

Z/(3) o Z/(4) No 3 1 cyclic
Table 1. Structural properties of groups of order 12.

For example, here are five groups of order 12:

(2) Z/(2)× Z/(6), Z/(2)× S3, PSL2(F3), Aff(Z/(6)), Aff(F4).

The first group is abelian with noncyclic 2-Sylow subgroup, so it’s isomorphic to (Z/(2))2×
Z/(3) (or use the Chinese remainder theorem). The remaining groups are nonabelian. Since
Z/(2) × S3 has n3 = 1 and a noncyclic 2-Sylow subgroup, Z/(2) × S3 ∼= D6. The group
PSL2(F3) has n3 > 1, so PSL2(F3) ∼= A4. The group Aff(Z/(6)) has n2 > 1 and noncyclic
2-Sylow subgroup, so Aff(Z/(6)) ∼= D6. Finally, Aff(F4) has n3 > 1, so Aff(F4) ∼= A4.

Another way to distinguish between groups of order 12 is by counting elements of a
certain order. From Table 2 below, these groups can be distinguished by counting elements
of order 2 except for (Z/(2))2 × Z/(4) and A4, where one is abelian and the other isn’t.

For example, among the groups in (2), Z/(2) × Z/(6) is abelian with three elements of
order 2, so it is isomorphic to (Z/(2))2×Z/(3). Since Z/(2)×S3 has more than 3 elements
of order 2, it is isomorphic to D6. Since PSL2(F3) has more than 2 elements of order 3, it
is isomorphic to A4. Since Aff(Z/(6)) has more than 3 elements of order 2, it is isomorphic
to D6. Since Aff(F4) has has more than 2 elements of order 3, it is isomorphic to A4.
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Group Order 1 Order 2 Order 3 Order 4 Order 6 Order 12
Z/(12) 1 1 2 2 2 4

(Z/(2))2 × Z/(3) 1 3 2 0 6 0
A4 1 3 8 0 0 0
D6 1 7 2 0 2 0

Z/(3) o Z/(4) 1 1 2 6 2 0
Table 2. Counting orders of elements in groups of order 12.

In books where groups of order 12 are classified, Z/(3)oZ/(4) is often written as T , but
it is not given a name matching that label.2 Should it be called the “obscure group of order
12”? Actually, this group is in a standard family of finite groups: the dicyclic groups, also
called the binary dihedral groups. They are nonabelian with order 4n (n ≥ 2) and each
contains a unique element of order 2.3 In Z/(3) o Z/(4), its unique element of order 2 is
(0, 2). The dicyclic group of order 8 is Q8, and more generally the dicyclic group of order
2m is the generalized quaternion group Q2m .

We said at the start that Kempe’s list of groups of order 12 has a mistake. Kempe wrote
each of his 5 proposed groups in tabular form (as a list of 12 permutations in S12) and
called them T1, T2, T3, T4, and T5. It turns out that T1 ∼= Z/(12), T2 ∼= (Z/(2))2 × Z/(3),
T3 ∼= D6, and T5 ∼= A4, but T4, which is shown in Table 3, is not a group and Kempe’s list
of groups of order 12 did not include a group isomorphic to Z/(3) o Z/(4).

a b c d e f g h i j k l
b a d c j i l k f e h g
c d b a g h f e k l j i
d c a b l k i j h g e f
e f g h i j k l a b c d
f e h g b a d c j i l k
g h f e k l j i c d b a
h g e f d c a b l k i j
i j k l a b c d e f g h
j i l k f e h g b a d c
k l j i c d b a g h f e
l k i j h g e f d c a b

Table 3. Kempe’s false group of order 12.

Why are the permutations in Table 3 not a subgroup of S12? Each row is a permutation
of a, b, . . . , k, l and two of the rows are 12-cycles (the 7th and 11th rows) but no row has
order 6 (the square of a 12-cycle has order 6) and most rows that have order greater than
2 do not have their inverse in the table (e.g., rows 3 and 4). Perhaps Kempe’s Tj-notation
is the origin of the notation T for the obscure group of order 12.

2See [2, pp. 98–99], [4, pp. 178–179, 251-252], and [5, pp. 84–85, 171]. A tetrahedron has 12 orientation-
preserving symmetries, but that group of symmetries is isomorphic to A4, not to T .

3We can allow n = 1, using the cyclic group of order 4, but that is abelian.
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