COUNTING SUBGROUPS OF $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}$

KEITH CONRAD

Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number $N_{a, b, d}$ of subgroups of order p^{d} in $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}$:

$$
N_{a, b, d}=\left|\left\{H \subset \mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}:|H|=p^{d}\right\}\right|
$$

This is symmetric in a and $b\left(N_{a, b, d}=N_{b, a, d}\right)$, so when it is convenient we can limit attention to the case $a \leq b$. Trivially $N_{a, b, d}=0$ if $d>a+b$, so we may assume $0 \leq d \leq a+b$. For $1 \leq a \leq b$, and $a+b \geq d$, we will see that

$$
N_{a, b, d}=1+p+p^{2}+\cdots+p^{r}
$$

where $r=r(a, b)$ is a somewhat irregular function of a and b (the precise rule is given in Theorem 3).

Throughout, we write

$$
G_{a, b}=\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}
$$

For an abelian group G, its m-torsion subgroup will be denoted $G[m]=\left\{g \in G: g^{m}=e\right\}$.
We will develop a recursive formula for $N_{a, b, d}$ that requires knowing in advance how many cyclic subgroups there are of each size in $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}$. So first we work out a formula for the number of cyclic subgroups. Write it as

$$
C_{a, b, d}=\mid\left\{H \subset \mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}:|H|=p^{d}, H \text { is cyclic }\right\} \mid
$$

Theorem 1. When $1 \leq a \leq b$,

$$
C_{a, b, d}= \begin{cases}1, & \text { if } d=0 \\ p^{d-1}+p^{d}, & \text { if } 1 \leq d \leq a \\ p^{a}, & \text { if } a+1 \leq d \leq b \quad(\text { if } a \neq b), \\ 0, & \text { if } b<d\end{cases}
$$

In particular, $C_{a, b, 1}=1+p$.
Proof. The cases $d=0$ and $d>b$ are clear. So we may assume $1 \leq d \leq b$. To count subgroups of order p^{d} we count elements of order p^{d} and then divide by $\varphi\left(p^{\bar{d}}\right)$ (the number of generators a cyclic group of order p^{d} has). An element has order p^{d} when it's killed by p^{d} but not by p^{d-1}, so

$$
C_{a, b, d}=\frac{\left|G_{a, b}\left[p^{d}\right]\right|-\left|G_{a, b}\left[p^{d-1}\right]\right|}{\varphi\left(p^{d}\right)}
$$

How large is $G_{a, b}\left[p^{i}\right]$? If $0 \leq i \leq a$,

$$
G_{a, b}\left[p^{i}\right]=p^{a-i} \mathbf{Z} / p^{a} \mathbf{Z} \times p^{b-i} \mathbf{Z} / p^{b} \mathbf{Z} \Longrightarrow \text { size is } p^{2 i}
$$

If $a \leq i \leq b$,

$$
G_{a, b}\left[p^{i}\right]=\mathbf{Z} / p^{a} \mathbf{Z} \times p^{b-i} \mathbf{Z} / p^{b} \mathbf{Z} \Longrightarrow \text { size is } p^{a+i}
$$

If $i>b$,

$$
G_{a, b}\left[p^{i}\right]=\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z} \Longrightarrow \text { size is } p^{a+b}
$$

Putting this all together,

$$
\left|G_{a, b}\left[p^{i}\right]\right|= \begin{cases}p^{2 i}, & \text { if } 0 \leq i \leq a, \\ p^{a+i}, & \text { if } a \leq i \leq b, \\ p^{a+b}, & \text { if } i \geq b\end{cases}
$$

(The overlapping cases are consistent at $i=a$ and $i=b$.)
Now we feed the above formula for $\left|G_{a, b}\left[p^{i}\right]\right|$ at $i=d$ and $i=d-1$ into the formula for $C_{a, b, d}$. If $1 \leq d \leq a$,

$$
C_{a, b, d}=\frac{p^{2 d}-p^{2(d-1)}}{p^{d-1}(p-1)}=\frac{p^{2 d-2}\left(p^{2}-1\right)}{p^{d-1}(p-1)}=p^{d-1}(p+1)=p^{d-1}+p^{d}
$$

If $a<b$ and $a+1 \leq d \leq b$,

$$
C_{a, b, d}=\frac{p^{a+d}-p^{a+d-1}}{p^{d-1}(p-1)}=\frac{p^{a+d-1}(p-1)}{p^{d-1}(p-1)}=p^{a} .
$$

Theorem 2. For $1 \leq a \leq b$, we have

$$
N_{a, b, 0}=1
$$

and

$$
N_{a, b, 1}=C_{a, b, 1}=1+p
$$

If $d \geq 2$ then

$$
N_{a, b, d}=C_{a, b, d}+N_{a-1, b-1, d-2} .
$$

Proof. A group of order p is cyclic, so

$$
N_{a, b, 1}=C_{a, b, 1}=1+p
$$

Now take $d \geq 2$. We can distinguish cyclic from noncyclic subgroups of $G_{a, b}$ using p-torsion. The p-torsion in $G_{a, b}$ is

$$
G_{a, b}[p]=p^{a-1} \mathbf{Z} / p^{a} \mathbf{Z} \times p^{b-1} \mathbf{Z} / p^{b} \mathbf{Z}
$$

which has order p^{2}, so

$$
G_{a . b} / G_{a, b}[p] \cong \mathbf{Z} / p^{a-1} \mathbf{Z} \times \mathbf{Z} / p^{b-1} \mathbf{Z} \cong G_{a-1, b-1}
$$

For a nontrivial subgroup $H \subset G_{a, b}$, if H is cyclic then $H[p]$ has order p, while if H is noncyclic then $H \cong \mathbf{Z} / p^{j} \mathbf{Z} \times \mathbf{Z} / p^{k} \mathbf{Z}$ for some positive integers j and k, so $H[p]$ has order p^{2}. Since $H[p] \subset G_{a, b}[p]$ and $G_{a, b}[p]$ has order $p^{2}, H[p]=G_{a, b}[p]$. So

$$
H \text { not cyclic } \Longrightarrow G_{a, b}[p] \subset H \subset G_{a, b}
$$

The converse is true as well, since $G_{a, b}[p] \cong(\mathbf{Z} / p \mathbf{Z})^{2}$ contains more than one subgroup of order p, so it can't lie inside a cyclic group. So for $2 \leq d \leq a+b$,

$$
\begin{aligned}
\mid\left\{H \subset G_{a, b}:|H|=p^{d}, H \text { not cyclic }\right\} \mid & =\left|\left\{\bar{H} \subset G_{a, b} / G_{a, b}[p]:|\bar{H}|=p^{d-2}\right\}\right| \\
& =N_{a-1, b-1, d-2},
\end{aligned}
$$

which leads to a recursive formula: $N_{a, b, d}$ is the number of cyclic subgroups of $G_{a, b}$ with order p^{d} (which is $C_{a, b, d}$) plus the number of noncyclic subgroups of $G_{a, b}$ with order p^{d} (which we just showed is $N_{a-1, b-1, d-2}$ if $d \geq 2$).

Using Theorems 1 and 2 (and sometimes the equation $N_{a, b, d}=N_{a, b, a+b-d}$, which follows from duality theory for finite abelian groups), the following formulas for $N_{a, b, d}$ are found when $1 \leq a \leq b$ and $1 \leq d \leq 5$:

$$
\begin{gathered}
N_{a, b, 1}=1+p, \\
N_{a, b, 2}= \begin{cases}1, & \text { if } a=b=1, \\
1+p, & \text { if } a=1, b \geq 2, \\
1+p+p^{2}, & \text { if } a \geq 2,\end{cases} \\
N_{a, b, 3}= \begin{cases}1, & \text { if } a=1, b=2, \\
1+p, & \text { if } a=1, b \geq 3 ; a=2, b=2, \\
1+p+p^{2}, & \text { if } a=2, b \geq 3, \\
1+p+p^{2}+p^{3}, & \text { if } a \geq 3,\end{cases} \\
N_{a, b, 4}= \begin{cases}1, & \text { if } a=1, b=3 ; a=2, b=2 \\
1+p, & \text { if } a=1, b \geq 4 ; a=2, b=3 \\
1+p+p^{2}, & \text { if } a=2, b \geq 4 ; a=3, b=3 \\
1+p+p^{2}+p^{3}, & \text { if } a=3, b \geq 4, \\
1+p+p^{2}+p^{3}+p^{4}, & \text { if } a \geq 4,\end{cases}
\end{gathered}
$$

and

$$
N_{a, b, 5}= \begin{cases}1, & \text { if } a=1, b=4 ; a=2, b=3, \\ 1+p, & \text { if } a=1, b \geq 5 ; a=2, b=4 ; a=3, b=3, \\ 1+p+p^{2}, & \text { if } a=2, b \geq 5 ; a=3, b=4, \\ 1+p+p^{2}+p^{3}, & \text { if } a=3, b \geq 5 ; a=4, b=4, \\ 1+p+p^{2}+p^{3}+p^{4}, & \text { if } a=4, b \geq 5, \\ 1+p+p^{2}+p^{3}+p^{4}+p^{5}, & \text { if } a \geq 5 .\end{cases}
$$

Examine these according to the constraints on a and b for each formula for $N_{a, b, d}$. The pattern of cases where inequalities on b appear is obvious: $a=1, b \geq d$, then $a=2, b \geq d$, then $a=3, b \geq d$, and so on as a increases up to $d-1$. The remaining cases where a and b both have specified values are organized according to increasing values of $a+b$ for $1 \leq a \leq b \leq d-1$. We are led to the following general theorem.

Theorem 3. If $1 \leq a \leq b$, then

$$
N_{a, b, d}= \begin{cases}1+p+\cdots+p^{d}, & \text { if } 0 \leq d \leq a, \\ 1+p+\cdots+p^{a}, & \text { if } a \leq d \leq b, \\ 1+p+\cdots+p^{a+b-d}, & \text { if } b \leq d \leq a+b, \\ 0, & \text { if } a+b<d .\end{cases}
$$

Proof. Use induction on b.
Example 4. When $a=b$,

$$
N_{a, a, d}= \begin{cases}1+p+\cdots+p^{d}, & \text { if } 0 \leq d \leq a \\ 1+p+\cdots+p^{2 a-d}, & \text { if } a \leq d \leq 2 a\end{cases}
$$

Theorem 3 says that as d increases from 0 to $a+b, N_{a, b, d}$ starts out as $1,1+p, 1+p+p^{2}, \ldots$, increasing by the next power of p each time until reaching $1+p+\cdots+p^{a}$ at $d=a$. Then $N_{a, b, d}$ stays at this value until d reaches b, after which the highest power of p is removed for each successive value of d until $N_{a, b, d}$ reaches $N_{a, b, a+b}=1$.
Corollary 5. Suppose $1 \leq a \leq b$.

1. If $1 \leq d \leq a$ then $N_{a, b, d}=N_{a, b, d-1}+p^{d}$.
2. If $a<d \leq b$ then $N_{a, b, d}=N_{a, b, d-1}$.
3. If $b<d \leq a+b$ then $N_{a, b, d}=N_{a, b, d-1}-p^{a+b-d+1}$.

In particular, $N_{a, b, d} \equiv N_{a, b, d-1} \bmod p^{d}$ if $1 \leq d \leq b$ but not necessarily if $b<d \leq a+b$.
Proof. From the description of how $N_{a, b, d}$ rises, plateaus, and then falls, this is obvious.
For each a, b, and d, observe that $N_{a, b, d}$ has the same formula for all p. So $N_{a, b, d}$ can be described by a "universal" formula for all primes. More generally, if A is a finite abelian p-group that is a product of cyclic groups of orders $p^{e_{1}}, \ldots, p^{e_{r}}\left(e_{i}>0\right)$, then the number of subgroups of A with a particular order p^{d} is a universal polynomial function of p (same formula for all p) that is determined by d and the exponents e_{i}. Even more generally, the number of subgroups H of A such that H and A / H have specified cyclic decompositions is given by a universal polynomial in p that is determined by the sizes of the cyclic components of $H, A / H$, and A; these universal polynomials in p are called Hall polynomials. There is also a formula, due to Delsarte, for the number of subgroups of A with a given isomorphism type. See [1] and [2].

We can formulate Theorem 3 in terms of counting subgroups with a particular index rather than a particular order.

Theorem 6. If $1 \leq a \leq b$, let $I_{a, b, m}$ be the number of subgroups of $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}$ with index p^{m}. Then for $0 \leq m \leq a+b$,

$$
I_{a, b, m}= \begin{cases}1+p+\cdots+p^{m}, & \text { if } 0 \leq m \leq a \\ 1+p+\cdots+p^{a}, & \text { if } a \leq m \leq b, \\ 1+p+\cdots+p^{a+b-m}, & \text { if } b \leq m \leq a+b .\end{cases}
$$

Proof. For $0 \leq m \leq a+b$, a subgroup of $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{b} \mathbf{Z}$ has index p^{m} if and only if it has order p^{a+b-m}, so $I_{a, b, m}=N_{a, b, a+b-m}$. Now use the formulas in Theorem 3.
Corollary 7. For $a \geq 1$ and $m \geq 0$, the number of subgroups of $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z}$ with index p^{m} is

$$
\begin{cases}1+p+\cdots+p^{m}, & \text { if } 0 \leq m \leq a, \\ 1+p+\cdots+p^{a}, & \text { if } a \leq m\end{cases}
$$

Proof. If $H \subset \mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z}$ has index p^{m} then for each $M \geq m$, we have $\{0\} \times p^{M} \mathbf{Z} \subset H$, so the number of subgroups of $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z}$ with index p^{m} is the number of subgroups of $\mathbf{Z} / p^{a} \mathbf{Z} \times \mathbf{Z} / p^{M} \mathbf{Z}$ with index p^{m} when $M \geq m$. Taking M large enough that also $M \geq a$, the first two formulas in Theorem 6 with $b=M$ gives the desired counts.

References

[1] G. Constantine and R. S. Kulkarni, "On a result of S. Delsarte," Proc. Amer. Math. Soc. 92 (1984), 149-152.
[2] S. Delsarte, "Fonctions de Möbius sur les groupes abéliens finis," Annals of Math. 49 (1948), 600-609.

