
DIHEDRAL GROUPS II

KEITH CONRAD

We will characterize dihedral groups in terms of generators and relations, and describe
the subgroups of Dn, including the normal subgroups. We will also introduce an infinite
group that resembles the dihedral groups and has all of them as quotient groups.

1. Abstract characterization of Dn

The group Dn has two generators r and s with orders n and 2 such that srs−1 = r−1.
We will show every group with a pair of generators having properties similar to r and s
admits a homomorphism onto it from Dn, and is isomorphic to Dn if it has the same size
as Dn.

Theorem 1.1. Let G be generated by elements x and y where xn = 1 for some n ≥ 3,
y2 = 1, and yxy−1 = x−1. There is a surjective homomorphism Dn → G, and if G has
order 2n then this homomorphism is an isomorphism.

The hypotheses xn = 1 and y2 = 1 do not mean x has order n and y has order 2, but
only that their orders divide n and divide 2. For instance, the trivial group has the form
〈x, y〉 where xn = 1, y2 = 1, and yxy−1 = x−1 (take x and y to be the identity).

Proof. The equation yxy−1 = x−1 implies yxjy−1 = x−j for all j ∈ Z (raise both sides to
the jth power). Since y2 = 1, we have for all k ∈ Z

ykxjy−k = x(−1)
kj

by considering even and odd k separately. Thus for all j, k ∈ Z,

(1.1) ykxj = x(−1)
kjyk.

This shows each product of x’s and y’s (like y5x−7y3x2y−4x21) can have all the x’s brought
to the left and all the y’s brought to the right. So every element of G looks like xayb. Taking
into account that xn = 1 and y2 = 1, we can say

G = 〈x, y〉
= {xj , xjy : j ∈ Z}
= {1, x, x2, . . . , xn−1, y, xy, x2y, . . . , xn−1y}.(1.2)

Thus G is a finite group with |G| ≤ 2n.
To write down an explicit homomorphism from Dn onto G, the equations xn = 1, y2 = 1,

and yxy−1 = x−1 suggest we should be able send r to x and s to y by a homomorphism.
This suggests the function f : Dn → G defined by

f(rjsk) = xjyk.

This equation defines f on all of Dn since all elements of Dn have the form rjsk for some j
and k.1 To see f is well-defined, the only ambiguity in writing an element of Dn as rjsk is

1See Theorem 2.5 in https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf.
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that j changes mod n and k changes mod 2: rjsk = rj
′
sk

′ ⇒ rj−j
′

= sk
′−k ∈ 〈r〉∩〈s〉 = {1},

so j′ ≡ j mod n and k′ ≡ k mod 2. Such changes to j and k have no effect on xjyk since
xn = 1 and y2 = 1.

To check f is a homomorphism, we use (1.1):

f(rjsk)f(rj
′
sk

′
) = xjykxj

′
yk

′

= xjx(−1)
kj′ykyk

′

= xj+(−1)kj′yk+k
′

and

f((rjsk)(rj
′
sk

′
)) = f(rjr(−1)

kj′sksk
′
)

= f(rj+(−1)kj′sk+k
′
)

= xj+(−1)kj′yk+k
′
.

The results agree, so f is a homomorphism from Dn to G. It is onto since every element of
G has the form xjyk and these are all values of f by the definition of f .

If |G| = 2n then surjectivity of f implies injectivity, so f is an isomorphism. �

Remark 1.2. The homomorphism f : Dn → G constructed in the proof is the only one
where f(r) = x and f(s) = y: if there is such a homomorphism then f(rjsk) = f(r)jf(s)k =
xjyk. So a more precise formulation of Theorem 1.1 is this: for each group G = 〈x, y〉 where
xn = 1 for some n ≥ 3, y2 = 1, and yxy−1 = x−1, there is a unique homomorphism Dn → G
sending r to x and s to y. Mathematicians describe this state of affairs by saying Dn with
its generators r and s is “universal” as a group with two generators satisfying the three
equations in Theorem 1.1: all such groups are homomorphic images of Dn.

As an application of Theorem 1.1, we can write down a matrix group over Z/(n) that is
isomorphic to Dn when n ≥ 3. Set

(1.3) D̃n =

{(
±1 c
0 1

)
: c ∈ Z/(n)

}
inside GL2(Z/(n)). The group D̃n has order 2n (since 1 6≡ −1 mod n for n ≥ 3). Inside

D̃n, (−1 0
0 1 ) has order 2 and ( 1 1

0 1 ) has order n. A typical element of D̃n is(
±1 c
0 1

)
=

(
1 c
0 1

)(
±1 0
0 1

)
=

(
1 1
0 1

)c(±1 0
0 1

)
,

so ( 1 1
0 1 ) and (−1 0

0 1 ) generate D̃n. Moreover, ( 1 1
0 1 ) and ( 1 1

0 1 )−1 are conjugate by (−1 1
0 1 ):(

−1 0
0 1

)(
1 1
0 1

)(
−1 0
0 1

)−1
=

(
1 −1
0 1

)
=

(
1 1
0 1

)−1
.

Thus, by Theorem 1.1, D̃n is isomorphic to Dn, using ( 1 1
0 1 ) in the role of r and (−1 0

0 1 ) in
the role of s.
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This realization of Dn inside GL2(Z/(n)) should not be confused with the geometric

realization of Dn in GL2(R) using real matrices: r = (
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

) and s = ( 1 0
0 −1 ).

For even n, Dn has a nontrivial center {1, rn/2}, where rn/2 is a 180-degree rotation.
When n/2 is odd, the center can be split off in a direct product decomposition of Dn.

Corollary 1.3. If n ≥ 6 is twice an odd number then Dn
∼= Dn/2 × Z/(2).

For example, D6
∼= D3 × Z/(2) and D10

∼= D5 × Z/(2).

Proof. Let H = 〈r2, s〉, where r and s are taken from Dn. Then (r2)n/2 = 1, s2 = 1, and
sr2s−1 = r−2, so Theorem 1.1 tells us there is a surjective homomorphism Dn/2 → H. Since

r2 has order n/2, |H| = 2(n/2) = n = |Dn/2|, so Dn/2
∼= H.

Set Z = {1, rn/2}, the center of Dn. The elements of H commute with the elements of
Z, so the function f : H × Z → Dn by f(h, z) = hz is a homomorphism. Writing n = 2k

where k = 2`+ 1 is odd, we get f((r2)−`, rn/2) = r−2`+k = r and f(s, 1) = s, so the image
of f contains 〈r, s〉 = Dn. Thus f is surjective. Both H ×Z and Dn have the same size, so
f is injective too and thus is an isomorphism. �

Figure 1 is a geometric interpretation of the isomorphism D6
∼= D3 ×Z/(2). Every rigid

motion preserving the blue triangle also preserves the red triangle and the hexagon, and
this is how D3 naturally embeds into D6. The quotient group D6/D3 has order 2 and it is
represented by the nontrivial element of Z/(2), which corresponds to the nontrivial element
of the center of D6. That is a 180-degree rotation around the origin, and the blue and red
equilateral triangles are related to each other by a 180-degree rotation.

Figure 1. Two equilateral triangles inside a regular hexagon.

When n ≥ 6 is twice an even number (i.e., 4 | n and n > 4), the conclusion of Corollary
1.3 is false: Dn 6∼= Dn/2 × Z/(2). That’s because n and n/2 are even, so the center of Dn

has order 2 while the center of Dn/2 × Z/(2) has order 2 · 2 = 4. Since the groups Dn and
Dn/2 × Z/(2) have nonisomorphic centers, the groups are nonisomorphic.

As an application of Theorem 1.1 and Remark 1.2 we can describe the automorphism
group of Dn as a concrete matrix group.

Theorem 1.4. For n ≥ 3,

Aut(Dn) ∼=
{(

a b
0 1

)
: a ∈ (Z/(n))×, b ∈ Z/(n)

}
.

In particular, the order of Aut(Dn) is nϕ(n).
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Proof. Each automorphism f of Dn is determined by where it sends r and s. Since f(r)
has order n and all elements outside 〈r〉 have order 2, which is less than n, we must have
f(r) = ra with (a, n) = 1, so f(〈r〉) = 〈r〉. Then f(s) 6∈ 〈r〉, so

f(r) = ra, f(s) = rbs

where a ∈ (Z/(n))× and b ∈ Z/(n).
Conversely, for each a ∈ (Z/(n))× and b ∈ Z/(n), we will show a unique automorphism

of Dn maps r to ra and s to rbs. By Theorem 1.1 and Remark 1.2, it suffices to show

• (ra)n = 1,
• (rbs)2 = 1,
• (rbs)(ra)(rbs)−1 = r−a.

That (ra)n = 1 follows from rn = 1. That (rbs)2 = 1 follows from all elements of Dn

outside 〈r〉 having order 2. To show the third relation,

(rbs)(ra)(rbs)−1 = rbsras−1r−b = rbr−ass−1r−b = rbr−ar−b = r−a.

We have shown Aut(Dn) is parametrized by pairs (a, b) in (Z/(n))× × Z/(n): for each
(a, b), there is a unique fa,b ∈ Aut(Dn) determined by the conditions fa,b(r) = ra and

fa,b(s) = rbs. For two automorphisms fa,b and fc,d of Dn,

(fa,b ◦ fc,d)(r) = fa,b(r
c) = (fa,b(r))

c = (ra)c = rac

and
(fa,b ◦ fc,d)(s) = fa,b(r

ds) = (fa,b(r))
dfa,b(s) = rad(rbs) = rad+bs,

so fa,b◦fc,d = fac,ad+b. Since ( a b0 1 )( c d0 1 ) = ( ac ad+b0 1 ), the map fa,b 7→ ( a b0 1 ) is an isomorphism

Aut(Dn)→
{(

a b
0 1

)
: a ∈ (Z/(n))×, b ∈ Z/(n)

}
. �

Corollary 1.5. For every pair of elements g and h in Dn−〈r〉, there is a unique automor-
phism f of Dn such that f fixes all of 〈r〉 and f(g) = h.

Proof. Each f ∈ Aut(Dn) is determined by f(r) = ra and f(s) = rbs where a ∈ (Z/(n))×

and b ∈ Z/(n). That f fixes all of 〈r〉 means a ≡ 1 mod n. How can we force f(g) = h?
Write g = ris and h = rjs for some i and j (unique modulo n). Then f(g) = f(r)if(s) =

rirbs = ri+bs, so the condition f(g) = h says ri+bs = rjs, or equivalently b ≡ j − i mod n.
Therefore f1,j−i fixes 〈r〉, maps g to h, and is the only such automorphism of Dn. �

2. Dihedral groups and generating elements of order 2

Since Dn = 〈r, s〉 = 〈rs, s〉, Dn is generated by the two reflections s and rs. The
reflections s and rs fix lines separated by an angle 2π/(2n), as illustrated in Figure 2 for
3 ≤ n ≤ 6. A nice visual demonstration that s and rs generate Dn for 2 ≤ n ≤ 5 is
given2 by Richard Borcherds in Lecture 13 of his online group theory course on YouTube:
watch https://www.youtube.com/watch?v=kHBDFx0ExcA starting at 14:43. He uses the
term “involution” rather than “reflection” since elements of order 2 in abstract groups are
called involutions. (A 180-degree rotation in R2 is an involution that is not a reflection.)

Which finite groups besides Dn for n ≥ 3 can be generated by two elements of order 2?
Suppose G = 〈x, y〉, where x2 = 1 and y2 = 1. If x and y commute, then G = {1, x, y, xy}.
This has size 4 provided x 6= y. Then we see G behaves just like the group Z/(2)× Z/(2),

2We have not yet defined Dn for n = 2: D2 is Z/(2) × Z/(2). This will be explained after Theorem 2.1.

https://www.youtube.com/watch?v=kHBDFx0ExcA
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Figure 2. The reflections s and rs on a regular polygon.

where x corresponds to (1, 0) and y corresponds to (0, 1). If x = y, then G = {1, x} = 〈x〉
is cyclic of size 2. If x and y do not commute, then G is essentially a dihedral group!

Theorem 2.1. Let G be a finite nonabelian group generated by two elements of order 2.
Then G is isomorphic to a dihedral group.

Proof. Let the two elements be x and y, so each has order 2 and G = 〈x, y〉. Since G is
nonabelian and x and y generate G, x and y do not commute: xy 6= yx.

The product xy has some finite order, since we are told that G is a finite group. Let the
order of xy be denoted n. Set a = xy and b = y. (If we secretly expect x is like rs and y is
like s in Dn, then this choice of a and b is understandable, since it makes a look like r and
b look like s.) Then G = 〈x, y〉 = 〈xy, y〉 is generated by a and b, where an = 1 and b2 = 1.
Since a has order n, n | |G|. Since b 6∈ 〈a〉, |G| > n, so |G| ≥ 2n.

The order n of a is greater than 2. Indeed, if n ≤ 2 then a2 = 1, so xyxy = 1. Since x
and y have order 2, we get

xy = y−1x−1 = yx,

but x and y do not commute. Therefore n ≥ 3. Since

(2.1) bab−1 = yxyy = yx, a−1 = y−1x−1 = yx,

where the last equation is due to x and y having order 2, we obtain bab−1 = a−1. By
Theorem 1.1, there is a surjective homomorphism Dn → G, so |G| ≤ 2n. We saw before
that |G| ≥ 2n, so |G| = 2n and G ∼= Dn. �

Theorem 2.1 says we know all the finite nonabelian groups generated by two elements of
order 2. What about the finite abelian groups generated by two elements of order 2? We
discussed this before Theorem 2.1. Such a group is isomorphic to Z/(2)× Z/(2) or (in the
degenerate case that the two generators are the same element) to Z/(2). So we can define
new dihedral groups of order 2 and 4:

D1 := Z/(2), D2 := Z/(2)× Z/(2).

In terms of generators, D1 = 〈r, s〉 where r = 1 and s has order 2, and D2 = 〈r, s〉 where r
and s have order 2 and they commute. With these definitions,

• |Dn| = 2n for every n ≥ 1,
• the dihedral groups are precisely the finite groups generated by two elements of

order 2,
• the description of the commutators in Dn for n > 2 (namely, they are the powers of
r2) is true for n ≥ 1 (commutators are trivial in D1 and D2, and so is r2 in these
cases),
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• for even n ≥ 1, Corollary 1.3 is true when n is twice an odd number (including
n = 2) and false when n is a multiple of 4,
• the model for Dn as a subgroup of GL2(R) when n ≥ 3 is valid for all n ≥ 1.

However, D1 and D2 don’t satisfy all properties of Dn when n > 2. For example,

• Dn is nonabelian for n > 2 but not for n ≤ 2,
• the description of the center of Dn when n > 2 (trivial for odd n and of order 2 for

even n) is false when n ≤ 2, where Z(Dn) = Dn has order 2 for n = 1 and order 4
for n = 2,
• the matrix model for Dn over Z/(n) in (1.3) is invalid when n ≤ 2,
• the matrix model for Aut(Dn) over Z/(n) in Theorem 1.4 doesn’t work when n = 2:

Aut(D2) = GL2(Z/(2)) has order 6, which is not nϕ(n) if n = 2.

Remark 2.2. Unlike finite groups generated by two elements of order 2, there is no ele-
mentary description of all the finite groups generated by two elements with equal order > 2
or all the finite groups generated by two elements with order 2 and n for some n ≥ 3. As an
example of how complicated such groups can be, most finite simple groups are generated
by a pair of elements with order 2 and 3.

Theorem 2.3. Nontrivial quotient groups of dihedral groups are isomorphic to dihedral
groups: if N CDn and H has index m > 1, then m is even and Dn/N ∼= Dm/2.

Proof. The group Dn/N is generated by rs and s, which both square to the identity, so
they have order 1 or 2 and they are not both trivial since Dn/N is assumed to be nontrivial.
Thus |Dn/N | is even, so m is even. If rs and s both have order 2 then Dn/N ∼= Dm/2 by
Theorem 2.1 if Dn/N if nonabelian, and Dn/N is isomorphic to Z/(2) or Z/(2) × Z/(2)
if Dn/N is abelian, which are also dihedral groups by our convention on the meaning of
D1 and D2. If rs or s have order 1 then only one of them has order 1, which makes
Dn/N ∼= Z/(2) = D1. �

Example 2.4. For even n ≥ 3, Z(Dn) = {1, rn/2}, so Dn/Z(Dn) has order (2n)/2 = n =
2(n/2) and is generated by the images r (with order n/2 in Dn/Z(Dn)) and s (with order
2), subject to the relation s r s−1 = r−1. Therefore Dn/Z(Dn) ∼= Dn/2. Note for n = 4
that we are using the definition D2 := Z/(2) × Z/(2). (For odd n ≥ 3, Z(Dn) = {1} so
Dn/Z(Dn) = Dn, which is boring.)

Example 2.5. For n ≥ 3, the commutator subgroup [Dn, Dn] is 〈r2〉, which is 〈r〉 for odd
n, so Dn/[Dn, Dn] has order (2n)/2n = 2 for odd n and order 2n/(n/2) = 4 for even n. The
group Dn/[Dn, Dn] is abelian and is generated by the images r and s. where s has order 2.
For odd n, r is trivial so Dn/[Dn, Dn] = 〈s〉 ∼= Z/(2). For even n, r has order 2 and doesn’t
equal s, so Dn/[Dn, Dn] ∼= Z/(2) × Z/(2). These formulas for Dn/]Dn, Dn] equal D1 for
odd n and D2 for even n.

We will see the proper normal subgroups of Dn in Theorem 3.8: besides subgroups of
index 2 (which are normal in all groups) they turn out to be the subgroups of 〈r〉.

3. Subgroups of Dn

We will list all subgroups of Dn and then collect them into conjugacy classes of subgroups.
Our results will be valid even for n = 1 and n = 2. Recall D1 = 〈r, s〉 where r = 1 and s
has order 2, and D2 = 〈r, s〉 where r and s have order 2 and commute.
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Theorem 3.1. Every subgroup of Dn is cyclic or dihedral. A complete listing of the sub-
groups is as follows:

(1) 〈rd〉, where d | n, with index 2d,
(2) 〈rd, ris〉, where d | n and 0 ≤ i ≤ d− 1, with index d.

Every subgroup of Dn occurs exactly once in this listing.

In this theorem, subgroups of the first type are cyclic and subgroups of the second type
are dihedral: 〈rd〉 ∼= Z/(n/d) and 〈rd, ris〉 ∼= Dn/d.

Proof. It is left to the reader to check n = 1 and n = 2 separately. We now assume n ≥ 3.
Let H be a subgroup of Dn. Since 〈r〉 is cyclic of order n, if H ⊂ 〈r〉 then H = 〈rd〉

where d | n (and d > 0). The order of 〈rd〉 is n/d, so its index in Dn is 2n/(n/d) = 2d.
Now assume H 6⊂ 〈r〉, so H contains some ris. First we’ll treat the case s ∈ H and then

we’ll reduce the more general case (some ris is in H) to the case s ∈ H.
The intersection H ∩ 〈r〉 is a subgroup of 〈r〉, so it is 〈rd〉 for some d > 0 that divides

n. If s ∈ H then let’s show H = 〈rd, s〉. We have 〈rd, s〉 ⊂ H since rd and s are in H. To
prove the reverse containment, pick h ∈ H. If h ∈ 〈r〉 then h ∈ H ∩ 〈r〉 = 〈rd〉 ⊂ 〈rd, s〉. If
h 6∈ 〈r〉 then h = ris for some i. Since s ∈ H, we get ri = hs−1 ∈ H ∩ 〈r〉, so ri = rdk for
some k. Thus h = ris = rdks = (rd)ks ∈ 〈rd, s〉, so H ⊂ 〈rd, s〉.

Consider now the case where H 6⊂ 〈r〉 and we don’t assume s ∈ H. In H is an element of
the form ris. Since s and ris are not in 〈r〉, by Corollary 1.5 there’s an automorphism f of
Dn such that f(r) = r and f(ris) = s. Then f(H) is a subgroup of Dn containing s, so by
the previous paragraph f(H) = 〈rd, s〉 where d | n (and d > 0). Then H = f−1(〈rd, s〉) =
〈f−1(r)d, f−1(s)〉 = 〈rd, ris〉. Since 〈rd, ris〉 = 〈rd, rjs〉 when j ≡ i mod d, we can adjust
i mod d without affecting 〈rd, ris〉 and thus write H = 〈rd, ris〉 where 0 ≤ i ≤ d− 1.

What is the index of 〈rd, ris〉 in Dn when d | n and d > 0? Because ris has order
2 and (ris)rk = r−k(ris), all elements of 〈rd, ris〉 that are not powers of r have the form
(rd)`(ris) = rd`ris. Thus H = 〈rd, ris〉 = 〈rd〉∪〈rd〉ris (a disjoint union), so |H| = 2|〈rd〉| =
2(n/d), which makes [Dn : H] = 2n/(2(n/d)) = d.

It remains to show the subgroups in the theorem have no duplications. First let’s show
the two lists are disjoint. Everything in 〈rd〉 commutes with r while 〈rd, ris〉 contain ris
that does not commute with r, so these types of subgroups are not equal.

Among subgroups on the first list, there are no duplications since 〈rd〉 determines d when
d is a positive divisor of n: it has index 2d. If two subgroups of the second type are equal,
then they have equal index in Dn, say d, so they must be 〈rd, ris〉 and 〈rd, rjs〉 where i
and j are in {0, . . . , d− 1}. Then rjs ∈ 〈rd, ris〉 = 〈rd〉 ∪ 〈rd〉ris, so rjs = rdk+is for some
k ∈ Z. Therefore j ≡ dk + i mod n. We can reduce both sides mod d, since d | n, to get
j ≡ i mod d. That forces j = i since 0 ≤ i, j ≤ d− 1. �

Corollary 3.2. Let n be odd and m | 2n. If m is odd then there are m subgroups of Dn

with index m. If m is even then there is one subgroup of Dn with index m.
Let n be even and m | 2n.

• If m is odd then there are m subgroups of Dn with index m.
• If m is even and m doesn’t divide n then there is one subgroup of Dn with index m.
• If m is even and m | n then there are m+ 1 subgroups of Dn with index m.

Proof. Check n = 1 and n = 2 separately first. We now assume n ≥ 3.
If n is odd then the odd divisors of 2n are the divisors of n and the even divisors of 2n

are of the form 2d, where d | n. From the list of subgroups of Dn in Theorem 3.1, each
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subgroup with odd index is dihedral and each subgroup with even index is inside 〈r〉 (since
n is odd). A subgroup with odd index m is 〈rm, ris〉 for a unique i from 0 to m−1, so there

are m such subgroups. A subgroup with even index m must be 〈rm/2〉 by Theorem 3.1.
If n is even and m is an odd divisor of 2n, so m | n, the subgroups of Dn with index m

are 〈rm, ris〉 where 0 ≤ i ≤ m − 1. When m is an even divisor of 2n, so (m/2) | n, 〈rm/2〉
has index m. If m does not divide n then 〈rm/2〉 is the only subgroup of index m. If m
divides n then the other subgroups of index m are 〈rm, ris〉 where 0 ≤ i ≤ m− 1. �

From knowledge of all subgroups of Dn we can count conjugacy classes of subgroups.

Theorem 3.3. Let n be odd and m | 2n. If m is odd then all m subgroups of Dn with
index m are conjugate to 〈rm, s〉. If m is even then the only subgroup of Dn with index m is

〈rm/2〉. In particular, all subgroups of Dn with the same index are conjugate to each other.
Let n be even and m | 2n.

• If m is odd then all m subgroups of Dn with index m are conjugate to 〈rm, s〉.
• If m is even and m doesn’t divide n then the only subgroup of Dn with index m is
〈rm/2〉.
• If m is even and m | n then every subgroup of Dn with index m is 〈rm/2〉 or is

conjugate to exactly one of 〈rm, s〉 or 〈rm, rs〉.
In particular, the number of conjugacy classes of subgroups of Dn with index m is 1 when
m is odd, 1 when m is even and m doesn’t divide n, and 3 when m is even and m | n.

Proof. As usual, check n = 1 and n = 2 separately first. We now assume n ≥ 3.
When n is odd and m is odd, m | n and every subgroup of Dn with index m is some

〈rm, ris〉. Since n is odd, ris is conjugate to s in Dn. The only conjugates of rm in Dn are
r±m, and every conjugation sending s to ris turns 〈rm, s〉 into 〈r±m, ris〉 = 〈rm, ris〉. When

n is odd and m is even, the only subgroup of Dn with even index m is 〈rm/2〉 by Theorem
3.1.

If n is even and m is an odd divisor of 2n, so m | n, a subgroup of Dn with index m
is some 〈rm, ris〉 where 0 ≤ i ≤ m − 1. Since ris is conjugate to s or rs (depending on
the parity of i), and the only conjugates of rm are r±m, 〈rm, ris〉 is conjugate to 〈rm, s〉 or
〈rm, rs〉. Note 〈rm, s〉 = 〈rm, rms〉 and rms is conjugate to rs (because m is odd), Every
conjugation sending rms to rs turns 〈rm, s〉 into 〈rm, rs〉.

When m is an even divisor of 2n, so (m/2) | n, Theorem 3.1 tells us 〈rm/2〉 has index m.
Every other subgroup of index m is 〈rm, ris〉 for some i, and this occurs only when m | n, in
which case 〈rm, ris〉 is conjugate to one of 〈rm, s〉 and 〈rm, rs〉. It remains to show 〈rm, s〉
and 〈rm, rs〉 are nonconjugate subgroups of Dn. Since m is even, the reflections in 〈rm, s〉
are of the form ris with even i and the reflections in 〈rm, rs〉 are of the form ris with odd
i. Therefore no reflection in one of these subgroups has a conjugate in the other subgroup,
so the two subgroups are not conjugate. �

Example 3.4. For odd prime p, the only subgroup of Dp with index 2 is 〈r〉 and all p
subgroups with index p (hence order 2) are conjugate to 〈rp, s〉 = 〈s〉.

Example 3.5. In D6, the subgroups of index 2 are 〈r〉, 〈r2, s〉, and 〈r2, rs〉, which are
nonconjugate to each other. All 3 subgroups of index 3 are conjugate to 〈r3, s〉. The only
subgroup of index 4 is 〈r2〉. A subgroup of index 6 is 〈r3〉 or is conjugate to 〈s〉 or 〈rs〉.

Example 3.6. In D10 the subgroups of index 2 are 〈r〉, 〈r2, s〉, and 〈r2, rs〉, which are
nonconjugate. The only subgroup of index 4 is 〈r2〉, all 5 subgroups with index 5 are
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conjugate to 〈r5, s〉, and a subgroup with index 10 is 〈r5〉 or is conjugate to 〈r10, s〉 or
〈r10, rs〉.

Example 3.7. When k ≥ 3, the dihedral group D2k has three conjugacy classes of sub-
groups with each index 2, 4, . . . , 2k−1.

We now classify the normal subgroups of Dn, using a method that does not rely on our
listing of all subgroups or all conjugacy classes of subgroups.

Theorem 3.8. In Dn, every subgroup of 〈r〉 is a normal subgroup of Dn; these are the
subgroups 〈rd〉 for d | n and have index 2d. This describes all proper normal subgroups of
Dn when n is odd, and the only additional proper normal subgroups when n is even are
〈r2, s〉 and 〈r2, rs〉 with index 2.

In particular, there is at most one normal subgroup per index in Dn except for three
normal subgroups 〈r〉, 〈r2, s〉, and 〈r2, rs〉 of index 2 when n is even.

Proof. We leave the cases n = 1 and n = 2 to the reader, and take n ≥ 3.
Since 〈r〉 is a cyclic normal subgroup of Dn all of its subgroups are normal in Dn, and

by the structure of subgroups of cyclic groups these have the form 〈rd〉 where d | n.
It remains to find the proper normal subgroups of Dn that are not inside 〈r〉. Every

subgroup of Dn not in 〈r〉 must contain a reflection.
First suppose n is odd. All the reflections in Dn are conjugate, so a normal subgroup

containing one reflection must contain all n reflections, which is half of Dn. The subgroup
also contains the identity, so its size is over half of the size of Dn, and thus the subgroup is
Dn. So every proper normal subgroup of Dn is contained in 〈r〉.

Next suppose n is even. The reflections in Dn fall into two conjugacy classes of size n/2,
represented by r and rs, so a proper normal subgroup N of Dn containing a reflection will
contain half the reflections or all the reflections. A proper subgroup of Dn can’t contain
all the reflections, so N contains exactly n/2 reflections. Since N contains the identity,
|N | > n/2, so [Dn : N ] < (2n)/(n/2) = 4. A reflection in Dn lying outside of N has order 2
in Dn/N , so [Dn : N ] is even. Thus [Dn : N ] = 2, and conversely every subgroup of index
2 is normal. Since Dn/N has order 2 we have r2 ∈ N . The subgroup 〈r2〉 in Dn is normal
with index 4, so the subgroups of index 2 in Dn are obtained by taking the inverse image
in Dn of subgroups of index 2 in Dn/〈r2〉 = {1, r, s, rs} ∼= Z/(2)× Z/(2):

• the inverse image of {1, r} is 〈r〉,
• the inverse image of {1, s} is 〈r2, s〉,
• the inverse image of {1, rs} is 〈r2, rs〉. �

Example 3.9. For an odd prime p, the only nontrivial proper normal subgroup of Dp is
〈r〉, with index 2.

Example 3.10. In D6, the normal subgroups of index 2 are 〈r〉, 〈r2, s〉, and 〈r2, rs〉. The
normal subgroup of index 4 is 〈r2〉 and of index 6 is 〈r3〉. There is no normal subgroup of
index 3.

Example 3.11. The normal subgroups of D10 of index 2 are 〈r〉, 〈r2, s〉, and 〈r2, rs〉. The
normal subgroup of index 4 is 〈r2〉 and of index 10 is 〈r5〉. There is no normal subgroup of
index 5.

Example 3.12. When k ≥ 3, the dihedral group D2k has one normal subgroup of each
index except for three normal subgroups of index 2.
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The “exceptional” normal subgroups 〈r2, s〉 and 〈r2, rs〉 in Dn for even n ≥ 4 can be
realized as kernels of explicit homomorphisms Dn → Z/(2). In Dn/〈r2, s〉 we have r2 = 1
and s = 1, so rasb = ra with a only mattering mod 2. In Dn/〈r2, rs〉 we have r2 = 1 and
s = r−1 = r, so rasb = ra+b, with the exponent only mattering mod 2. Therefore two
homomorphisms Dn → Z/(2) are rasb 7→ a mod 2 and rasb 7→ a+ b mod 2. These functions
are well-defined since n is even and their respective kernels are 〈r2, s〉 and 〈r2, rs〉.

We can also see that these functions are homomorphisms using the general multiplication
rule in Dn:

rasb · rcsd = ra+(−1)bcsb+d.

We have a+ (−1)bc ≡ a+ c mod 2 and a+ (−1)bc+ b+ d ≡ (a+ b) + (c+ d) mod 2.

4. An infinite dihedral-like group

In Theorem 2.1, the group is assumed to be finite. This finiteness is used in the proof to
be sure that xy has a finite order. It is reasonable to ask if the finiteness assumption can
be removed: after all, could a nonabelian group generated by two elements of order 2 really
be infinite? Yes! In this appendix we construct such a group and show that there is only
one such group up to isomorphism.

Our group will be built out of the linear functions f(x) = ax + b where a = ±1 and
b ∈ Z, with the group law being composition. For instance, the inverse of −x is itself and
the inverse of x + 5 is x − 5. This group is called the affine group over Z and is denoted
Aff(Z). The label “affine” is just a fancy name for “linear function with a constant term.”
In linear algebra, the functions that are called linear all send 0 to 0, so ax+ b is not linear
in that sense (unless b = 0). Calling a linear function “affine” avoids confusion with the
more restricted linear algebra sense of the term “linear function.”

Since polynomials ax+ b compose in the same way that the matrices ( a b0 1 ) multiply, we
can consider such matrices, with a = ±1 and b ∈ Z, as another model for the group Aff(Z).
We will adopt this matrix model for the practical reason that it is simpler to write down
products and powers with matrices rather than compositions with polynomials.

Theorem 4.1. The group Aff(Z) is generated by (−1 0
0 1 ) and ( 1 1

0 1 ).

In the polynomial model for Aff(Z), the two generators in Theorem 4.1 are the functions
−x and x+ 1.

Proof. The elements of Aff(Z) have the form

(4.1)

(
1 k
0 1

)
=

(
1 1
0 1

)k
or (

−1 `
0 1

)
=

(
1 `
0 1

)(
−1 0
0 1

)
=

(
1 1
0 1

)`(−1 0
0 1

)
. �

While (−1 0
0 1 ) has order 2, ( 1 1

0 1 ) has infinite order. The group Aff(Z) can be generated
by two elements of order 2.

Corollary 4.2. The group Aff(Z) is generated by (−1 0
0 1 ) and (−1 −10 1 ), which each have

order 2.
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Proof. Check (−1 −10 1 ) has order 2. By Theorem 4.1, it now suffices to show ( 1 1
0 1 ) can

be generated from (−1 0
0 1 ) and (−1 −10 1 ). It is their product, taken in the right order:

(−1 0
0 1 )(−1 −10 1 ) = ( 1 1

0 1 ). �

In the polynomial model for Aff(Z), the two generators of order 2 in Corollary 4.2 are −x
and −x−1. These are reflections across 0 and across −1/2 (solve −x = x and −x−1 = x).
In Figure 3, we color integers the same when they are paired together by the reflection.

1−1 2−2 3−3 4−4

0−1 1−2 2−3 3−4

Figure 3. The reflections −x and −x− 1 on Z.

Corollary 4.3. The matrices (−1 0
0 1 ) and (−1 −10 1 ) are not conjugate in Aff(Z) and do not

commute with a common element of order 2 in Aff(Z).

Proof. Every conjugate of (−1 0
0 1 ) in Aff(Z) has the form (−1 2b

0 1 ) for b ∈ Z, and (−1 −10 1 )

does not have this form. Thus, the matrices are not conjugate. In Aff(Z), (−1 0
0 1 ) commutes

only with the identity and itself. �

Corollary 4.2 shows Aff(Z) is an example of an infinite group generated by two elements
of order 2. Are there other such groups, not isomorphic to Aff(Z)? No.

Theorem 4.4. Every infinite group generated by two elements of order 2 is isomorphic to
Aff(Z).

Proof. Write such a group as G and its two generators of order 2 as x and y. Since G is infi-
nite, x and y do not commute. (Otherwise 〈x, y〉 = {1, x, y, xy} has only 4 elements.) Since
x−1 = x and y−1 = y, we do not need to use exponents on x and y when writing products.
The elements of G are strings of x’s and y’s, such as xyyxxyxyxyxyxyxxy. The relations
x2 = 1 and y2 = 1 let us cancel all pairs of adjacent x’s or y’s, so xyyxxyxyxyxyxyxxy can
be simplified to

xyxyxyxyx = (xy)4x.

Also, the inverse of such a string is again a string of x’s and y’s.
Every element of G can be written as a product of alternating x’s and y’s, so there are

four kinds of elements, depending on the starting and ending letter: start with x and end
with y, start with y and end with x, or start and end with the same letter. These four types
of strings can be written as

(4.2) (xy)k, (yx)k, (xy)kx, (yx)ky,

where k is a non-negative integer.
Before we look more closely at these products, let’s indicate how the correspondence

between G and Aff(Z) is going to work out. We want to think of x as (−1 0
0 1 ) and y as

(−1 −10 1 ). Therefore the product xy should correspond to (−1 0
0 1 )(−1 −10 1 ) = ( 1 1

0 1 ), and in
particular have infinite order. Does xy really have infinite order? Yes, because if xy has
finite order, the proof of Theorem 2.1 shows G = 〈x, y〉 is a finite group. (The finiteness
hypothesis on the group in the statement of Theorem 2.1 was only used in its proof to show
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xy has finite order; granting that xy has finite order, the rest of the proof of Theorem 2.1
shows 〈x, y〉 has to be a finite group.)

The proof of Theorem 4.1 shows each element of Aff(Z) is ( 1 1
0 1 )k or ( 1 1

0 1 )k(−1 0
0 1 ) for some

k ∈ Z. This suggests we should show each element of G has the form (xy)k or (xy)kx.
Let z = xy, so z−1 = y−1x−1 = yx. Also xzx−1 = yx, so

(4.3) xzx−1 = z−1.

The elements in (4.2) have the form zk, z−k, zkx, and z−ky, where k ≥ 0. Therefore elements
of the first and second type are just integral powers of z. Since z−ky = z−kyxx = z−k−1x,
elements of the third and fourth type are just integral powers of z multiplied on the right
by x.

Now we make a correspondence between Aff(Z) and G = 〈x, y〉, based on the formulas
in (4.1) and (4). Let f : Aff(Z)→ G by

f

(
1 k
0 1

)
= zk, f

(
−1 `
0 1

)
= z`x.

This function is onto, since we showed each element of G is a power of z or a power of z
multiplied on the right by x. The function f is one-to-one, since z has infinite order (and,
in particular, no power of z is equal to x, which has order 2). By taking cases, the reader
can check f(AB) = f(A)f(B) for all A and B in Aff(Z). Some cases will need the relation
xzn = z−nx, which follows from raising both sides of (4.3) to the n-th power. �

Remark 4.5. The abstract group 〈x, y〉 from this proof is the set of all words in x and y
(like xyxyx) subject only to the relation that all pairs of adjacent x’s or adjacent y’s can
be cancelled (e.g., xyxxxy = xyxy). Because the only relation imposed (beyond the group
axioms) is that xx and yy are the identity, this group is called a free group on two elements
of order 2.

Corollary 4.6. Every nontrivial quotient group of Aff(Z) is isomorphic to Aff(Z) or to
Dn for some n ≥ 1.

Proof. Since Aff(Z) is generated by two elements of order 2, each nontrivial quotient group
of Aff(Z) is generated by two elements that have order 1 or 2, and not both have order 1.
If one of the generators has order 1 then the quotient group is isomorphic to Z/(2) = D1.
If both generators have order 2 then the quotient group is isomorphic to Aff(Z) if it is
infinite, by Theorem 4.4, and it is isomorphic to some Dn if it is finite since the finite
groups generated by two elements of order 2 are the dihedral groups. �

Every dihedral group arises as a quotient of Aff(Z). For n ≥ 3, reducing matrix entries

modulo n gives a homomorphism Aff(Z)→ GL2(Z/(n)) whose image is the matrix group D̃n

from (1.3), which is isomorphic to Dn. The map ( a b0 1 ) 7→ (a, b mod 2) is a homomorphism
from Aff(Z) onto {±1} × Z/(2) ∼= D2 and the map ( a b0 1 ) 7→ a is a homomorphism from
Aff(Z) onto {±1} ∼= D1. Considering the kernels of these homomorphisms for n ≥ 3, n = 2,
and n = 1 reveals that we can describe all of these maps onto dihedral groups in a uniform
way: for all n ≥ 1, 〈( 1 n

0 1 )〉 C Aff(Z) and Aff(Z)/〈( 1 n
0 1 )〉 ∼= Dn. This common pattern is

another justification for our definition of the dihedral groups D1 and D2.
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