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Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number
Na,b,d of subgroups of order pd in Z/paZ× Z/pbZ:

Na,b,d = |{H ⊂ Z/paZ× Z/pbZ : |H| = pd}|.
This is symmetric in a and b (Na,b,d = Nb,a,d), so when it is convenient we can limit attention
to the case a ≤ b. Trivially Na,b,d = 0 if d > a + b, so we may assume 0 ≤ d ≤ a + b. For
1 ≤ a ≤ b, and a + b ≥ d, we will see that

Na,b,d = 1 + p + p2 + · · ·+ pr,

where r = r(a, b) is a somewhat irregular function of a and b (the precise rule is given in
Theorem 3).

Throughout, we write
Ga,b = Z/paZ× Z/pbZ.

For an abelian group G, its m-torsion subgroup will be denoted G[m] = {g ∈ G : gm = e}.
We will develop a recursive formula for Na,b,d that requires knowing in advance how many

cyclic subgroups there are of each size in Z/paZ × Z/pbZ. So first we work out a formula
for the number of cyclic subgroups. Write it as

Ca,b,d = |{H ⊂ Z/paZ× Z/pbZ : |H| = pd, H is cyclic}|.

Theorem 1. When 1 ≤ a ≤ b,

Ca,b,d =


1, if d = 0,

pd−1 + pd, if 1 ≤ d ≤ a,

pa, if a + 1 ≤ d ≤ b (if a 6= b),

0, if b < d.

In particular, Ca,b,1 = 1 + p.

Proof. The cases d = 0 and d > b are clear. So we may assume 1 ≤ d ≤ b. To count
subgroups of order pd we count elements of order pd and then divide by ϕ(pd) (the number
of generators a cyclic group of order pd has). An element has order pd when it’s killed by
pd but not by pd−1, so

Ca,b,d =
|Ga,b[p

d]| − |Ga,b[p
d−1]|

ϕ(pd)
.

How large is Ga,b[p
i]? If 0 ≤ i ≤ a,

Ga,b[p
i] = pa−iZ/paZ× pb−iZ/pbZ =⇒ size is p2i.

If a ≤ i ≤ b,
Ga,b[p

i] = Z/paZ× pb−iZ/pbZ =⇒ size is pa+i.

If i > b,
Ga,b[p

i] = Z/paZ× Z/pbZ =⇒ size is pa+b.
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Putting this all together,

|Ga,b[p
i]| =


p2i, if 0 ≤ i ≤ a,

pa+i, if a ≤ i ≤ b,

pa+b, if i ≥ b.

(The overlapping cases are consistent at i = a and i = b.)
Now we feed the above formula for |Ga,b[p

i]| at i = d and i = d− 1 into the formula for
Ca,b,d. If 1 ≤ d ≤ a,

Ca,b,d =
p2d − p2(d−1)

pd−1(p− 1)
=

p2d−2(p2 − 1)

pd−1(p− 1)
= pd−1(p + 1) = pd−1 + pd.

If a < b and a + 1 ≤ d ≤ b,

Ca,b,d =
pa+d − pa+d−1

pd−1(p− 1)
=

pa+d−1(p− 1)

pd−1(p− 1)
= pa.

�

Theorem 2. For 1 ≤ a ≤ b, we have

Na,b,0 = 1

and

Na,b,1 = Ca,b,1 = 1 + p.

If d ≥ 2 then

Na,b,d = Ca,b,d + Na−1,b−1,d−2.

Proof. A group of order p is cyclic, so

Na,b,1 = Ca,b,1 = 1 + p.

Now take d ≥ 2. We can distinguish cyclic from noncyclic subgroups of Ga,b using p-torsion.
The p-torsion in Ga,b is

Ga,b[p] = pa−1Z/paZ× pb−1Z/pbZ,

which has order p2, so

Ga.b/Ga,b[p] ∼= Z/pa−1Z× Z/pb−1Z ∼= Ga−1,b−1.

For a nontrivial subgroup H ⊂ Ga,b, if H is cyclic then H[p] has order p, while if H is

noncyclic then H ∼= Z/pjZ × Z/pkZ for some positive integers j and k, so H[p] has order
p2. Since H[p] ⊂ Ga,b[p] and Ga,b[p] has order p2, H[p] = Ga,b[p]. So

H not cyclic =⇒ Ga,b[p] ⊂ H ⊂ Ga,b.

The converse is true as well, since Ga,b[p] ∼= (Z/pZ)2 contains more than one subgroup of
order p, so it can’t lie inside a cyclic group. So for 2 ≤ d ≤ a + b,

|{H ⊂ Ga,b : |H| = pd, H not cyclic}| = |{H ⊂ Ga,b/Ga,b[p] : |H| = pd−2}|
= Na−1,b−1,d−2,

which leads to a recursive formula: Na,b,d is the number of cyclic subgroups of Ga,b with

order pd (which is Ca,b,d) plus the number of noncyclic subgroups of Ga,b with order pd

(which we just showed is Na−1,b−1,d−2 if d ≥ 2). �
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Using Theorems 1 and 2 (and sometimes the equation Na,b,d = Na,b,a+b−d, which follows
from duality theory for finite abelian groups), the following formulas for Na,b,d are found
when 1 ≤ a ≤ b and 1 ≤ d ≤ 5:

Na,b,1 = 1 + p,

Na,b,2 =


1, if a = b = 1,

1 + p, if a = 1, b ≥ 2,

1 + p + p2, if a ≥ 2,

Na,b,3 =


1, if a = 1, b = 2,

1 + p, if a = 1, b ≥ 3; a = 2, b = 2,

1 + p + p2, if a = 2, b ≥ 3,

1 + p + p2 + p3, if a ≥ 3,

Na,b,4 =



1, if a = 1, b = 3; a = 2, b = 2,

1 + p, if a = 1, b ≥ 4; a = 2, b = 3,

1 + p + p2, if a = 2, b ≥ 4; a = 3, b = 3,

1 + p + p2 + p3, if a = 3, b ≥ 4,

1 + p + p2 + p3 + p4, if a ≥ 4,

and

Na,b,5 =



1, if a = 1, b = 4; a = 2, b = 3,

1 + p, if a = 1, b ≥ 5; a = 2, b = 4; a = 3, b = 3,

1 + p + p2, if a = 2, b ≥ 5; a = 3, b = 4,

1 + p + p2 + p3, if a = 3, b ≥ 5; a = 4, b = 4,

1 + p + p2 + p3 + p4, if a = 4, b ≥ 5,

1 + p + p2 + p3 + p4 + p5, if a ≥ 5.

Examine these according to the constraints on a and b for each formula for Na,b,d. The
pattern of cases where inequalities on b appear is obvious: a = 1, b ≥ d, then a = 2, b ≥ d,
then a = 3, b ≥ d, and so on as a increases up to d − 1. The remaining cases where a
and b both have specified values are organized according to increasing values of a + b for
1 ≤ a ≤ b ≤ d− 1. We are led to the following general theorem.

Theorem 3. If 1 ≤ a ≤ b, then

Na,b,d =


1 + p + · · ·+ pd, if 0 ≤ d ≤ a,

1 + p + · · ·+ pa, if a ≤ d ≤ b,

1 + p + · · ·+ pa+b−d, if b ≤ d ≤ a + b,

0, if a + b < d.

Proof. Use induction on b. �

Example 4. When a = b,

Na,a,d =

{
1 + p + · · ·+ pd, if 0 ≤ d ≤ a,

1 + p + · · ·+ p2a−d, if a ≤ d ≤ 2a.
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Theorem 3 says that as d increases from 0 to a+b, Na,b,d starts out as 1, 1+p, 1+p+p2, . . . ,
increasing by the next power of p each time until reaching 1 + p + · · ·+ pa at d = a. Then
Na,b,d stays at this value until d reaches b, after which the highest power of p is removed for
each successive value of d until Na,b,d reaches Na,b,a+b = 1.

Corollary 5. Suppose 1 ≤ a ≤ b.

1. If 1 ≤ d ≤ a then Na,b,d = Na,b,d−1 + pd.
2. If a < d ≤ b then Na,b,d = Na,b,d−1.

3. If b < d ≤ a + b then Na,b,d = Na,b,d−1 − pa+b−d+1.

In particular, Na,b,d ≡ Na,b,d−1 mod pd if 1 ≤ d ≤ b but not necessarily if b < d ≤ a + b.

Proof. From the description of how Na,b,d rises, plateaus, and then falls, this is obvious. �

For each a, b, and d, observe that Na,b,d has the same formula for all p. So Na,b,d can be
described by a “universal” formula for all primes. More generally, if A is a finite abelian
p-group that is a product of cyclic groups of orders pe1 , . . . , per (ei > 0), then the number
of subgroups of A with a particular order pd is a universal polynomial function of p (same
formula for all p) that is determined by d and the exponents ei. Even more generally, the
number of subgroups H of A such that H and A/H have specified cyclic decompositions is
given by a universal polynomial in p that is determined by the sizes of the cyclic components
of H, A/H, and A; these universal polynomials in p are called Hall polynomials. There is
also a formula, due to Delsarte, for the number of subgroups of A with a given isomorphism
type. See [1] and [2].

We can formulate Theorem 3 in terms of counting subgroups with a particular index
rather than a particular order.

Theorem 6. If 1 ≤ a ≤ b, let Ia,b,m be the number of subgroups of Z/paZ × Z/pbZ with
index pm. Then for 0 ≤ m ≤ a + b,

Ia,b,m =


1 + p + · · ·+ pm, if 0 ≤ m ≤ a,

1 + p + · · ·+ pa, if a ≤ m ≤ b,

1 + p + · · ·+ pa+b−m, if b ≤ m ≤ a + b.

Proof. For 0 ≤ m ≤ a + b, a subgroup of Z/paZ× Z/pbZ has index pm if and only if it has
order pa+b−m, so Ia,b,m = Na,b,a+b−m. Now use the formulas in Theorem 3. �

Corollary 7. For a ≥ 1 and m ≥ 0, the number of subgroups of Z/paZ× Z with index pm

is {
1 + p + · · ·+ pm, if 0 ≤ m ≤ a,

1 + p + · · ·+ pa, if a ≤ m.

Proof. If H ⊂ Z/paZ × Z has index pm then for each M ≥ m, we have {0} × pMZ ⊂ H,
so the number of subgroups of Z/paZ × Z with index pm is the number of subgroups of
Z/paZ × Z/pMZ with index pm when M ≥ m. Taking M large enough that also M ≥ a,
the first two formulas in Theorem 6 with b = M gives the desired counts. �
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