COUNTING SUBGROUPS OF Z/p®Z x Z/p’Z

KEITH CONRAD

Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number
Nap.a of subgroups of order p? in Z/p*Z x Z/p*Z:

Napa = |{H C Z/p"Z x Z/p"Z : |H| = p*}|.

This is symmetric in a and b (Ng g4 = Npq,4), 0 when it is convenient we can limit attention
to the case a < b. Trivially N,pq = 0if d > a 4 b, so we may assume 0 < d < a + b. For
1<a<b,and a + b > d, we will see that

Nopa=1+p+p*+-+p,

where r = r(a,b) is a somewhat irregular function of a and b (the precise rule is given in
Theorem 3).

Throughout, we write

Gup = Z/p"Z x Z/p"Z.

For an abelian group G, its m-torsion subgroup will be denoted G[m] = {g € G : g¢" = e}.

We will develop a recursive formula for N, ; 4 that requires knowing in advance how many
cyclic subgroups there are of each size in Z/p®Z x Z/p’Z. So first we work out a formula
for the number of cyclic subgroups. Write it as

Capa=|{H C Z/p"Z x Z/p"Z : |H| = p®, H is cyclic}|.

Theorem 1. When 1 <a < b,

1, if d=0,
C., =P, dl<d<a,
” p%, ifa+1<d<b (ifa#b),
0, if b <d.

In particular, Cyp1 =1+ p.

Proof. The cases d = 0 and d > b are clear. So we may assume 1 < d < b. To count
subgroups of order p? we count elements of order p¢ and then divide by go(pd) (the number
of generators a cyclic group of order p? has). An element has order p? when it’s killed by

p? but not by p?~1, so

oo Gaplp?]] — |Gapp?]]
a,b,d — a .
©(p?)

How large is G [p']? If 0 <i < a,
Ga7b[pi] = p*VZ/pZ x p" VL P2 = size is p?.
If a <1i<b,
Gaplp'] = Z/p"Z x p*7'Z)p’Z = size is p* T,
If i > b,

Ga,b[pi] =7Z/p"Z x Z/pr — size is p“+b.
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Putting this all together,
p%, if 0 <i<a,
|Gaplp'll = { p™F,  ifa<i<b,
potl. if i > b.
(The overlapping cases are consistent at ¢ = a and i = b.)

Now we feed the above formula for |G, [p’]| at i = d and i = d — 1 into the formula for
Oa,b7d- If1 < d < a,

2d _ ,2(d—1) 2d—2(,2
D P P (pt — 1) d—1 d—1 | d
Capd = = =p" (p+1)=p" +p"
¢ ptp-1) pillp-1)

Ifa<banda+1<d<hb,

d d— d—
potd — potd=l  patd=lp 1)

C = = = .
“hd = T pd=1(p — 1) P p—1)

Theorem 2. For1 < a <b, we have
Napo =1

and

Na,b,l = Ca,b,l =1 +p.
If d > 2 then

Nopa=Capa+ No—1p—1,d—2-

Proof. A group of order p is cyclic, so

Na,b,l = Ca,b,l =1 +D.

Now take d > 2. We can distinguish cyclic from noncyclic subgroups of G, ;, using p-torsion.
The p-torsion in G is

Gaplpl = p"'Z/p"Z x p"'Z/p"Z,
which has order p?, so

Gap/Gaplp) ZZ/p* ' Zx Z/p" 2= Gy 1.

For a nontrivial subgroup H C Gy, if H is cyclic then H[p| has order p, while if H is
noncyclic then H = Z/pZ x Z/p*Z for some positive integers j and k, so H[p|] has order
p?. Since H[p] C Gaplp] and G, [p] has order p?, H[p| = Gop[p]. So

H not cyclic = Gaplp] C H C Gyp.

The converse is true as well, since G, [p] = (Z/pZ)?* contains more than one subgroup of
order p, so it can’t lie inside a cyclic group. So for 2 < d < a+ b,

{H C Gap: |H| =p, H not cyclic}| = [{H C Gap/Gaplp] : [H| = p" 2}

= Ng_1p-1,d-2,

which leads to a recursive formula: Ngj ¢ is the number of cyclic subgroups of G, with
order p? (which is Ca,b,a) plus the number of noncyclic subgroups of G, with order p
(which we just showed is Ng_j p—1,4-2 if d > 2). O
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Using Theorems 1 and 2 (and sometimes the equation Ny p 4 = Ngp q+5—d, Which follows
from duality theory for finite abelian groups), the following formulas for N, 4 are found
when 1 <a<band1l<d<5h:

Nap1 =1+ p,
1, ifa=b=1,
Nop2=41+p, ifa=1,b>2,
1+p+p? ifa>2,
1, ifa=1,b=2,
1+p, ifa=1,b>3;a=2,b=2,
Naps = 5 ,
1+p+p7, ifa=2,b>3,
l+p+p*+p3 ifa>3,
(1, ifa=1,b=3a=20b=2,
1+p, ifa=1,b>4,a=2,b=3,
Napa =14 1+p+p? ifa=2,b>4;a=3,b=3,
1+p+p* +p°, ifa=3b>4,
(1+p+p*+p°+ph, ifa>4,
and
1, ifa=1,b=4;a=2,b=3,
1+p, ifa=1,b>5a=2b=4;a=3,b=3,
1+p+p? if a=2,b>5a=30b=4,
Naps = 1 5 3 L e
+p+p°+p7, ifa=3,b>5,a=4,b=4,
L+p+p*+p3+pt ifa=4,b>5,
L+p+p*+p°+p'+p° ifa>5.

Examine these according to the constraints on a and b for each formula for N, 4. The
pattern of cases where inequalities on b appear is obvious: ¢ = 1,b > d, then a = 2,b > d,
then ¢ = 3,b > d, and so on as a increases up to d — 1. The remaining cases where a
and b both have specified values are organized according to increasing values of a + b for
1<a<b<d—1. We are led to the following general theorem.

Theorem 3. If 1 < a <b, then

Lp+-+ph, if0<d<a,
1+p+---+p% ifa<d<b,
Na,b,d: a+b—d .
1+p+---+p , ifb<d<a+hb,
0, ifa+b<d.
Proof. Use induction on b. O

Example 4. When a = b,

a,a,d —

l+p+---+p* % ifa<d<2a.
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Theorem 3 says that as d increases from 0 to a+b, Ny g starts out as 1, 1+p, 1+p+p?,...,
increasing by the next power of p each time until reaching 1 +p+ --- + p® at d = a. Then
Ng pq stays at this value until d reaches b, after which the highest power of p is removed for
each successive value of d until N, 4 reaches Ngp g4 = 1.

Corollary 5. Suppose 1 < a < b.
1. If 1 <d < a then Napa = Napa-1 —|—pd.
2. If a<d<b then Na,b,d = Na,b,d—l-
3. If b<d<a+bthen Na,b,d = Na,b,dfl — pa+b_d+1.
In particular, Ngpq = Ngpa—1 mod p? if 1 < d < b but not necessarily if b < d < a + b.

Proof. From the description of how N, 4 rises, plateaus, and then falls, this is obvious. [

For each a, b, and d, observe that N, 4 has the same formula for all p. So N, 4 can be
described by a “universal” formula for all primes. More generally, if A is a finite abelian
p-group that is a product of cyclic groups of orders p®*,...,p" (e; > 0), then the number
of subgroups of A with a particular order p? is a universal polynomial function of p (same
formula for all p) that is determined by d and the exponents e;. Even more generally, the
number of subgroups H of A such that H and A/H have specified cyclic decompositions is
given by a universal polynomial in p that is determined by the sizes of the cyclic components
of H, A/H, and A; these universal polynomials in p are called Hall polynomials. There is
also a formula, due to Delsarte, for the number of subgroups of A with a given isomorphism
type. See [1] and [2].

We can formulate Theorem 3 in terms of counting subgroups with a particular index
rather than a particular order.

Theorem 6. If1 < a < b, let I,p,m, be the number of subgroups of Z/p*Z x Z/p°Z with
index p™. Then for 0 <m < a+0b,
1+p+---+p", if 0 <m <a,
Ia,b,m: 1+p+---—|—pa, Zfa§m§b7
L+p+--+prtt=m  ifb<m<a+b.

Proof. For 0 < m < a + b, a subgroup of Z/p*Z x Z/p’Z has index p™ if and only if it has
order p®tt=™ so Iovm = Napatb—m- Now use the formulas in Theorem 3. ]

Corollary 7. For a > 1 and m > 0, the number of subgroups of Z/p*Z x Z with index p™
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IL+p+---+p", f0<m<a,
L+p+---+p% ifa<m.

Proof. If H C Z/p®Z x Z has index p™ then for each M > m, we have {0} x pMZ C H,
so the number of subgroups of Z/p®Z x Z with index p™ is the number of subgroups of
Z/p*Z x Z/pMZ with index p™ when M > m. Taking M large enough that also M > a,
the first two formulas in Theorem 6 with b = M gives the desired counts. ([l
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