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KEITH CONRAD

1. introduction

The quaternion group Q8 is one of the two nonabelian groups of size 8 (up to isomor-
phism). The other one, D4, can be constructed as a semi-direct product:

D4
∼= Aff(Z/(4)) ∼= Z/(4) o (Z/(4))× ∼= Z/(4) o Z/(2),

where the elements of Z/(2) act on Z/(4) as the identity and negation. While Q8 is not a
semi-direct product, it can be constructed as the quotient group of a semi-direct product.
We will see how this is done in Section 2 and then jazz up the construction in Section 3 to
make an infinite family of similar groups with Q8 as the simplest member. In Section 4 we
will compare this family with the dihedral groups and see how it fits into a bigger picture.

2. The quaternion group from a semi-direct product

The group Q8 is built out of its subgroups 〈i〉 and 〈j〉 with the condition i2 = j2 = −1
and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a =
−i = i−1, and for even a we have jaij−a = i. We can combine these into one formula:

(2.1) jaij−a = i(−1)a

for all a ∈ Z. These relations suggest the following way to construct the group Q8.
1

Theorem 2.1. Let H = Z/(4) o Z/(4), where

(a, b)(c, d) = (a+ (−1)bc, b+ d),

The element (2, 2) in H has order 2, lies in the center, and H/〈(2, 2)〉 ∼= Q8.

Proof. Since −2 = 2 in Z/(4),

(a, b)(2, 2) = (a+ (−1)b2, b+ 2) = (a+ 2, b+ 2)

and
(2, 2)(a, b) = (2 + (−1)2a, 2 + b) = (2 + a, b+ 2) = (a+ 2, b+ 2),

(2, 2) is in the center of H. Also (2, 2)(2, 2) = (2 +(−1)22, 2+2) = (0, 0), so (2, 2) has order
2 in H. Therefore the quotient group

Q := H/〈(2, 2)〉
makes sense and has size 16/2 = 8.

Since H is generated by (1, 0) and (0, 1):

(a, b) = (a, 0)(0, b) = (1, 0)a(0, 1)b.

In Q, set i to be the class of (1, 0) and j to be the class of (0, 1), so i and j generate Q:

(a, b) = iajb.

1A quaternion group built differently is https://advisor.morganstanley.com/the-quaternion-group.
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To show Q ∼= Q8, we will create a homomorphism from the semi-direct product H onto
Q8 and check (2, 2) is in its kernel, so we get an induced homomorphism from Q onto Q8.

Define f : H → Q8 by f(a, b) = iajb. This is well-defined since i4 = 1 and j4 = 1. It is a
homomorphism since

f((a, b)(c, d)) = f(a+ (−1)bc, b+ d) = ia+(−1)bcjb+d

and

f(a, b)f(c, d) = iajbicjd = ia(jbicj−b)jb+d = ia(jbij−b)cjb+d = iai(−1)bcjb+d,

where the last equation comes from (2.1).
The image of f is a subgroup of Q8 containing i = f(1, 0) and j = f(0, 1), so the image

is Q8: f is onto. Since f(2, 2) = i2j2 = (−1)(−1) = 1, the kernel of f contains (2, 2), so f
induces a surjective homomorphism Q → Q8 given by iajb 7→ iajb. The groups Q and Q8

have the same size, so this surjective homomorphism is an isomorphism. �

3. Generalized Quaternions

While Q8 is generated by two cyclic subgroups of order 4, we can extend its construction
by letting one of the two cyclic subgroups be an arbitrary cyclic 2-group.

Definition 3.1. For n ≥ 3, set

Q2n = (Z/(2n−1) o Z/(4))/〈(2n−2, 2)〉,

where the semi-direct product has group law

(3.1) (a, b)(c, d) = (a+ (−1)bc, b+ d).

The groups Q2n are called generalized quaternion groups.

Note Q2n is not the semi-direct product Z/(2n−1)oZ/(4), but rather the quotient of this
semi-direct product modulo the subgroup 〈(2n−2, 2)〉. Since 2n−2 mod 2n−1 and 2 mod 4
have order 2 in the additive groups Z/(2n−1) and Z/(4), a calculation as in Section 2 shows
(2n−2, 2) is in the center of the semi-direct product and has order 2, so 〈(2n−2, 2)〉 is a
normal subgroup of the semi-direct product and the size of Q2n is (2n−1 · 4)/2 = 2n. The
next theorem brings the construction of Q2n down to earth.

Theorem 3.2. For n ≥ 3, let x = (1, 0) and y = (0, 1) in Q2n. Then Q2n = 〈x,y〉, where

(1) x has order 2n−1 and y has order 4,
(2) every element of Q2n can be written in the form xa or xay for some a ∈ Z,

(3) x2n−2
= y2,

(4) for each g ∈ Q2n such that g 6∈ 〈x〉, gxg−1 = x−1.

This theorem says, roughly, that Q2n is made by taking a cyclic group of order 2n−1 and
a cyclic group of order 4 and “gluing” them at their unique elements of order 2 while being
noncommutative.

Proof. Since Z/(2n−1) is generated by 1 and Z/(4) is generated by 1, Q2n is generated by
the cosets of (1, 0) and (0, 1), so x and y generate Q2n .

(1): The smallest power of (1, 0) in 〈(2n−2, 2)〉 = {(2n−2, 2), (0, 0)} is its 2n−1-th power,
which is (0, 0), so x has order 2n−1 in Q2n . Similarly, the smallest power of (0, 1) in
〈(2n−2, 2)〉 is its fourth power, so y has order 4 in Q2n .
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(2) and (3): Each element of Z/(2n−1) o Z/(4) has the form (a, b) = (1, 0)a(0, 1)b, so
each element of Q2n has the form xayb. Since (2n−2, 2) is trivial in Q2n , the relation

(2n−2, 2) = (1, 0)2
n−2

(0, 1)2 in Q2n says x2n−2
y2 = 1, so x2n−2

= y−2 = y2. Therefore in
xayb we can absorb even powers of y into the power of x. Thus we can use b = 0 or b = 1.

(4): Each g 6∈ 〈x〉 has the form g = xay, so gxg−1 = xayxy−1x−a. Therefore it suffices
to focus on the case g = y. In Z/(2n−1) o Z/(4), (0, 1)(1, 0)(0, 1)−1 = (−1, 1)(0,−1) =
(−1, 0) = (1, 0)−1, so yxy−1 = x−1. �

Since n ≥ 3, x has order greater than 2, so the condition yxy−1 = x−1 6= x, shows Q2n

is noncommutative. While we didn’t define Q2n when n = 2, the definition makes sense at
n = 2: Q4 is a cyclic group of order 4 generated by y (with x = y2).

The following theorem describes a special mapping property of Q2n : all groups with a
few of the basic features of Q2n are homomorphic images of it.

Theorem 3.3. For n ≥ 3, let G = 〈x, y〉 where x2
n−1

= 1, y4 = 1, yxy−1 = x−1, and

x2
n−2

= y2. There is a unique homomorphism Q2n → G such that x 7→ x and y 7→ y, and
it is onto. If |G| = 2n, then this homomorphism is an isomorphism.

The trivial group fits the conditions of the theorem (taking x = 1 and y = 1), so not all
such groups must be isomorphic to Q2n (only such groups of the right size are). Remember:

saying x2
n−1

= 1 and y4 = 1 does not mean x has order 2n−1 and y has order 4, but only
that their orders divide 2n−1 and 4.

Proof. If there is a homomorphism Q2n → G such that x 7→ x and y 7→ y, then the
homomorphism is completely determined everywhere since x and y generate Q2n . So such
a homomorphism is unique. To actually construct such a homomorphism (prove existence,
that is), we adapt the idea in the proof of Theorem 2.1: rather than directly write down a
homomorphism Q2n → G, start with a homomorphism from a semi-direct product to G.

Let f : Z/(2n−1) o Z/(4) → G by f(a, b) = xayb. This is well-defined since x2
n−1

= 1
and y4 = 1. To check f is a homomorphism, we will use the condition yxy−1 = x−1, which

implies ybxy−b = x(−1)b . First we have

f((a, b)(c, d)) = f(a+ (−1)bc, b+ d) = xa+(−1)bcyb+d,

and next we have

f(a, b)f(c, d) = xaybxcyd = xa(ybxcy−b)yb+d = xa(ybxy−b)cyb+d = xax(−1)bcyb+d.

Thus f is a homomorphism. It is surjective since we are told x and y generate G and x and

y are values of f . Since f(2n−2, 2) = x2
n−2

y2 = y2y2 = y4 = 1, (2n−2, 2) is in the kernel of
f . Therefore f induces a surjective homomorphism Q2n → G given by xayb 7→ xayb, so G
is a homomorphic image of Q2n .

When |G| = 2n, f is a surjective homomorphism between finite groups of the same size,
so it is an isomorphism. �

Theorem 3.3 is true for n = 2 when we define Q4 = 〈y〉 to be a cyclic group of order 4
with x = y2. Theorem 3.3 also gives us a recognition criterion for generalized quaternion
groups in terms of generators and relations.

Example 3.4. Here is a matrix model of Q2n in GL2(C). Let ζ = e2πi/2
n−1

be a root

of unity of order 2n−1. In GL2(C), the matrix x = (
ζ 0

0 ζ
) has order 2n−1 and the matrix

y = ( 0 −1
1 0 ) has order 4. Since x2

n−2
= y2 = ( −1 0

0 −1 ) and yxy−1 = x−1, the group generated
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by x and y is a homomorphic image of Q2n by Theorem 3.3. Therefore 〈x, y〉 has size
dividing 2n. This group contains 〈x〉, of order 2n−1, so 2n−1 | |〈x, y〉|. We have y 6∈ 〈x〉
since x and y do not commute (because yxy−1 = x−1 6= x), so |〈x, y〉| = 2n. Therefore
〈x, y〉 ∼= Q2n . The division ring of real quaternions a+ bi+ cj+dk is isomorphic to the ring
of complex matrices of the form ( z −w

w z ), where z = a+ bi and w = c+ di. The matrices x
and y have this form, so all the groups Q2n can be embedded in the real quaternions.

Remark 3.5. The basic idea behind the construction of Q2n can be pushed further. Let A
be an abelian group of even order, written additively. There is an element of A with order
2, say ε. For a positive integer t that is divisible by 4, consider the semi-direct product
A o Z/(t) with group law as in (3.1). Since −ε = ε and t/2 is even, a short calculation
shows (ε, t/2) is in the center of Ao Z/(t) and has order 2. The quotient group

(3.2) (Ao Z/(t))/〈(ε, t/2)〉
generalizes the construction of Q2n (the special case A = Z/(2n−1), t = 4). This group is
noncommutative when some a ∈ A has order greater than 2. If A is cyclic of even order
2m ≥ 4 (not necessarily a 2-group, e.g., A = Z/(6) for m = 3) and t = 4, then (3.2) has
order 4m with generators x and y such that x2m = 1, yxy−1 = x−1, and xm = y2 (so
y4 = x2m = 1). Properties of these groups are in Section 5.

4. Comparing Dihedral and Generalized Quaternion Groups

For all n ≥ 3, the groups D2n−1 and Q2n , both of order 2n, are similar. First, their
generators and relations are analogous (but of course not the same): D2n−1 = 〈r, s〉 where

r2
n−1

= 1, s2 = 1, srs−1 = r−1

and Q2n = 〈x,y〉 where

x2n−1
= 1, y4 = 1, yxy−1 = x−1, x2n−2

= y2.

The condition y4 = 1 can be dropped, since the first and fourth conditions imply it, but
we include it to make the similarity with dihedral groups clearer. In both D2n−1 and Q2n ,
there are two generators (r and s or x and y) where the first generator has order 2n−1 and
the second generator conjugates the first to its inverse (srs−1 = r−1 and yxy−1 = x−1). In
D2n−1 , s has order 2 and the intersection 〈r〉∩ 〈s〉 is trivial, while in Q2n , y has order 4 and
the intersection 〈x〉 ∩ 〈y〉 has order 2. In the degenerate case n = 2, D2

∼= Z/(2) × Z/(2)
and Q4

∼= Z/(4) are the two possible groups of order 4.
We now state without proof a catch-all theorem about the dihedral groups D2n−1 and

then see what an analogue is for Q2n .

Theorem 4.1. For n ≥ 3, D2n−1 has the following properties:

(1) the subgroup 〈r〉 has index 2 and every element of D2n−1 outside of 〈r〉 has order 2,

(2) the center of D2n−1 is {1, r2n−2} and D2n−1/Z(D2n−1) ∼= D2n−2,
(3) the commutator subgroup of D2n−1 is 〈r2〉, and D2n−1/〈r2〉 ∼= Z/(2)× Z/(2),
(4) there are 2n−2+3 conjugacy classes, with representatives given in the following table.

Rep. 1 r r2 · · · r2
n−2−1 r2

n−2
s rs

Size 1 2 2 · · · 2 1 2n−2 2n−2

Table 1. Conjugacy class representatives in D2n−1 .
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Theorem 4.2. For n ≥ 3, Q2n has the following properties:

(1) the subgroup 〈x〉 has index 2 and every element of Q2n outside of 〈x〉 has order 4,

(2) the center of Q2n is {1,x2n−2} = {1,y2} and Q2n/Z(Q2n) ∼= D2n−2,
(3) the commutator subgroup of Q2n is 〈x2〉, and Q2n/〈x2〉 ∼= Z/(2)× Z/(2),
(4) there are 2n−2+3 conjugacy classes, with representatives given in the following table.

Rep. 1 x x2 · · · x2n−2−1 x2n−2
y xy

Size 1 2 2 · · · 2 1 2n−2 2n−2

Table 2. Conjugacy class representatives in Q2n .

Proof. (1): Since x has order 2n−1, [Q2n : 〈x〉] = 2. The elements of Q2n that are not
powers of x have the form xay, and

(xay)2 = xa(yxay−1)y2 = xa(yxy−1)ay2 = xax−ay2 = y2 = x2n−2
,

so xay has order 4.

(2): Since x2n−2
= y2, x2n−2

commutes with both x and y, and hence with all of Q2n ,

so x2n−2
is in the center. If xa is in the center, then yxay−1 = xa. The left side is

(yxy−1)a = x−a, so x−a = xa. Therefore x2a = 1, so 2n−1 | 2a, so 2n−2 | a, which means

xa is a power of x2n−2
.

Each element of Q2n that is not a power of x is not in the center: it is some xay and
x(xay)x−1 = xa+1xy = xa+2y 6= xay. (Here we need n ≥ 3 to be sure that x2 6= 1.)

The quotient group Q2n/Z(Q2n) has generators x and y such that x2n−2
= 1 (since

x2n−2
= y2 is in the center), y2 = 1, and y x y−1 = x−1. Therefore this quotient group is a

homomorphic image of D2n−2 . Since the size of Q2n/Z(Q2n) is 2n−1 = |D2n−2 |, Q2n/Z(Q2n)
is isomorphic to D2n−2 : the cosets x and y in Q2n/Z(Q2n) play the roles of r and s in the
dihedral group.

(3): Since xyx−1y−1 = x2, the commutator subgroup of Q2n contains 〈x2〉. (In fact,
xayx−ay−1 = x2a, so all elements of 〈x2〉 are commutators.) The subgroup 〈x2〉 has size
2n−2 and thus index 4. It is a normal subgroup of Q2n since yx2y−1 = x−2 ∈ 〈x2〉. The
groupQ2n/〈x2〉 has size 4, hence is abelian, so every commutator inQ2n is in 〈x2〉. Therefore
〈x2〉 is the commutator subgroup of Q2n . In Q2n/〈x2〉, the images of x and y are distinct
and have order 2, so Q2n/〈x2〉 ∼= Z/(2)× Z/(2).

(4): For each g ∈ Q2n we compute xagx−a and (xay)g(xay)−1 = xaygy−1x−a as a varies.
First suppose g is a power of x, say g = xk with 0 ≤ k ≤ 2n−1 − 1. Then

xaxkx−a = xk, (xay)xk(xay)−1 = x−k,

so the conjugacy class of xk is {xk,x−k}. Thus we may take 0 ≤ k ≤ 2n−2, and |{xk,x−k}| =
2 if x2k 6= 1. We have x2k = 1 when xk is 1 or x2n−2

, which form the center.
If g = y then check

xayx−a = x2ay, (xay)y(xay)−1 = x2ay,

so the conjugacy class of y is all x2ay as a varies.
Finally, if g = xy then

xaxyx−a = x2a+1y, (xay)xy(xay)−1 = x2a−1y = x2(a−1)+1y,

so the conjugacy class of xy is all x2a+1y as a varies. �
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The first parts of Theorems 4.1 and 4.2 are a noticeable contrast between D2n−1 and Q2n :
at least half the elements of the dihedral group have order 2 and at least half the elements

of Q2n have order 4. The only elements of D2n−1 with order 4 are r2
n−2

and its inverse.
What are the elements of Q2n with order 2?

Corollary 4.3. For n ≥ 2, the only element of Q2n with order 2 is x2n−2
.

Proof. This is easy for n = 2. For n ≥ 3, since x has order 2n−1 its only power with order 2

is x2n−2
. Each element of Q2n that is not a power of x has order 4 by Theorem 4.2(1). �

Remark 4.4. While Theorem 4.2 lists some properties common to the groups Q2n for
all n ≥ 3, Q8 has a feature not shared by its larger analogues. In Q8 every subgroup is
normal, but for n ≥ 4 the group Q2n has the non-normal subgroup 〈y〉 = {1,y,y2,y3} =

{1,y,x2n−2
,x2n−2

y}. This is not normal because xyx−1 = x2y, which is not in 〈y〉 because
1 < 2 < 2n−2.

By Theorem 3.2(4), gxag−1 = x±a for all g ∈ Q2n , so every subgroup of 〈x〉 is normal
in Q2n . All proper subgroups of Q8 are normal: 〈1〉, 〈−1〉, 〈i〉, 〈j〉, and 〈k〉. What are the
proper normal subgroups of Q2n for n ≥ 4?

Corollary 4.5. For n ≥ 4, the proper normal subgroups of Q2n are the subgroups of 〈x〉
and the two subgroups 〈x2,y〉 and 〈x2,xy〉, which are both of index 2 and are isomorphic
to Q2n−1.

Proof. We indicated above why all subgroups of 〈x〉 are normal in Q2n . Let N be a proper
normal subgroup of Q2n such that N 6⊂ 〈x〉. Pick g ∈ N with g 6∈ 〈x〉. Then g = xay

for some a, so g2 = y2 = x2n−2
by the proof of Theorem 4.2(1). By Theorem 3.2(4),

gxg−1 = x−1. Since N is a normal subgroup of Q2n , N contains

g(xg−1x−1) = (gxg−1)x−1 = x−2,

so N ⊃ 〈x2〉. Since [Q2n : 〈x2〉] = 4 and |N | > |〈x2〉|, [Q2n : N ] = 2. The coset representa-
tives of Q2n/〈x2〉 are {1,x,y,xy} (see proof of Theorem 4.2(3)), so N is one of

〈x2,x〉 = 〈x〉, 〈x2,y〉, 〈x2,xy〉.
Discard the first one since N 6= 〈x〉. The second and third subgroups are distinct and have
index 2 in Q2n (why?), so they are both normal. Since x2 has order 2n−2, the second and
third subgroups are isomorphic to Q2n−1 by Theorem 3.3 with n replaced by n− 1. �

Corollary 4.6. For n ≥ 2, every subgroup of Q2n is cyclic or generalized quaternion.

Proof. The result is true for n = 2 and 3, so take n ≥ 4. Since Q2n is a 2-group, every proper
subgroup of Q2n is contained in an index-2 subgroup. Index-2 subgroups are normal, so they
are cyclic or isomorphic to Q2n−1 by Corollary 4.5, and thus we’re done by induction. �

It is natural to ask if the group Aut(Q2n) has an explicit description. If n = 3 then
Aut(Q8) ∼= S4 [5]. For n ≥ 4, the following answer was pointed out to me by Sean Cotner
as an application of the “universal” description of Q2n in Theorem 3.3. I later found it
appears in a more general form as [3, Cor. 1.2, p. 156].

Theorem 4.7. For n ≥ 4,

Aut(Q2n) ∼=
{(

a b
0 1

)
: a ∈ (Z/(2n−1))×, b ∈ Z/(2n−1)

}
.

In particular, for n ≥ 4 the order of Aut(Q2n) is 22n−3.
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Proof. Each automorphism f of Q2n is determined by where it sends x and y. Since f(x)
has order 2n−1 and all elements outside 〈x〉 have order 4, which is less than 2n−1, we must
have f(x) = xa with a odd, so f(〈x〉) = 〈x〉. Then f(y) 6∈ 〈x〉, so

f(x) = xa, f(y) = xby

where a ∈ (Z/(2n−1))× and b ∈ Z/(2n−1).
Conversely, for a ∈ (Z/(2n−1))× and b ∈ Z/(2n−1) we will show there is a unique automor-

phism of Q2n sending x to xa and y to xby. We have 〈xa,xby〉 = 〈x,xby〉 = 〈x,y〉 = Q2n

since 〈xa〉 = 〈x〉, so by Theorem 3.3 it suffices to show

• (xa)2
n−1

= 1,
• (xby)4 = 1,
• (xby)(xa)(xby)−1 = x−a,

• (xa)2
n−2

= (xby)2.

That (xa)2
n−1

= 1 follows from x2n−1
= 1. That (xby)4 = 1 follows from Theorem 4.2(1).

By Theorem 3.2(4), (xby)(x)(xby)−1 = x−1, and raising both sides to the ath power gives
us (xby)(xa)(xby)−1 = x−a. To prove

(xa)2
n−2

= (xby)2,

we compute each side separately. On the left, (xa)2
n−2

= (x2n−2
)a = (y2)a = y2 since y2

has order 2 and a is odd. On the right, a calculation at the start of the proof of Theorem
4.2 tells us (xby)2 = y2.

We have shown Aut(Q2n) is parametrized by pairs (a, b) in (Z/(2n−1))× ×Z/(2n−1): for
each (a, b), there is a unique fa,b ∈ Aut(Q2n) determined by the conditions fa,b(x) = xa

and fa,b(y) = xby. For two automorphisms fa,b and fc,d,

(fa,b ◦ fc,d)(x) = fa,b(x
c) = (fa,b(x))c = (xa)c = xac

and
(fa,b ◦ fc,d)(y) = fa,b(x

dy) = (fa,b(x))dfa,b(y) = xad(xby) = xad+by.

Therefore fa,b ◦ fc,d = fac,ad+b. Since ( a b0 1 )( c d0 1 ) = ( ac ad+b0 1 ), we get an isomorphism

Aut(Q2n) ∼=
{(

a b
0 1

)
: a ∈ (Z/(2n−1))×, b ∈ Z/(2n−1)

}
by fa,b 7→ ( a b0 1 ). �

Corollary 4.8. For n ≥ 2 and each pair of elements g and h in Q2n−〈x〉, there is a unique
automorphism f of Q2n fixing all of 〈x〉 and f(g) = h.

Proof. Each f in Aut(Q2n) is determined by the values f(x) = xa and f(y) = xby, where
a ∈ (Z/(2n−1))× and b ∈ Z/(2n−1). That f fixes all of 〈x〉 means a ≡ 1 mod 2n−1. What
does the condition f(g) = h tell us?

Write g = xiy and h = xjy where i and j are unique mod 2n−1. Then f(g) = f(x)if(y) =
xixby = xi+by, so the condition f(g) = h says xi+by = xjy, meaning b ≡ j − i mod 2n−1.
Thus f1,j−i fixes all of 〈x〉, maps g to h, and is the only such automorphism of Q2n . �

Since Z/(2n−1) is generated by 1 and (Z/(2n−1))× is generated by −1 and 5, Aut(Q2n)
has the 3 generators A = ( 1 1

0 1 ), B = ( 5 0
0 1 ), and C = ( −1 0

0 1 ) in GL2(Z/(2
n−1)), which

satisfy the 6 relations A2n−1
= 1, B2n−3

= 1, C2 = 1, BAB−1 = A5, CAC−1 = A−1, and
BC = CB. This is shown to be a presentation of Aut(Q2n) in [9].
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Remark 4.9. There is a description of Aut(Dm), for m ≥ 3, that is similar to our descrip-
tion of Aut(Q2n). The group Dm is “universal” as a group described by 〈r, s〉 where rm = 1,
s2 = 1, and srs−1 = r−1. That means every group of the form 〈x, y〉 where xm = 1, y2 = 1,
and yxy−1 = x−1 admits a unique homomorphism from Dm where r 7→ x and s 7→ y. Each
automorphism of Dm has to send r to an ra where (a,m) = 1 (the elements of order m)
and s to an rbs (since 〈r〉 7→ 〈ra〉 = 〈r〉), so

Aut(Dm) ∼=
{(

a b
0 1

)
: a ∈ (Z/(m))×, b ∈ Z/(m)

}
,

where each f ∈ Aut(Dm) corresponds to the matrix ( a b0 1 ) where f(r) = ra and f(s) = rbs.
Thus Aut(Q2n) ∼= Aut(D2n−1) for n ≥ 4, even though Q2n 6∼= D2n−1 . (What if n = 3? We
have Aut(Q8) ∼= S4 and Aut(D4) ∼= D4.)

Here is an interesting role for the groups Q2n alongside cyclic p-groups.

Theorem 4.10. For a finite p-group, the following conditions are equivalent:

(1) there is a unique subgroup of order p,
(2) all abelian subgroups are cyclic,
(3) the group is cyclic or generalized quaternion.

Proof. See the appendix. �

Corollary 4.11. When p is an odd prime, a finite p-group is cyclic if and only if it has
one subgroup of order p. A finite 2-group of order at least 4 is cyclic if and only if it has
one subgroup of order 2 and one subgroup of order 4.

Proof. For n ≥ 3, Q2n has at least 2 subgroups of order 4, such as 〈x2n−3〉 and 〈y〉. �

Corollary 4.12. If D is a division ring, every Sylow subgroup of a finite subgroup of D×

is cyclic or generalized quaternion.

Proof. For a finite abelian subgroup A of D×, each equation an = 1 has at most n solutions
in A, so A is cyclic. Thus we can apply the second part of Theorem 4.10 to Sylow subgroups
of a finite subgroup of D. �

Remark 4.13. Amitsur [2] classified all finite groups in division rings.

Theorem 4.10 is also applicable to the Sylow subgroups of finite groups with periodic
cohomology. (Groups with periodic cohomology arise in studying group actions on spheres.)
The finite groups with periodic cohomology were determined by Zassenhaus [8] for solvable
groups and by Suzuki [7] for non-solvable groups.

While Theorem 3.3 provides a criterion to recognize a generalized quaternion group in
terms of generators and relations, Theorem 4.10 provides a more abstract criterion: the
non-cyclic 2-groups with a unique element of order 2 are the generalized quaternion groups.
Here is a nice use of this, relying partly on Galois theory for finite fields.

Corollary 4.14. Let F be a finite field not of characteristic 2. The 2-Sylow subgroups of
SL2(F ) are generalized quaternion groups.

Proof. (Taken from [4, p. 43].) The only element of order 2 in SL2(F ) is ( −1 0
0 −1 ), so a 2-

Sylow subgroup of SL2(F ) has a unique element of order 2. Therefore the 2-Sylow subgroup
is either a cyclic group or a generalized quaternion group. We need to eliminate the cyclic
option. It would be wrong to do this just by writing down two noncommuting elements



GENERALIZED QUATERNIONS 9

of 2-power order in SL2(F ), because that by itself doesn’t imply the 2-Sylow subgroups
are noncommutative (and hence not cyclic): elements of 2-power order need not generate
a subgroup of 2-power order. For example, the dihedral group Dn = 〈r, s〉 (n ≥ 3) is
generated by the two reflections s and rs, which both have order 2.

Let q = |F |, so q is an odd prime power and |SL2(F )| = q(q2 − 1). We are going to
show every A ∈ SL2(F ) with 2-power order has order dividing either q + 1 or q − 1. These
numbers are both even, so the highest power of 2 in |SL2(F )| is not a factor of q+1 or q−1
and therefore the order of a 2-Sylow subgroup is not the order of an element of SL2(F ).
Thus a 2-Sylow subgroup can’t be cyclic.

Since the characteristic polynomial of A has degree 2, its eigenvalues λ and µ are in F
or a quadratic extension of F , and λµ = 1 since detA = 1. If λ = µ either both eigenvalues
are 1 or both are −1, which would imply A is conjugate to either ( 1 b

0 1 ) or ( −1 b
0 −1 ), and

these have 2-power order only when b = 0, so A = ±I2. The order of A is 1 or 2, which
both divide q + 1 and q − 1.

Now we may assume λ 6= µ, so A is diagonalizable over a field containing its (distinct)
eigenvalues. We will show Aq−1 = I2 or Aq+1 = I2. If the eigenvalues of A are in F then
A is conjugate over F to ( λ 0

0 µ ), so Aq−1 = I2. If A’s eigenvalues are not in F then the
characteristic polynomial of A is irreducible over F , so λ and µ are F -conjugate. Thus
µ = λq by Galois theory for finite fields, so 1 = λµ = λq+1 and µq+1 = 1/λq+1 = 1. Since
A is conjugate (over a quadratic extension of F ) to ( λ 0

0 µ ), Aq+1 = I2. �

A 2-Sylow subgroup of SL2(F ) can be written down explicitly when q ≡ 1 mod 4. Let 2k

be the highest power of 2 in q − 1, so the highest power of 2 in q(q2 − 1) = q(q − 1)(q + 1)
is 2k+1. The group F× is cyclic of order q − 1, so it contains an element a with order
2k. Let x = ( a 0

0 1/a ) and y = ( 0 −1
1 0 ). Both are in SL2(F ), x has order 2k, y has order 4,

x2
k−1

= −I2 = y2, and y 6∈ 〈x〉, so 〈x, y〉 ∼= Q2k+1 by the same argument as in Example 3.4.
In particular, 〈x, y〉 has order 2k+1, so it is a 2-Sylow subgroup of SL2(F ).

As an example of this, when q = 5 we can use a = 2: the 2-Sylow subgroup of SL2(F5) is

〈( 2 0
0 3 ), ( 0 −1

1 0 )〉 and is isomorphic to Q8. For k ≥ 1, the highest power of 2 dividing 32
k − 1

is k + 2, so the 2-Sylow subgroup of SL2(F32k
) is isomorphic to Q2k+2 .

Alas, when q ≡ 3 mod 4 the group F× has no elements of 2-power order besides ±1,
since the highest power of 2 in q − 1 is 2. So the explicit construction above of a 2-Sylow
subgroup of SL2(F ) no longer works. For a generator and relations method of showing the
2-Sylow subgroup of SL2(F ) is generalized quaternion when q ≡ 3 mod 4, see [1, p. 147].

What if F has characteristic 2? Letting q = |F |, which is a power of 2, the 2-Sylow
subgroups of SL2(F ) have order q and {( 1 x

0 1 ) : x ∈ F} is a subgroup of order q that is
isomorphic to the additive group of F . So a 2-Sylow in SL2(F ) is a direct sum of cyclic
groups of order 2, since that is the group structure of F (additively).

What can be said about the structure of the p-Sylow subgroups of SL2(F ) at odd primes
p? If p is the characteristic of F , then the p-Sylow subgroup is isomorphic to F by the same
argument used in the previous paragraph. If p is an odd prime dividing q2 − 1 then the
p-Sylow subgroups of SL2(F ) are cyclic, but we omit the proof.

5. More generalized quaternion groups

In Remark 3.5 we met a family of groups of order 4m for m ≥ 2: the quotient groups

(5.1) (Z/(2m) o Z/(4))/〈(m, 2)〉
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where the group law on Z/(2m) o Z/(4) is given by (a, b)(c, d) = (a + (−1)bc, b + d) and
(m, 2) is in the center of Z/(2m)oZ/(4) with order 2. Write (5.1) as Q4m. It is called both
the generalized quaternion group of order 4m and the dicyclic group of order 4m. When
m = 2n−2 for n ≥ 3, Q4m is the group Q2n we met already. As before, set Q4 = Z/(4).

Earlier results we proved for the groups Q2n for n ≥ 3 all generalize to Q4m for m ≥ 2.
We will state the generalizations below and leave proofs to the reader except at the end.

Here are generalizations of Theorems 3.2 and 3.3.

Theorem 5.1. In Q4m, let x = (1, 0) and y = (0, 1). Then Q4m = 〈x,y〉, where

(1) x has order 2m and y has order 4,
(2) every element of Q2m can be written in the form xa or xay for some a ∈ Z,
(3) xm = y2,
(4) for each g ∈ Q4m such that g 6∈ 〈x〉, gxg−1 = x−1.

Theorem 5.2. For m ≥ 2, let G = 〈x, y〉 where x2m = 1, y4 = 1, yxy−1 = x−1, and
xm = y2. There is a unique homomorphism Q4m → G such that x 7→ x and y 7→ y, and it
is onto. If |G| = 4m, then this homomorphism is an isomorphism.

There is a matrix model for Q4m in GL2(C) that generalizes Example 3.4: set x = (
ζ 0

0 ζ
)

and y = ( 0 −1
1 0 ) where ζ = e2πi/(2m) = eπi/m. Check x has order 2m, y has order 4,

xm = y2 = ( −1 0
0 −1 ), and yxy−1 = x−1. Use Theorem 5.2 to show 〈x, y〉 ∼= Q4m.

Here are generalizations of Theorem 4.2 and its first two corollaries.

Theorem 5.3. For m ≥ 2, Q4m has the following properties:

(1) the subgroup 〈x〉 has index 2 and every element of Q4m outside of 〈x〉 has order 4,
(2) the center of Q2m is {1,xm} = {1,y2} and Q4m/Z(Q4m) ∼= Dm,
(3) the commutator subgroup of Q4m is 〈x2〉, with Q4m/〈x2〉 ∼= Z/(2)× Z/(2) for even

m and Q4m/〈x2〉 ∼= Z/(4) for odd m.
(4) there are m+ 3 conjugacy classes, with representatives given in the following table.

Rep. 1 x x2 · · · xm−1 xm y xy
Size 1 2 2 · · · 2 1 m m

Table 3. Conjugacy class representatives in Q4m.

The description of Q2m/〈x2〉 in (3) is different when m is even and odd since the relation
xm = y2 in Q4m implies that in Q2m/〈x2〉, y2 = 1 for even m and y2 = x 6= 1 for odd m.

Corollary 5.4. For m ≥ 1, the only element of Q4m with order 2 is xm.

Corollary 5.5. For even m ≥ 4, the proper normal subgroups of Q4m are the subgroups of
〈x〉 and the two subgroups 〈x2,y〉 and 〈x2,xy〉, which are both of index 2 and are isomorphic
to Q2m. For odd m ≥ 3, the proper normal subgroups of Q4m are the subgroups of 〈x〉.

For odd m, the reason 〈x2,y〉 and 〈x2,xy〉 are not index-2 subgroups of Q4m is that

these subgroups contain x and thus are all of Q4m: y2 = xm = xm−1x = (x2)(m−1)/2x, so

x ∈ 〈x2,y〉, and similarly, (xy)2 = y2 = (x2)(m−1)/2x, so x ∈ 〈x2,xy〉. The description
of the proper normal subgroups of Q4m in Corollary 5.5 for even m (but not for odd m)
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resembles that of the proper normal subgroups of the dihedral group D2m = 〈r, s〉 of the
same size: the subgroups of 〈r〉 and also the two index-2 subgroups 〈r2, s〉 and 〈r2, rs〉.2

Here is a generalization of Theorem 4.7 and its corollary.

Theorem 5.6. For m ≥ 3,

Aut(Q4m) ∼=
{(

a b
0 1

)
: a ∈ (Z/(2m))×, b ∈ Z/(2m)

}
.

Corollary 5.7. For every pair of elements g and h in Q4m − 〈x〉, there is a unique auto-
morphism f of Q4m such that f fixes all of 〈x〉 and f(g) = h.

Here is a generalization of Corollary 4.6. We include a proof.

Theorem 5.8. For m ≥ 1, every subgroup of Q4m is cyclic or dicyclic. A complete listing
of the subgroups of Q4m is as follows:

(1) 〈xd〉, where d | 2m, with index 2d,
(2) 〈xd,xiy〉, where d | m and 0 ≤ i ≤ d− 1, with index d.

Every subgroup of Q4m occurs exactly once in this listing.

In this theorem, subgroups of the first type are cyclic and subgroups of the second type
are dicyclic: 〈xd〉 ∼= Z/(2m/d) and 〈xd,xiy〉 ∼= Q4m/d.

Proof. It is left to the reader to check m = 1. We now assume m ≥ 2 and adapt the proof of
Theorem 3.1 in https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf.

Let H be a subgroup of Q4m. Since 〈x〉 is cyclic of order 2m, if H ⊂ 〈x〉 then H = 〈xd〉
where d | 2m (and d > 0). The order of 〈xd〉 is 2m/d, so its index inQ4m is 4m/(2m/d) = 2d.

Now assume H 6⊂ 〈x〉, so H contains some xiy. First we’ll treat the case y ∈ H and then
we’ll reduce the more general case (some xiy is in H) to the case y ∈ H.

The intersection H ∩ 〈x〉 is a subgroup of 〈x〉, so it is 〈xd〉 for some d > 0 that divides
2m. If y ∈ H then let’s show d | m and H = 〈xd,y〉. Since H contains y2 = xm ⊂ 〈xd〉,
d | m. We have 〈xd,y〉 ⊂ H since xd and y are in H. To prove the reverse containment,
pick h ∈ H. If h ∈ 〈x〉 then h ∈ H ∩ 〈x〉 = 〈xd〉 ⊂ 〈xd,y〉. If h 6∈ 〈x〉 then h = xiy
for some i. Since y ∈ H, we get xi = hy−1 ∈ H ∩ 〈x〉, so xi = xdk for some k. Thus
h = xiy = xdky = (xd)ky ∈ 〈xd,y〉, so H ⊂ 〈xd,y〉.

Consider now the case where H 6⊂ 〈x〉 and we don’t assume y ∈ H. In H is an element
of the form xiy. Since y and xiy are not in 〈x〉, by Corollary 4.8 there’s an automorphism
f of Q4m such that f(x) = x and f(xiy) = y. Then f(H) is a subgroup of Q4m containing
y, so by the previous paragraph f(H) = 〈xd,y〉 where d | m (and d > 0). Then H =
f−1(〈xd,y〉) = 〈f−1(x)d, f−1(y)〉 = 〈xd,xiy〉. From 〈xd,xiy〉 = 〈xd,xjy〉 for j ≡ i mod d,
we can adjust i mod d without affecting 〈xd,xiy〉 and thus write H = 〈xd,xiy〉 where
0 ≤ i ≤ d− 1.

What is the index of 〈xd,xiy〉 inQ4m when d | m and d > 0? Because (xiy)xk = x−k(xiy)
and (xiy)2 = y2 = xm ∈ 〈xd〉, all elements of 〈xd,xiy〉 that are not powers of x have the
form (xd)`(xiy) = xd`(xiy). Thus H = 〈xd,xiy〉 = 〈xd〉 ∪ 〈xd〉xiy (a disjoint union), so
|H| = 2|〈xd〉| = 2(2m/d), which makes [Q4m : H] = 4m/(2(2m/d)) = d.

It remains to show the subgroups in the theorem have no duplications. First let’s show
the two lists are disjoint. Everything in 〈xd〉 commutes with x while 〈xd,xiy〉 contain xiy
that does not commute with x, so these types of subgroups are not equal.

2See Theorem 3.8 in https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf


12 KEITH CONRAD

Among subgroups on the first list, there are no duplications since 〈xd〉 determines d when
d is a positive divisor of n: it has index 2d. If two subgroups of the second type are equal,
then they have equal index in Dn, say d, so they must be 〈xd,xiy〉 and 〈xd,xjy〉 where i
and j are in {0, . . . , d − 1}. Then xjy ∈ 〈xd,xiy〉 = 〈xd〉 ∪ 〈xd〉xiy, so xjy = xdk+iy for
some k ∈ Z. Therefore j ≡ dk + i mod 2m. We can reduce both sides mod d, since d | m,
to get j ≡ i mod d. That forces j = i since 0 ≤ i, j ≤ d− 1. �

Appendix A. Proof of Theorem 4.10

We will prove Theorem 4.10 following the argument in [6, Theorem 9.7.3].
We want to show a nontrivial finite p-group is cyclic or generalized quaternion if it has a

unique subgroup of order p or if all of its abelian subgroups are cyclic. (A nontrivial cyclic
p-group and a generalized quaternion group have both of these properties.)

We will consider separately abelian and nonabelian p-groups.
If G is a nontrivial abelian p-group, then by the structure theorem for finite abelian

groups we can write G as a direct product of cyclic p-groups: G ∼= Z/(pr1)× · · · ×Z/(prd).
If d > 1 then G has more than one subgroup of order p and it has a non-cyclic subgroup
(such as G itself). Hence a finite abelian p-group is cyclic if it has a unique subgroup of
order p or if all of its (abelian) subgroups are cyclic.

From now on let G be nonabelian. If G has a unique subgroup of order p or if all of its
abelian subgroups are cyclic, we want to show G is a generalized quaternion group. If G has
a unique subgroup of order p then all of its nontrivial subgroups share this property, so all
of its abelian subgroups are cyclic by the previous paragraph. Therefore it suffices to focus
on the hypothesis of all abelian subgroups being cyclic, and show (when G is nonabelian)
this forces G to be generalized quaternion.

Since G is nonabelian, its center Z is a nontrivial proper subgroup of G, and Z has to
be cyclic since it’s abelian. For all g ∈ G, the subgroup 〈g, Z〉 is abelian, hence cyclic. The
subgroups of a cyclic p-group are totally ordered, so either 〈g〉 ⊂ Z or Z ⊂ 〈g〉. Therefore

(A.1) g 6∈ Z =⇒ Z $ 〈g〉.
In particular, |Z| is less than the order of g. So all elements of G − Z must have order
at least p2. If p is odd we will construct an element of G − Z with order p, which is a
contradiction, so p = 2. If p = 2 we will construct an element of G − Z with order 4, so
|Z| = 2.

Since G/Z is nontrivial, it contains an a with order p: a 6∈ Z and ap ∈ Z. Thus
〈ap〉 ⊂ Z $ 〈a〉 by (A.1). Since 〈ap〉 has index p in 〈a〉, and Z 6= 〈a〉, we must have

Z = 〈ap〉.
Subgroups of a cyclic p-group are totally ordered, so all proper subgroups of 〈a〉 are in Z.

Since a 6∈ Z, some b ∈ G does not commute with a. Therefore 〈a〉 ∩ 〈b〉 is a proper
subgroup of 〈a〉, so 〈a〉 ∩ 〈b〉 ⊂ Z. At the same time, Z is a subgroup of 〈a〉 and 〈b〉 by
(A.1), so

Z = 〈a〉 ∩ 〈b〉.
Since b 6∈ 〈a〉, 〈a〉 ∩ 〈b〉 is a proper subgroup of 〈b〉, so 〈a〉 ∩ 〈b〉 = 〈bpr〉 for some r ≥ 1.

Since 〈a〉 ∩ 〈b〉 = Z = 〈ap〉, bpr and ap generate the same group, so bp
r

= apk for some k not
divisible by p. Since 〈ak〉 = 〈a〉 and 〈apk〉 = 〈ap〉, we can rename ak as a to have bp

r
= ap

while still having

〈a〉 ∩ 〈b〉 = Z = 〈ap〉 = 〈bpr〉.
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Since Z = 〈ap〉 ⊂ 〈a〉 ∩ 〈bpr−1〉 ⊂ 〈a〉 and a /∈ 〈bpr−1〉 (a and b do not commute), the second

inclusion is strict, so 〈a〉 ∩ 〈bpr−1〉 = Z. Now we rename bp
r−1

as b, so bp = ap and

〈a〉 ∩ 〈b〉 = Z = 〈ap〉.
Let c = b−1, so a and c do not commute (recall a and b do not commute). Up to this

point, all we have used about a is that a has order p in G/Z. (In the course of the proof
we replaced a with a power ak such that (p, k) = 1, but this doesn’t change the condition
that a has order p.) Since G/Z is a nontrivial p-group, its center is nontrivial, so we could
have chosen a from the beginning such that a is an element of order p in the center of G/Z.
Make that choice. Then in G/Z, a and c commute, so

(A.2) ca = acz

for some z ∈ Z with z 6= 1. Rewriting (A.2) as a−1ca = cz and raising to the p-th power,
a−1cpa = cpzp. Since cp = b−p = a−p, we obtain 1 = zp. From (A.2) and induction,

(A.3) (ac)n = ancnz(
n
2)

for all positive integers n. Setting n = p in (A.3),

(ac)p = apcpzp(p−1)/2 = apa−pzp(p−1)/2 = zp(p−1)/2.

If p 6= 2 then p is a factor of p(p − 1)/2, so zp(p−1)/2 = 1 because zp = 1. Thus (ac)p = 1.
Since c 6∈ 〈a〉, ac 6= 1, so ac has order p. But ac 6∈ 〈a〉 ⊃ Z, so ac is an element of order p
in G− Z, which we noted earlier is impossible. Hence p = 2, so G is a 2-group and z2 = 1.

Returning to (A.3) and setting n = 4,

(ac)4 = a4c4z6 = a4b−4(z2)3 = 1,

so ac has order dividing 4. Since (ac)2 = a2c2z = a2b−2z = z 6= 1, ac has order 4. Since
ac 6∈ 〈a〉 ⊃ Z, |Z| < 4 by (A.1), so |Z| = 2.

There is a normal subgroup N C G with order 4. It must be abelian, so it is cyclic.
Consider the conjugation action of G on N , which is a group homomorphism G→ Aut(N) ∼=
{±1}. The center of G has order 2, while N has order 4, so not every element of G commutes
with every element of N , which means the conjugation action G → Aut(N) is onto. Let
K be the kernel, so K has index 2 in G and thus is a normal subgroup of G. All abelian
subgroups of K are cyclic because it is so in G. Since |K| < |G|, by induction K is either
cyclic or generalized quaternion. Since N is abelian, N ⊂ K (look at the definition of K),
so N ⊂ Z(K). Then the center of K has size at least 4, which means K is not generalized
quaternion, so K is cyclic.

In the cyclic 2-group K there are two elements of order 4, which are inverses of each
other. If these are the only elements of G with order 4 then each element not of order
1 or 2 has these as powers of it, so commutes with them. The elements of order 1 or 2
commute with everything since they are in the center of G, so the elements of order 4 in K
commute with everything. That means |Z(G)| ≥ 4, a contradiction. Thus there has to be
some y ∈ G−K with order 4. Since y 6∈ K, y acts by conjugation nontrivially on N .

Set |G| = 2n and K = 〈x〉, so x has order 2n−1, N = 〈x2n−3〉, and Z = 〈x2n−2〉. Since
the conjugation action of y on N is nontrivial,

yx2
n−3

y−1 = x−2n−3
.

Since K CG, yxy−1 = xi for some i. We have G = 〈x, y〉 since K has index 2 and y 6∈ K,
so x and y don’t commute (G is nonabelian). Therefore yxy−1 6= x, so i 6≡ 1 mod 2n−1.
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We have y2 ∈ K, since [G : K] = 2, and x2
n−2

is the only element of order 2 in K, so

y2 = x2
n−2

.

Therefore y2xy−2 = y(yxy−1)y−1 = yxiy−1 = (yxy−1)i = xi
2
, so i2 ≡ 1 mod 2n−1. When

n = 3 we have i2 ≡ 1 mod 4 and i 6≡ 1 mod 4, so i ≡ −1 mod 4. Now let n ≥ 4. From
i2 ≡ 1 mod 2n−1, we get i ≡ ±1 or 2n−2± 1 mod 2n−1. We want to show i ≡ −1 mod 2n−1,
since then G ∼= Q2n by Theorem 3.3. We know already that i 6≡ 1 mod 2n−1, so it remains
to eliminate the choices i ≡ 2n−2 ± 1 mod 2n−1.

Assume i ≡ 2n−2 ± 1 mod 2n−1. Then xi = x2
n−2±1 = y2x±1, so yxy−1 = y2x±1.

Therefore
xy−1 = yx±1.

If xy−1 = yx−1 then xy−1 = (xy−1)−1, so (xy−1)2 = 1. Elements of order 1 and 2 in G are
in Z ⊂ 〈x〉, so xy−1 is a power of x. Thus y is a power of x, but x and y don’t commute.
We have a contradiction. If instead xy−1 = yx then xy−1x−1 = y. Conjugating this by x,
x2y−1x−2 = xyx−1 = y−1, so x2 and y commute. Then x2 is in the center of G. The center
has order 2 and x2 has order 2n−2 > 2, so we have a contradiction. Alternatively, we get a

contradiction since the subgroup 〈x2, y〉 is abelian and not cyclic since 〈y〉 and 〈x2n−3〉 are
two subgroups of it with order 4.
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